# Probability and Statistics for Final Year Engineering Students 

By Yoni Nazarathy, Last Updated: May 24, 2011.

## Exercises and Tutorial 4 (covers part A):

## Several Random Variables: Joint Distributions, Correlation

Note: Exercises with a (*) are NOT required for Mechanical Engineering students.

## Joint Distribution

The joint distribution of two random variables X and Y is $p(x, y)$ (in the discrete case) or $f(x, y)$ in the continuous case allows us to calculate probabilities related to both random variables. We demonstrate by example:

Assume a packet switch with two inputs $A$ and $B$ and two outputs $X$ and $Y$. In each time unit the following can occur in each of the inputs:

- No arrival of packets, w.p. $\frac{1}{2}$
- An arrival destined to output X, w.p. 1/6.
- An arrival destined to output Y, w.p. 2/6.

Let the R.V. X measure the number of packets destined to output $X$ and let the R.V. $Y$ measure the number of packets destined to output Y .

1. What is the possible range of values that $X$ may take?
2. How about Y?
3. What is the possible values that the pair $X, Y$ may take (e.g. can we have $X=2$ and $Y=2$ )?
4. Construct the joint probability distribution $p(x, y)=P(X=x, Y=y)$.
5. Assume that a packet is lost if $X=2$ or $Y=2$ ? What is the probability of packet loss?
6. Consider the following joint distribution function $f(x, y)=C x y$ for $0 \leq x \leq 1$ and $0 \leq y \leq 1$. It is known that the area between the surface having heights equal to $x * y$ and the plane is $1 / 4$. What is C?

## Independence Revisited:

$X$ and $Y$ are independent if $p(x, y)=p(x) p(y)$ (discrete case) or $f(x, y)=f(x) f(y)$ (continuous case).
7. Let $X$ have a binomial distribution with $n$ trials and success probability $p$. Let $Y=n-X$. $Y$ is thus the number of failures. What is $p(x, y)$ ? Are $X$ and $Y$ independent?
8. Let $(X, Y)$ be the coordinates of a uniformly random point in the region $[a, b],[c, d]$. We have,

$$
f(x, y)=\left\{\begin{array}{cc}
K & a \leq x \leq b, \quad c \leq y \leq d \\
0 & \text { otherwise }
\end{array}\right.
$$

What is $K$ ? Are X and Y independent?

## Covariance

The covariance between two R.V's $X$ and $Y$ is a measure of their dependence (a number).

$$
\operatorname{Cov}(X, Y)=E[(X-E[X])(Y-E[Y])]
$$

If the R.V's are independent $\operatorname{Cov}(X, Y)=0$. If there is a positive relation between the $R V$ 's the covariance is positive, if there is a negative relation between the RV's the covariance is negative.

Covariance is also useful for calculating the variance of a sum of R.V's:

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)
$$

9. $\left.{ }^{*}\right)$ Show that $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=\mathrm{E}[\mathrm{X} \mathrm{Y}]-\mathrm{E}[\mathrm{X}] \mathrm{E}[\mathrm{Y}]$.
10. ${ }^{*}$ ) You know that $\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X)$. Use the formula above for variance of a sum to show that $\operatorname{Var}(2 X)=4 \operatorname{Var}(X)$.
11. What is the covariance of the random variable $X$ and a constant $Y=a$ w.p. 1?
12. ${ }^{*}$ ) The sample covariance is:

$$
\widehat{\operatorname{cov}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n-1}
$$

For the students in the class, evaluate the sample covariance of the measurements:
$x=$ Average cumulative time spent driving per week.
$y=$ Average time spent doing some sort of aerobic activity during the week.

## Correlation

The correlation of two random variables is a "normalized form" of the covariance.

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

It can be shown that (we don't show it in this subject): $-1 \leq \rho(X, Y) \leq 1$.
Having $\rho(X, Y)=1$ indicates that there is a perfect linear relationship between X and Y (without variability): E.g. $Y=a X+b$ with $a>0$. (try to show this).

Having $\rho(X, Y)=-1$ is similar yet indicates that $\mathrm{a}<0$.
The sample correlation is calculated as follows:

$$
\hat{\rho}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}} .
$$

13. Calculate the sample correlation of the data collected in exercise 11 above.
14. *) Assume $\mathrm{E}[\mathrm{X}]=0$ and $\mathrm{E}[\mathrm{Y}]=0$. Write a simplified formula (using only expectations) for $\rho(X, Y)$.
15. ${ }^{*}$ ) Following (10), show that if $\mathrm{Y}=\mathrm{aX}$ then $\rho(X, Y)=\operatorname{sign}(a)$.
16. *) Show that for arbitrary RV's (not necessarily zero mean), if $\mathrm{Y}=\mathrm{aX}+\mathrm{b}$ then $\rho(X, Y)=\operatorname{sign}(a)$.
17. For each of the following statements state if they are true or false:
a. The correlation coefficient is zero if and only if the covariance is zero.
b. The correlation coefficient is not defined if $X$ or $Y$ are non-random.
c. The sample correlation coefficient is an indication of the relationship of two random quantities. Having a positive value near 1 indicates that as one of the values decreases the other increases.

## Selected Solutions

1) $X \in\{0,1,2\}$
2) Same as $X$.
3) $(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)$
4) 

$$
\begin{gathered}
p(0,0)=\frac{1}{2} \frac{1}{2}=\frac{1}{4}=\frac{9}{36} \\
p(0,1)=\frac{1}{2} \frac{1}{3}+\frac{1}{3} \frac{1}{2}=\frac{12}{36} \\
p(0,2)=\frac{1}{3} \frac{1}{3}=\frac{4}{36} \\
p(1,0)=\frac{1}{2} \frac{1}{6}+\frac{11}{6} \frac{1}{2}=\frac{6}{36} \\
p(1,1)=\frac{1}{6} \frac{2}{6}+\frac{2}{6} \frac{1}{6}=\frac{4}{36} \\
p(2,0)=\frac{1}{6} \frac{1}{6}=\frac{1}{36}
\end{gathered}
$$

Observe the total is 1 .
5) $p(2,0)+p(0,2)=\frac{5}{36}$
6) $\mathrm{C}=4$.
8) $K=\frac{1}{(b-a)(d-c)}$. Yes - the RV's are independent.
11) 0 .
17) a) True. b) True (because the variance is 0 ). c) False, this is what happens at if the correlation is -1 .

