Name:	 	 	
Student Number:			

Statistics for Final Year Engineering Students Final Class Test, Thursday May 26, 2011. Lecturer: Dr. Yoni Nazarathy.

Duration: 40 Minutes.

Allowed: Non-Communicating calculators, double sided A4 reference sheet.

Not Allowed: Any other material, talking of any sort, looking side to side, passing items. *Students who violate this will be asked to leave immediately.*

Write your answers CLEARLY in the answer boxes only. You may use spare paper supplied during the test – write your name on this sheet and hand it in along with the test.

A single sheet containing both a normal and an F distribution table is supplied.

The test is composed of 15 items. 7 points per item (Maximal grade: 105).

Good Luck.

1)	of AN	In engineer is conducting an experiment to compare the durability of two tire types: Type X and type Y. 4 tires of each type are put to a test and a unit of measure indicating the level of durability is determined for each of the tested tires. The engineer decides to conduct an NOVA test and obtains a value of 5.42 for the F statistic. The engineer uses a confidence evel of 95%.					
	For each statement, indicate if true or false. And supply a brief explanation.						
	a)	The engineer rejects H_0 and concludes that there is no difference between tire types. True $\ /\ $ False.					
		Explanation:					
	b)	The engineer rejects ${\cal H}_0$ and concludes that the tire types have different durability levels with complete certainty.					
		True / False. Explanation:					
	c)	Knowing the value of the F statistic is not enough for deciding if to reject/not reject H_0 since the correlation coefficient between tires of type X and Y needs to also be computed.					
		True / False. Explanation:					
	d)	The engineer rejects H_0 and concludes the tire types differ in durability yet there is a 5% chance that the tire types do not have different durability levels.					
		True / False. Explanation:					
	e)	The engineer does not reject H_0 .					
		True / False. Explanation:					

2)	
	Weights of items (measured in Kg) are denoted by $W_1, W_2,, W_n$ and are assumed to be independent and follow the same distribution with,
	$P(W_i > x) = \begin{cases} 2e^{-x} & a \le x \\ 1 & x < a \end{cases}$
a)	Find the constant a .
	<pre>a = Explanation:</pre>
b)	Write (do not draw) the CDF of W_i , make sure you specify the value of the CDF for every x . (If you did not manage to solve the item above, leave your answer to this item and the next in terms of the constant a .)
	F(x) =
c)	Write (do not draw) the PDF of ${\it W_i}$.
	f(x) =
d)	An item is said to be "overweight" if it weighs more than 5 Kg. Assume $n=100$. Write an expression (may involve a summation) for the probability of having less than 20 overweight items.
	Probability of less than 20 overweight =
	Explanation:
e)	Let \widetilde{W}_i denote the weight measured in grams . Write the PDF of \widetilde{W}_i (if you did not answer (c), assume your result for (c) is $f(x)$ and try to write the result in terms of it).
	$\tilde{f}(x) =$

3)	A shipping company is conducting a survey regarding container contents. 100 containers are picked at random and for each container the following quantities are recorded: x_i - The weight of the container. y_i - The value of the container contents. I_i - Equals 1 if the container is privately owned and gets the value 0 if the container is owned by a company.
(sa	The following statistics are calculated: \overline{x} , \overline{y} (sample means) S_x^2 , S_y^2 (sample variances), \hat{p} ample proportion of privately owned containers) and $\sum_{i=1}^{100} x_i y_i$.
Fo	r each statement, indicate if true or false. And supply a brief explanation.
a)	S_{x}^{2} is an unbiased estimator of the variance of container weights.
	True / False. Explanation:
b)	The sample correlation coefficient of container weights and container values can be calculated based on the above statistics (without using any other information from the data).
	True / False. Explanation:
c)	The sample correlation coefficient of container weights and container values is 0 because the sample is random and containers are assumed to be independent.
	True / False. Explanation (no need for an exact formula if true):
d)	A confidence interval for the proportion of privately owned containers with confidence level $1-\alpha$ can span a range (lowest value to upper value) of at most $\frac{z_1-\frac{\alpha}{2}}{10}$.
	True / False. Explanation:
e)	$P(\hat{p}=1)$ = $100p^{100}$, where p is the population proportion of privately owned containers.
	True / False. Explanation: