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1. Do problem 5.129. Note that the joint CDF of X and Y (in case you did not study it), is defined
as,

FX,Y (x, y) = P
(
X ≤ x, Y ≤ y

)
.

2. Write down the PDF of a bivariate (two-dimensional) normal distribution in terms of the pa-
rameters µi, σi, i = 1, 2 and ρ. Consider now the formula for a general multi-variate normal
distribution in terms of the mean vector and covariance matrix. Show that it agrees with the
bivariate formula. (This requires writing the covariance matrix in terms of σi, i = 1, 2 and ρ and
then manipulating the expressions).

3. Do problem 5.132.

4. A useful way of randomly generating normal random variables is by generating a pair using
polar coordinates. For this choose a random angle θ ∼ uniform (0, 2π) and a radius according
to the Rayleigh distribution – look it up in Wikipedia or elsewhere and see how to generate
random samples. The resulting (angle,radius) pair is then converted from polar to cartesian (x,y)
coordinates and is distributed like a bi-variate normal with mean (0, 0) and an identity covariance
matrix. (If you don’t understand look it up on the web or in the book).

(a) Explain (understand) why the resulting method works.

(b) For a single standard normal random variable, calculate (using a table or numeric integral),
P (1 ≤ Z ≤ 2).

(c) Now estimate the above probability by generating 10, 000 normal random variables using the
above method.

(d) Assume you now want to generate bi-variate normal random variables with mean (5,−2),
variances 4 and 9 respectively, and correlation coefficient = 1/2. Find the transformation
from the standard bi-variate normal that yields the desired distribution.

(e) Use the above to estimate the probability of the random variable falling within a radius of 1
of its mean (using 10, 000 samples).

(f) Compare the above to a numeric (2 dimensional) integral calculation.

Good Luck.


