Stochastic Modeling for Engineers HW Project Number 6: Optimum Linear Systems and the Kalman Filter

Yoni Nazarathy

November 3, 2011

1. Do problem 10.56 .
2. Do problem 10.57.
3. Do problem 10.69.
4. Assume the monthly population of an animal species on an island, Z_{n}, follows the sequence

$$
Z_{n}=a_{n-1} Z_{n-1}+W_{n-1}, \quad n=1,2, \ldots
$$

with $Z_{0}=100, a_{n}=\sqrt{n}$ and W_{n} a sequence of i.i.d. 0-mean Gaussian random variables with variance $\sigma_{W}^{2}=4$. Obviously Z_{n} is not an integer, yet use this as an approximation. Assume the population is measured every month, X_{n}, where,

$$
X_{n}=Z_{n}+N_{n},
$$

and N_{n} is a sequence of i.i.d. 0-mean Gaussian random variables with variance $\sigma_{N}^{2}=9$.

- Generate and plot 3 random trajectories for $n=0,1, \ldots, 20$ of both X_{n} and Z_{n}.
- Write out equations (10.107) in the book for $n=0,1, \ldots, 3$ and solve them from $h_{j}^{(n)}$.
- Use the result above to estimate Z_{n} from X_{n} for the first observations (for the the random trajectories above).
- Implement the Kalman filter algorithm (page 621) for estimating Z_{n} based from X_{n} (for the random trajectories). Verify that your estimates agree with the results of equations (10.107) for the first observations.

Good Luck.

