Software Engineering 14
Programming in C

Final Project: Polynomial Calculator
A polynomial (פולינום) of x is a linear combination of elements of the
form Xm. Where m is a nonnegative integer. The order (מעלה) of the polynomial is the highest valued power. For example: 24X17-12.03X2+X is a 17th degree polynomial.

Polynomials may be added, subtracted and multiplied. for example:

(X2 + 5) + (X3 + 3X2 +1) = X3 + 5X2 + 6

(X2 + 5) - (X3 + 3X2 +1) = -X3 - 2X2 + 4

(X2 + 5) * (X3 + 3X2 +1) = X5 + 3X4 + 5X3+ 16X2 + 5

Polynomials may also be divided, raised to a natural power, differentiated, and integrated. But implementing these operations is not mandatory for this project and is left as a bonus. (A highly recommended bonus.)

You are to implement a polynomial calculator that supports addition, subtraction and multiplication. The calculator should use variable names, each variable being a polynomial. This means that the user can define PolA to be the polynomial X3 + 4X2 + 6, and PolB to be X2 + 5 etc… The user may then perform operations (+,-,*) on these polynomials or any other polynomials that have been defined.

The calculator is to support both input through the console and input through a text file. By default, the program continuously displays a prompt to the user, expecting to receive commands (see below). If an argument is given to the program at the shell prompt (argv), the program should interpret this argument as the file name of the input commands, and input and execute commands from file before displaying the first command prompt to the user. (This should make debugging easier also.)

 These are the commands that you should implement:

 = Assignment, assign a polynomial to a name. For example:

PolA = 1X3 +4.0X2 +6X0 (which means X3 + 4.0X2 + 6)

PolB = 1X2+5X0

(which means X2 + 5
)

 You may assume that variable names are not longer than 8 chars.

 : evaluation, evaluate a polynomial operation and assign into result variable or print to screen. For example:

PolSum : PolA + PolB
(sum PolA and and PolB, result in PolSum)

: PolA * PolB

(multiply PolA and PolB and print result)
You are not required to support multiple operations on the right side of the assignment operator.
 Printing , By listing the name of the polynomial, the program should display the polynomial to screen. For example: the command PolA will print: 1.0000 X^3 + 4.0000 X^2 + 6 X^0 . If the given polynomial does not exist, an error message is to be printed.

 del deletion, deletes the given polynomial if it exists. For example:
del PolA, deletes PolA. If the polynomial does not exist an error message is to be printed.

 list, lists all of the polynomials in memory.

 exit, leave the program.

Here is an example of a sequence of input commands and their actions:

PolA = X3 + 4X2 + 6

Creates a PolA

PolB = X2 + 5

Creates PolB

PolSum : PolA + PolB

Creates PolSum as sum of PolA, PolB

PolA

Prints PolA

PolSum

Prints PolSum

: PolA * PolB

Print product of PolA and PolB
del PolA

Remove PolA from memory

list

List all of the polynomials in memory

exit

Leave the program.
 You can make the following assumptions and alterations:

 Assume that the input line is no longer than 1024 bytes long. (This does still not exempt you from allowing polynomials of any size).

 Assume that polynomial names are no longer than 8 chars long and are case sensitive.

 Allow the coefficients of the polynomial to be integers instead of floating points as seen in the above example. Note that this is only possible as long as you do not implement integration.

 Here are some reminders of programming, do’s and don’ts:
 Do break up the project into modules.
 Do free any memory that you allocate, close files that you open.

 Do document every function prototype in a complete manner.

 Do make sure that functions do not become monstrous, non-understandable pieces of code.

 Do use consisted naming conventions for variables, and constants.

 Do use constants where needed.

 Do use library functions where it can make life easier (strtok(), sscanf() etc…) Do use MSDN or any other help utility to study these functions.
 Don’t start programming without thinking on how you are going to do it before.

 Don’t stop before it is complete, do not forgive yourself on little bugs, and not on big bugs either.

 Do make sure that the program works, try out a variety of input files.

 Do use some creativity, try to do at least one of the bonuses mentioned.

 Don’t be afraid of consulting others, or even looking at books. The polynomial program is a classic linked list example and appears in several books.

Good Luck

1
2

