Tirgul #4

(Object Serialization, Threads, TCP/UDP Sockets, URL Connection)

 Object Serialization:

 ObjectOutputStream, ObjectInputStream

 Mention Special Needs and uses of Serialization:

 Briefly Externalizable

 Briefly The transient key word

 Briefly Versioning

 Exercise: Create an ArrayList containing the first 100 Fiboncii numbers. Write this array into two files: One file by using serialization, another file using the DataOutputStream class. Compare the size of the files. Read the data back from the serialized file.
 Concurrent Programming:
 Class Thread, Interface Runnable

 start(), yield(), sleep() methods

 Exercise: Write a program with two threads, where one thread sends serialized Date objects through a pipe to the other thread and the other thread reads and displays the objects as they arrive. (Send the object every 5000 ms). (Use PipedInputStream and PipedOutputStream).
 Daemon Threads

 Sharing limited resources

 The synchronized key word

 wait(), notify(), notifyall()

 Brief words on deprecated methods: stop(), suspend(), resume() and destroy()

 No guaranty for avoidance of deadlocks!

 Thread priorities

 A brief word on thread groups.

 A brief word on green threads and threads in linux.

 A brief word on creating processes.

 Exercise: Write a simple “producer consumer” program where the producer writes sequential Integers (1,2,…) into an ArrayList and the consumer removes them from the arrayList and prints to screen. The producer should sleep between insertions of integers. (Don’t forget to synchoronize).
 Network Programming:
 Class InetAddress

 Class Socket

 Class ServerSocket

 Class URL

 A brief word on class DatagramSocket and class DatagramPacket

 Exercise: Write a “star-like” network. The server process is the “center of the star”. It accepts connections from clients and adds each connected client to a HashMap. The clients are the “end points of the star”. Clients aren’t interested in conversing with the server but rather with other clients. When a client want’s to send a message to another client, he sends it to the server and the server sends it to the proper client. Messages should be combinations of unique destination client numbers and random floats. If not completed, this exercise is HW #5. (You can change or make up slightly different rules if you want.)
