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Extended Abstract

This is a Ph.d research proposal. It summarizes the proposed research

questions, states the work plan and surveys relevant background. The pro-

posed research questions are labeled for convenience PRQ0, PRQ1, etc. At

certain times we extend our notation and use digits to the right of the dec-

imal point for introducing a hierarchy of the proposed research questions.

For example: PRQ2.3 and PRQ2.5 are all part of the more general proposed

research question PRQ2.

The research deals with Stochastic Processing Networks with Infinite In-

puts (SPNII). This is a stochastic queueing model that may find a variety of

applications in manufacturing plants, complex communication networks and

road traffic networks among others. These network models are generaliza-

tion of Multi Class Queueing Networks (MCQN) and Stochastic Processing

Networks that were proposed and studied by Harrison, Dai and many others.

The generalization is in the sense of adding the possibility of infinite inputs

as opposed to the standard arrival process inputs. Simple yet interesting

instances have been studied by Weiss and others.

We first introduce the ultimate goal of our research: given a specific net-

work, does there exist a scheduling policy that maintains stochastic stability,

utilizes resources to the fullest and produces outputs from the network at

suitable proportions (fairness among output streams). This is the question

of existence of a stable, fully utilizing, and fair scheduling policy (PRQ0.0).

iii



It is natural to extend this question to the optimization problem of finding

the optimal policy in terms of throughput maximization (PRQ0.1). Using

our notation for proposed research questions, we refer to the combination of

both of these proposed research questions as PRQ0.

We believe that PRQ0 is an exceedingly ambitious question to answer

at this phase. We thus propose a series of more specific research questions

whose study may shed light on the dynamics and mechanics of SPNII models

and eventually lead to new results regarding PRQ0.

We introduce a set of questions that deal with the re-entrant line model

exhibiting infinite inputs (RLINEII). While this model does not capture all

of the aspects of a SPNII, its study may still yield the needed experience and

insight. We start with PRQ1 which deals with stability of the Last Buffer

First Server (LBFS) policy.

The following sub-questions deal with the case in which the bottleneck re-

source is used for the first operation: PRQ1.0 deals with the simpler Markov-

ian case and attempts to show positive recurrence using methods of Lyapunov

Functions. PRQ1.1 extends its former and attempts to find a steady state

distribution. PRQ1.2 extends the Markovian case to the general case and

attempts to show stability using fluid theorems. PRQ1.3 proposes to use

Lyapunov Functions on general state spaces to show stability. We then in-

troduce PRQ1.4 which deals with the case in which the bottleneck resource

is not used for the first operation.

Following the specific LBFS policy, we propose to continue with the

RLINEII model and attempt to find optimal policies (PRQ2). In PRQ2.0

we propose a dynamic programming formulation of the problem under the

Markovian case. In PRQ2.1 we propose simulation studies regarding op-

timization and heuristic optimization of RLINEII with respect to several

performance measures.

Handling of most of the proposed research questions regarding RLINEII

may require investigating a simpler and more trackable model. We thus

iv



handle the simplest RLINEII model possible that still exhibits some sort of

re-entrance; this is the 2 resource, 3 buffer infinite input model (2R3BII).

This model has been studied extensively by Weiss et.al. We propose several

important extensions that have not yet been dealt with.

Most of the analysis of 2R3BII has been performed with respect to the

LBFS policy and the Markovian case. In PRQ3 we propose to extend the

research of this tractable case and study additional attributes such as busy

period distributions and more. In PRQ4 we propose to study the LBFS policy

on this model when general service times are applied. The plan here is to use

Lyapunov Function methods in general state spaces. In PRQ5 we propose a

series of optimization problems regarding this model in the Markovian case.

Most of the research questions regarding 2R3BII are separated into sub-cases

depending on which of the two resources is the bottleneck.

Another specific case of the RLINEII model is the Flow Shop. This model

does not exhibit re-entrancy and thus the interesting features of the infinite

input buffers are mostly neutralized. Yet, we propose a series of research

questions regarding holding cost optimizations of the fluid analog of this

model over a finite time horizon. These questions extend previous work by

Weiss and involve Separated Continues Linear Programming (SCLP). We

label these as PRQ6.

Moving away from the RLINEII model, we meet the 2 resource, 4 buffer

infinite input model (2R4BII). This model has been studied by Weiss and

Kopzon under the name of the Push-Pull Model. Weiss and Kopzon have

found certain policies that achieve full utilization while maintaining stability,

these are called generalized threshold policies (GTP). These stability results

are currently only available for the Markovian case. We introduce prelimi-

nary simulation results of Maximum Pressure Policies (analyzed by Dai and

Lin) of these models and show that these scheduling policies are non-stable

(PRQ7). Comparing these results to the generalized threshold policies we see

the strength of the generalized threshold policies. Further more in PRQ7,
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we propose to obtain simulation results that indicate that stability may exist

under the generalized threshold policies under general service time distribu-

tions. PRQ8 deals with proving stability of the generalized threshold policy

in the general distribution case. We propose to tackle this proof by means of

Lyapunov Functions on general state spaces.

PRQ9 deals with providing additional models that may bridge the gap

towards PRQ0. It is a big gap and at this point we are not clear with regards

to which additional models to investigate and which additional questions

to propose on route to tackling PRQ0. We believe that after some hard

work on most of the questions mentioned above, PRQ9 may be properly

handled and thus additional relevant models may be supplied. At that point

of time, further research may be performed on these models towards a better

understanding of PRQ0.

In addition to these proposed research questions, we also present PRQ11

which deals with a slightly different subject: near optimal control of a queue-

ing network over a finite time horizon. We are planning to deal with this

subject in the upcoming months.
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Overview

This is a Ph.d research proposal. It summarizes the proposed research ques-

tions, states the work plan and surveys relevant background.

The structure of this research proposal is as follows: Chapter 1 presents

all of the proposed research questions and minimal relevant background.

Chapter 2 indicates the general work plan regarding the research during

our Ph.d studies. References are made to the proposed research questions

that are enumerated in chapter 1. Chapter 3 presents a very brief overview.

The purpose of the overview is both to summarize results that are directly

related to our research (infinite input results by Weiss et. al) and to state

which other material is to be summarized and aggregated in the dissertation.
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Chapter 1

Proposed Research Questions
and Preliminary Results

This chapter describes the proposed research questions (PRQ) that are to be

investigated during the course of the research. It also contains preliminary

results and conjectures already obtained.

It should be noted that the proposed research questions presented in this

chapter are presented in a top-down manner. At first the most general ques-

tions are posed. These are then followed by specific more precise questions.

While the presentation is such, the course of the research will be in a bottom-

up manner, meaning that at first the more specific research questions will be

tackled and then the more general ones will be handled. It should also be

noted that it is highly possible that the whole of the questions posed in this

chapter are more than can be handled within the course of 3-5 research years.

Thus possibly the most general questions are presented here for completeness

while the more specific and concrete questions that are presented here, are

the ones that will be fully contained within the research. More on the work

plan regarding the research may be found in Chapter 2.

We begin by introducing the problem domain, Stochastic Processing Net-

works with Infinite Inputs (SPNII) in its most general from in section 1.1.



We then continue and state the most general questions regarding such models

in section 1.2. Following that, specific and more concrete questions regarding

special cases of our general model are posed. This is performed in section 1.3

where questions regarding re-entrant lines are posed and also in section 1.4

where questions regarding the 2 resource 4 buffer model are posed. Here we

also includes some preliminary results and conjectures. Questions regarding

future ideas and models, finally introduced in section 1.5. In section 1.6,

we include the extended abstract of other work we are planning to perform:

Near Optimal Control of Queueing Networks over a Finite Time Horizon.

We use the following notation for introducing proposed research ques-

tions: A proposed research question is labeled as PRQx.y where x indicates

the number of the research question and y indicates the number of the sub-

questions. This notation introduces a hierarchy of proposed research ques-

tions for convenience. For example: PRQ2.3 and PRQ2.5 are all part of the

more general proposed research question PRQ2.

The proposed research question PRQ0 and its sub-questions are our most

general questions and are introduced in section 1.2. The other proposed

research questions then follow in the following sections.

1.1 The Problem Domain: SPNII Models

A stochastic processing network with infinite inputs (SPNII) is a very general

stochastic queueing network model. It is now defined. The term network is

used synonymously with the SPNII model. We attempt to be consistent in

our notation with the model presented in [11], yet some notation has been

modified due to our generalization.

The Mechanics of the Model

Our network operates in continuous time t ∈ [0,∞). We use the term an

operation of the network to refer to a specific sample path. A SPNII is

3



composed of the following entities: jobs, buffers, activities, resources and

scheduling policies. Jobs are not directly identified, they are constantly being

brought-in, taken-out, merged and split during the operation of the network.

Buffers are labeled k = 1, . . . , K. the set of all buffers is K. Activities

are labeled j = 1, . . . , J . The set of activities is J . Resources are labeled

r = 1, . . . , R. The set of resources is R. Loosely, a scheduling policy defines

which activities to perform during an operation of the network.

Buffers of the network are categorized as either source buffers, interme-

diate buffers or destination buffers. The source buffers always contain an

infinite amount of jobs; these correspond to the infinite input nature of the

model. The intermediate buffers may be viewed as finite queues. The destina-

tion buffers collect jobs as they are removed from the network. K = S+I+D,

where S, I and D are the amounts of source, intermediate and destination

buffers respectively. These sets of buffers are respectively labeled S, I and

D, thus K = S ∪ I ∪ D.

Activities are the driving force of the network. For each activity, a set

of input buffers and output buffers is specified. A single operation of an

activity removes a given amount of jobs from each of the input buffers of

the activity and places a given amount of jobs in each of the output buffers

of the activity. The input buffers of an activity may be of the source buffer

type or the intermediate buffer type, the output buffers of an activity may

be of the intermediate buffer type or the destination buffer type.

The J × K operation matrix B determines how activities operate on

buffers. All values in this matrix are integers. The entry Bj,k indicates

the positive change that buffer k undergoes upon completion of activity j

(thus if it is negative then jobs are removed from the buffer). The signs of

the entries are restricted based on the type of buffer (source, intermediate or

destination): for k ∈ S, B·,k ≤ 0; for k ∈ D, B·,k ≥ 0; for k ∈ I there are

no sign restrictions. Note that rows of the operation matrix do not have to

sum to 0, thus job splitting and/or merging is allowed. The input buffers of

4



activity j are IN(j) = {k ∈ K : Bj,k < 0}. The output buffers of activity j

are OUT (j) = {k ∈ K : 0 < Bj,k}.
Jobs are the basic atoms in the network. They are placed in the buffers

of the network and circulate between these buffers as time advances. Qk(t)

indicates the number of jobs in buffer k at time t. This value is infinity for

k ∈ S, non-negative for k ∈ I and non-decreasing in t for k ∈ D. The jobs

present in a certain buffer are indistinguishable. At time t = 0, there are

initial job amounts in the intermediate buffers. These are simply denoted by

Qk(0) for k ∈ I. The produced number of jobs is initially zero: Qk(0) = 0

for k ∈ D.

Activities are fueled by resources. Several activities may need a shared

resource and several resources may be needed by a single activity. Note that

resource splitting is not allowed. The R × J resource consumption matrix

A determines the relationships between resources and activities. The entry

Ar,j = 1 if resource r is required for activity j; it is 0 otherwise.

For each activity j, we indicate by uj = {uj(l), l ≥ 1} the set of durations

of operations of the activity; the l’th operation’s duration is uj(l). These

are non-negative real numbers. We can now define the counting processes

Sj(t) = max{n :
∑n

l=1 uj(l) ≤ t}. This is the amount of operations of activity

j completed during the first t time units of operation of activity j.

We indicate by Tj(t) the cumulative activity j processing time in [0, t].

Obviously 0 ≤ Tj(t) ≤ t. Thus Sj(Tj(t)) is the amount of operations of

activity j during the interval [0, t].

Given initial job amounts in the intermediate buffers {Qk(0), k ∈ I},
sequences of activity processing times {uj, j ∈ J } and cumulative activity

processing times {Tj(t), j ∈ J } the buffer levels at time t may be uniquely

determined as follows:

Qk(t) = Qk(0) +
∑

j∈J
Sj(Tj(t))Bj,k k ∈ I ∪ D (1.1)
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Qk(t) = ∞ k ∈ S (1.2)

Resources are limited and thus in general, activities may not always be

applied simultaneously; this is specified in the resource consumption con-

straints:

∑

j∈J
Ar,j(Tj(t)− Tj(s)) ≤ t− s s ∈ [0, t] r ∈ R (1.3)

Tj(0) = 0 j ∈ J (1.4)

Tj(t) ≤ Tj(t + ε) j ∈ J 0 < ε (1.5)

Constraints 1.3 require that the utilization of each resource not exceed 1

within any time period. Constraints 1.4 require that at the start of operation

of the network resources still haven’t been used. Constraints 1.5 require that

the cumulative activity processing time be non-decreasing.

While there are always jobs present in the source buffers, the intermediate

buffers act as finite queues. These queues may be empty during certain

periods but they may not be negative. These are the queue size constraints:

0 ≤ Qk(t) 0 ≤ t k ∈ I (1.6)

Comparing the our model to the model described by Dai and Lin in [11],

we find two major differences: (1) Their model allows for probabilistic routing

while we have chosen to avoid this feature for simplicity. (2) Their model

does not allow activities operating on source buffers to share resources with

other activities while our model does not have this restriction. It should

be evident that difference (2) makes the infinite input feature of our model

interesting because it allows tradeoffs of scheduling activities that pull from

source buffers and other activities.
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Scheduling Policies

A network model instance is given by the following set of parameters:

(S, I,D,B,A, {Qk(0), k ∈ I}). We denote by M the set of all network

model instances.

Assume we are given a network model instance M ∈ M. A processing

times instance is a sequence of processing times {uj, j ∈ J }. We denote the

set of all processing times instances by PT (M).

Assume we are given a network model instance M ∈M and a correspond-

ing processing times instance PT ∈ PT (M). A feasible network schedule is

the finite set of functions {Tj(t), j ∈ J } that satisfy constraints 1.3 - 1.6

while the network dynamics follow 1.1 and 1.2. We denote the set of all feasi-

ble network schedules by T (M,PT ). This set is trivially non empty because

Tj(t) = 0, j ∈ J , is a feasible network schedule.

It should be noted that for a given network model instance and processing

times instance the cumulative activity processing times completely describe

the operation of the network according to equation 1.1. This leads to the

definition of a scheduling policy.

Assume we are given a network model instance M ∈ M. A scheduling

policy for this network model is a mapping P : PT (M) → T (M, PT ). We

denote the set of all scheduling policies by P ′(M).

Our framework is an on-line frame work and not a combinatorial opti-

mization framework. We will thus not be interested in all scheduling policies

but only in those policies that cannot take future processing times into con-

sideration. In one sense this concept may be treated as requiring a scheduling

policy to be a mapping from the ”state” of the network to a decision regard-

ing which activities to perform. Note that we do not deal with probabilistic

scheduling policies in this work.

We currently do not know how to provide a useful rigorous definition of

on-line scheduling policies. Nevertheless, we denote the set of all such policies
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by P(M). As will be seen in section 1.2, PRQ0 deals with optimization over

this set. We believe that a rigorous definition of P(M) requires more insight

into the nature of PRQ0 then we have at this time.

It should be noted that our model allows preemption. This is evident

since we did not specify any non-preemption restrictions in our definition of

scheduling policies.

Probabilistic Assumptions

We assume that the durations of operations of the activities are random

variables. These are in turn the primitive processes of our model: given

a value for the durations (a processing time instance) the dynamics of the

network with respect to a scheduling policy are fully determined.

We assume that all processing times are statistically independent. We

assume the processing times of a given activity are identically distributed

with distribution Fj. We assume that the processing times have a positive

real mean: mj = E[uj(1)]. In short, each sequence uj is an i.i.d. sequence

with mean mj. Assume we are given a network model instance M ∈M. We

denote the set of all possible processing time means by A(M).

While we do not make further assumptions at this point, it should be

noted that several (but not all) of the proposed research questions deal with

the Markovian case in which uj(1) ∼ exp(m−1
j ).

1.1.1 Attributes and Measures of Performance

We will now discuss the four attributes and measures of performance that

are stated in the title of this research proposal: stability, utilization, fairness

and throughput. Our description assumes that we are given a network model

instance M ∈ M, a corresponding scheduling policy P ∈ P(M) and a cor-

responding processing time means vector A(M). For this section we use the

term ”network” to refer to the combination of these items.
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We will assume that Qk(t) are random variables arising in an operation

of this network. We assume that all expectations and limits exist and that

the network is ergodic. We do not make these assumptions explicit in this

proposal but rather assume that the definitions may be made rigorous. At-

tempting to handle PRQ0 will require more rigorous definitions.

Stability

We say our network is stable if limt→∞Qk(t) < ∞ a.s. for k ∈ I.

Utilization

We define the utilization of resource r as ρr = limt→∞
∑

j∈J Ar,jTj(t)/t. It

is evident that the utilization is at most 1. We define the minimum target

utilizations as {ρ̂r, r ∈ R}. We say the network meets targets utilization if

ρ̂r ≤ ρr for r ∈ R a.s.

Ideally we will be interested in having target utilizations of 1, but this

is not always possible if we require stability. We thus see the property of

meeting target utilization implies that we are utilizing our resources by at

least a predetermined amount (the target utilization).

Fairness

We define the total jobs arriving to destinations by time t as QD(t) =
∑

k∈D Qk(t). We define the proportion of production of k as DP k = limt→∞Qk(t)/QD(t).

For a given network we are interested in target proportions: {D̂P k, k ∈ D}
such that

∑
k∈D D̂P k = 1. We will say that our network is fair if DP k = D̂P k

for k ∈ D a.s.

Thus the fairness of the network is a property of being able to produce

jobs to destination buffers at the target proportion. We will see that there

are some networks that are fair with respect to some target proportions but

not others (such an example is the 2R4BII model).

9



Throughput

The throughput of the network is limt→∞QD(t)/t. Again we assume that

this limit exists and that it is the same for every realization.

1.1.2 An Example

We now present an example of an SPNII model. This example tries to

incorporate all of the interesting features that are available in SPNII models:

job splitting, job merging, routing and tradeoffs between pushing new jobs

into the system or pulling jobs towards destination buffers.

These are the buffers: K = 6, S = 1, I = 3, D = 2, S = {1}, I =

{2, 3, 4}, D = {5, 6}. These are the activities: J = 7, J = {1, . . . , 7}. This

is the 7× 6 operation matrix.

B =




−1 1 0 0 0 0
−1 1 0 0 0 0
−1 0 1 0 0 0
0 0 −1 2 0 0
0 −1 −3 0 1 2
0 −1 0 0 1 0
0 0 0 −1 0 1




These are the resources: R = 5, R = {1, . . . , 5}. This is the 5×7 resource

consumption matrix:

A =




1 0 0 0 0 0 0
0 0 1 1 0 0 0
0 1 0 0 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1




We set Qk(0) = 0, k ∈ {2, 3, 4}. The processing times means of the

activities are as follows: m1 = 10.0 and mj = 1.0, j ∈ {2, . . . , 7}. The

following page contains an illustration of this example. The squares in the
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illustration denote buffers, the circles denote activities and the groupings of

activities denote resources. The values of the operation matrix are labeled

by the arrows coming in to an activity and the arrows going out. These are

the input buffers and output buffers respectively.

There are several points to notice regarding this example and SPNII mod-

els in general:

• From a mathematical point of view, it is meaningless to have more than

one source buffer. Nevertheless, it may sometimes be easier to model

applications in this manner.

• SPNII models allow to model stochastic arrival streams. This is evident

in the example with activity 1 and resource 1. Assuming that our policy

is work conserving with respect to resource 1, this resource and activity

model an arrival process of jobs into buffer 2.

• The allocation of resources 3 and 4 is directly linked to the stability

of the system. Examining resource 3 for example, it may be used to

perform activity 2 or activity 5. It is evident that performing activity 2

increases the number of jobs in the system while performing of activity

5 decreases this number. We will be interested in finding policies that

allow full (or at least maximal) utilization of these resources while

maintaining the system stable. We thus expect these policies to balance

between work that pulls jobs from the input buffers, and work that

pushes jobs out towards draining of the system.

• Notice that this system produces two products, these are set to the

destination buffers 5 and 6. We will be interested in finding policies that

produce these products according to some target proportions (fairness).

• Activity 5 is an example of an activity that performs both job splitting

and job merging: each application of this activity takes 4 jobs from its

11



input buffers and outputs 3 jobs to its output buffers.

• Notice that our model supports routing, this may be seen for example

by looking at buffer 3. Jobs at this buffer may either be processed by

activity 5 (which processes 3 jobs at a time) or by activity 4. This may

be seen as a routing decision that has to be made.
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1.1.3 Applications

We now discuss how SPNII models can be used in manufacturing and com-

munications applications. We also believe that these models can be used to

model rush hour road traffic and overloaded call centers without abandon-

ments but we do not go into the details here.

Manufacturing

The manufacturing setting is a classic setting for SPNII models. Infinite

inputs are in many situations the natural assumption to make (as opposed

to stochastic inputs). This is because in many instances factories are required

to produce in the short term at a maximal rate and there is no scarcity of

raw materials (inputs)

A reasonable way to apply our model to manufacturing is as follows: The

network models a factory. The factory has machines which are modeled as

resources in our model. There are tasks that are performed by these machines

(sometimes several machines may collaborate to perform a single task), these

tasks are modeled as activities in our model. Manufactured parts traverse

through the factory and are processed by the machines performing the tasks.

The parts which are modeled as jobs reside in bins which are modeled as

buffers in our model. All parts residing in a bin are homogenous. The

bins of parts are either bins of raw materials which are modeled as source

buffers, bins of intermediate parts that have not yet been released from the

factory which are modeled as intermediate buffers and bins of finished parts

(products) which are modeled as destination buffers.

When a task is performed it moves parts from its input bins to its output

bins. Routing may be incorporated in the model by defining several tasks

that are similar in the machines that they use but differ in some of their

output bins. Merging and splitting of parts is also possible. This is because

there is no requirement that there be a one to one correspondence between
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the input parts and the output parts of each task.

Our four attributes and measures of performance are highly important

in the manufacturing setting. Stability is natural to require because without

it, the bins of intermediate parts will eventually overflow. In addition, with-

out stability, cycle times will continuously increase. Even if a finite horizon

situation is considered, stability will usually yield low inventory costs. High

utilization of resources is a natural measure of efficiency: it is highly inef-

ficient to invest millions in an expensive machine and end up not using it

close to a 100% of the time. Fairness is important when the factory produces

more then one finished product. In an attempt to maximize throughput, sit-

uations may arise where a big quantity of one product is manufactured while

a much smaller quantity of another product is manufactured and this contra-

dicts the desires of the factory management. We say that this situation isn’t

fair. Finally throughput is the overall measure of performance of a factory:

”how fast can it produce”. As we will see in section 1.2, we believe that a

natural question is that of attempting to maximize throughput subject to

some constraints regarding stability, utilization and fairness

Communication Networks

Packet switched communication networks are usually viewed as a distributed

mechanism for transferring messages. This mechanism is composed of nodes

and links. Decisions regarding link allocation and route selection must be

taken. Messages entering the network usually have a source and a sink and

the network’s role is to transfer the messages between the source and the sink.

Under this view, communication networks are usually modeled has having

stochastic inputs rather then infinite inputs. This is reasonable because it

is assumed that messages arrive to the network according to some arrival

process. The goal is usually to find media access control (MAC) and routing

policies that maintain stability and fairness while maximizing throughput.
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There is less focus on maximizing utilization. This is evident since in practice

network links are usually over-provisioned heavily.

We believe that there are certain types of communication networks that

can be modeled more appropriately with infinite inputs. In these types of

networks, full utilization of the network is one of the goals of the scheduling

mechanisms. While it does not make sense to have an infinite supply of

messages because the network will not be able to service all messages, it

does make sense to have a infinite supply of information to transport. The

assumption here is that the application using the network will be able to

make good use of as much bandwidth as it is given.

As a simple illustrative example, consider a network where a source node

is equipped with a video camera and a sink node is equipped with a monitor

that can display video. Assume that both the video camera improve their

quality indefinitely as they are offered a higher bit rate. It will then make

sense to utilize the network to the fullest between the source and the sink

and thus achieve the highest quality video stream possible.

When applying SPNII models to communication networks we treat the

source buffers as sources of information and the destination buffers as con-

sumers of information. Jobs signify chunks of information. These are not

necessarily packets because jobs may merge or split while traversing the net-

work. The resources are the communication links. Activities correspond to

transmission and receiving of information.

1.2 PRQ0: Optimization of Throughput Sub-

ject to Stability, Utilization and Fairness

Given an SPNII model we would like to be able to perform scheduling on it

in a stable, properly utilizing and fair manner. In addition we would like to

be able to maximize throughput as we perform this scheduling. We convert
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this idea to the following research question:

PRQ0.0: Find algorithms, characterizations and theorems

that may answer this: Assume we are given an SPNII model in-

stance M , a corresponding processing time means vector A(M),

corresponding target utilizations {ρ̂r, r ∈ R} and corresponding

target proportions {D̂P k, k ∈ D}. Does there exist a scheduling

policy P ∈ P(M) such that the network is stable, meets target

utilization, is fair with respect to the target proportions and has

positive throughput? Should such a policy exist, what is it?

Our framework has made it clear that we are interested in demanding

stability, pinning down utilization and fairness and attempting to maximize

throughput. We thus enhance the previous research question to this opti-

mization problem:

PRQ0.1: Find algorithms, characterizations and theorems

that may answer this: Assume that we are given an SPNII model

as in PRQ0.0. What is the maximal achievable throughput?

We believe that the above is a deep and intriguing question for which the

answer is not near. The continuation of this chapter will handle very special

cases and propose related research questions.

Note that the 2R4BII model (defined in section 1.4), was the motivating

example for this broad research question. This is because it is an SPNII

model in for which there exist stable, and fully utilizing policies. Note though

that in achieving the full utilization, the target proportions are very heavily

constrained.

1.3 RLINEII Models

A reentrant line with infinite inputs (RLINEII) is a SPNII model in which

S = 1, D = 1, J = I +1 and each row of the I +1× (I +2) operation matrix
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B is all zeros except for a single −1 entry and a single 1 entry. In addition

each row of the resource requirement matrix is all zeros except for a single 1.

This definition implies the existence of a single route that is followed by each

of the processed jobs. The route must reenter some resources when R < I.

There is also no need for a distinction between activities and buffers because

each activity processes a unique buffer. Note that we set S = {1} (the single

source buffer is labeled 1). In addition we assume that the activity operating

on this buffer 1 and the rest of the activities/buffers are labeled in the order

of the route. This implies that the operation matrix’s center diagonal is filled

with −1 values and the diagonal to the right of it is filled with 1 values.

We define the constituency of resource r to be Cr = {j ∈ J : Ar,j = 1}.
The workload of resource r is wr =

∑
j∈Cr

mj, this is the amount of work that

is required by resource r that a single job requires. The bottleneck is defined

as r∗ = arg maxr wr. This can either be a single resource (single bottleneck)

or a set of resources (multiple bottlenecks). We will be primarily interested

in the case where there is a single bottleneck.

This is a generalization of the reentrant line model that has been intro-

duced by Kumar in [23] and investigated heavily in recent years. We believe

that the generalization of allowing infinite inputs may be more applicable for

modeling complex manufacturing situations than the original models that

exhibit stochastic arrivals.

The scheduling policy indicates which buffer a resource should serve.

When preemption is allowed this question arises at all time instances during

the operation of the reentrant line. When preemption is not allowed, this

question is only posed at the completion time of each operation. We will

treat the last buffer first serve (LBFS) policy extensively. This scheduling

policy gives priority of resource r to the highest numbered activity whose

corresponding buffer is non-empty. This policy has been investigated with

regards to models with infinite inputs in [24], [30] and [1]. It has also been

addressed widely with regards to reentrant lines with stochastic inputs (see
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[37]). In addition to LBFS, we will also address optimization problems with

regards to finding optimal policies.

We begin by addressing questions regarding general RLINEII models in

section 1.3.1. Continuing to section 1.3.2, we define a simple yet interesting

RLINEII having only 2 resources and 3 buffers (the 2R3BII model) and in-

troduce specific research questions relating to it in section. Finally in section

1.3.3, flow shops and corresponding research questions are introduced.

1.3.1 PRQ1, PRQ2: The General RLINEII Model

The proposed research questions contained in PRQ1 deal with stability under

the LBFS policy and those contained in PRQ2 deal with finding optimal

policies.

Stability with a Single Bottleneck at the First Buffer

Assume that r∗ contains a single resource (single bottleneck) and that the

bottleneck resource is the one operating on the source buffer (1 ∈ Cr∗). This

is the single bottleneck at first buffer case. Our simulation results in [24] have

led us to believe that LBFS is stable in this case under any service time

distribution (having a finite expectation). This has not yet been proven.

Hence we propose the following research questions.

PRQ1.0: Prove that an RLINEII model with a single bot-

tleneck at the first buffer is stable under the LBFS policy when

the processing times are exponential. Use the Foster-Lyapunov

criterion for this.

PRQ1.1: Find the steady state distribution of an RLINEII

model with a single bottleneck at the first buffer when the LBFS

policy is used and the processing times are exponential. Attempt
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to perform this separately for the case where preemptions are

allowed or not.

PRQ1.2: Prove that an RLINEII model with a single bottle-

neck at the first buffer is stable under the LBFS policy when the

processing times are from a general distribution. Do this using

adaptations of fluid model methods introduced by Dai in [9].

PRQ1.3: Prove that an RLINEII model with a single bottle-

neck at the first buffer is stable under the LBFS policy when the

processing times are from a general distribution. Do this using

Lyapunov function methods on general state spaces as describe

by Foss and Konstantopoulos in [13].

Behavior with Single Bottleneck Anywhere Case

When the bottleneck resource is not the resource used for the source buffer

(1 6∈ Cr∗) we do not believe that all buffers are stable under LBFS. In [24],

we have analyzed the fluid model for LBFS in this case and have found the

following: As time progresses, the fluid amount of some buffers remains 0

while the fluid amount of other buffers increases at a constant rate. We

have stated an algorithm for finding the set of constant buffers and the set of

increasing buffers and their rate of increase. We have conjectured in [24] that

the corresponding stochastic process converges to a steady state distribution

for the constant buffers and is continuously increasing for the increasing

buffers. This leads us to the following research question:

PRQ1.4: Prove that an RLINEII model with a single bot-

tleneck not used for the source buffer is stable for the constant

buffers and increasing at the appropriate rate for the increasing

buffers. This proof should be based on our algorithm from [24]
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and should make use of adaptations of the fluid model methods

from [9].

Optimization

Up to now we have discussed the LBFS policy. We are now interested in

finding optimal policies:

PRQ2.0: For the case of exponential processing times, for-

mulate a dynamic programming problem for optimal scheduling

of an RLINEII model in terms of minimizing the expectation of

limt→∞
∑

k∈I akQk(t).

We do not believe that for general RLINEII models, much more can be

done than PRQ2.0. Nevertheless, it is a pressing practical problem to find

optimal or near optimal policies. One approach is simply to apply LBFS

(since we believe that it is stable), another is to use approximation tech-

niques that involve iterations of simulation and model adjustment to find

near optimal policies or heuristics:

PRQ2.1: Devise a mechanism (a novel approach) for finding

near optimal heuristics for RLINEII models with general service

times.

1.3.2 PRQ3, PRQ4, PRQ5: The 2R3BII Model

We now introduce the 2 resource 3 buffer infinite input model (2R3BII).

This is the simplest interesting RLINEII model since it involves reentrancy

with the minimal number of buffers and demonstrates the critical scheduling

decision that must be taken. It has been investigated previously by Weiss

and Adan (see section 3.3.3).
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This is the model: S = {1}, I = {2, 3}, D = {4}, J = {1, 2, 3}, R =

{1, 2}. This is the 3×4 operation matrix and the 2×3 resource consumption

matrix:

B =



−1 1 0 0
0 −1 1 0
0 0 −1 1




A =

(
1 0 1
0 1 0

)

We treat two cases: (1) Bottleneck is resource 1 (m1 + m3 > m2). (2)

Bottleneck is resource 2 (m1 + m3 < m2). In case 1, we strive for full

utilization of resource 1, the bottleneck. This can be achieved by any non-

idling policy of resource 1, that maintains buffers 2 and 3 stable. It has been

shown that LBFS is such as policy . In case 2, we are not able to fully utilize

resource 2, the bottleneck. We are thus looking for a policy that will utilize

it at a given rate ρ < 1. One such policy sets a threshold B2 for buffer 2.

When the number of jobs at buffer 2 drops below B2, resource 1 is allocated

for buffer 1, otherwise it is allocated for buffer 3. We can now set the target

ρ arbitrarily close to 1 by increasing this threshold.

We propose the following types of research questions regarding this model:

Standard queueing theory analysis (PRQ3), stability under general service

time distributions with LBFS (PRQ4), optimizing scheduling policies (PRQ5).

Standard Queueing Theory Analysis

We may treat the 2R3BII model as a standard queueing system. It may be

possible to use traditional techniques to gain some insight:

PRQ3.0: Analyze the 2R3BII model when resource 1 is the

bottleneck operating under LBFS. Attempt to find the distribu-

tion of the sojourn time of a job in the system.
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PRQ3.1: Assume that the processing time of one of the buffers

is taken from a general distribution and the processing time of

the other 2 buffers are exponential. Attempt to adapt results re-

garding busy period analysis of M/G/1 queues with vacations for

finding busy period distributions in the system and possibly the

steady state distribution of buffer 2 and buffer 3.

Stability with LBFS

We propose the following research questions:

PRQ4.0: When the bottleneck is resource 1, prove that the

corresponding Markov chain is positive Harris recurrent under

general service time distributions. Use Lyapunov function meth-

ods.

PRQ4.1: When the bottleneck is resource 1, prove that the

corresponding Markov chain is positive Harris recurrent under

general service time distributions. Adapt fluid model methods.

Optimization

We will assume that the processing times are exponential. In this case the

resulting state space is a grid on the positive quadrant. Assume we are trying

to find an optimal policy for minimizing the expectation of limt→∞ a2Q2(t)+

a3Q3(t). Some research questions arise:

PRQ5.0: Formulate the dynamic programming optimization

problem for the case in which resource 1 is the bottleneck, assum-

ing that full utilization is achieved.

PRQ5.1: Given at target ρ < 1 for resource 2, formulate the

dynamic programming optimization problem for the case in which

resource 2 is the bottleneck.
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PRQ5.1: For the case in which resource 1 is the bottleneck,

prove or disprove the existence of a switching curve.

PRQ5.2: Find the optimal policy in the case that resource 1

is the bottleneck.

PRQ5.3: Find the optimal policy in the case that resource 2

is the bottleneck.

1.3.3 PRQ6: The Flow Shop Model

The flow shop with infinite inputs is a reentrant line where R = J . Each

resource performs a single activity and thus there is no renterancy. It is basi-

cally a tandem queueing systems with R−1 queues in tandem and an arrival

rate of 1/m1. Thus, it does not have the interesting attributes that models

with infinite inputs exhibit (the scheduling dilemma regarding allocation of

a resource for pushing a job into the system or pulling one out).

Nevertheless, during the preparation of this research proposal we have

examined some interesting results relating to this model. These are results

from the preprint of Weiss [32]. In this work, Weiss treats the flow shop

as a finite time horizon fluid model with given initial amounts Qk(0), k =

1, . . . , K. The goal is to calculate optimal fluid flows in the time interval

[0, T ] for minimizing
∫ T
0

∑K
k=1 ckQk(t)dt, where ck, k = 1, . . . , K are holding

costs constants. There are still some open issues regarding Weiss’s algorithm:

PRQ6.0: Is the flow shop algorithm a polynomial time algo-

rithm in the number of buffers? The proof for this in [32] is still

open.

PRQ6.1: The current description of the algorithm does not

yield an immediate simple implementation. We thus propose to

implement the algorithm and in the process refine it’s description.
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1.4 2R4BII Models

Moving onward from reentrant line models, we introduce the 2 resource 4

buffer infinite input model (2R4BII). This model has been termed the push-

pull model by Weiss and Kopzon (see section 3.3.4 for a brief review).

Using our SPNII framework, this is the model: S = {11, 21}, I =

{12, 22}, D = {13, 23}, J = {11, 12, 21, 22}, R = {1, 2}. We have named

the buffers and activities using numbers with two decimal digits in this man-

ner: The model contains two routes (1 and 2). Each route contains a source

buffer, an intermediate buffer and a destination buffer. Thus for example

for route 2, the source buffer is 21, the intermediate buffer is 22 and the

destination buffer is 23. Each activity corresponds to exactly one source or

intermediate buffer. As a result of this description This is the 4×6 operation

matrix and the 2 × 4 resource consumption matrix (ordering activities the

order (11, 12, 21, 22) and buffers in the order (11, 12, 13, 21, 22, 23)):

B =




−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1




A =

(
1 0 1 0
0 1 0 1

)

We label the processing rates (the reciprocal of the means) for the activ-

ities (11, 12, 21, 22) by (λ1, µ1, λ2, µ2).

This model is the motivating model for our entire study. The results of

Weiss and Kopzon have shown that fully utilizing, stable policies are achiev-

able. It should be noted though, that they are only achievable under specific

growth rates of the destination buffers, hence there is little flexibility in fair-

ness. See section 3.3.4 for a calculation of these rates.

We mainly intend to augment the work of Weiss and Kopzon by handling

general processing times (as opposed to exponential). This is described with
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regards to PRQ8 in section 1.4.2. In addition, we have recently contributed

some simulation results to an upcoming publication that is based on [22]. We

describe our contribution and future work (PRQ7) in the following section.

1.4.1 PRQ7: Preliminary Simulation Results

The 2R4BII model is based on a the Rybko Stolyar (RS) queueing network.

The difference is that in the RS network there aren’t infinite inputs but

rather stochastic inputs. See [8] for a description of the RS network and

related results. Technically, the RS network may be modeled as an SPNII by

taking the 2R4BII model, converting buffers 11 and 21 to intermediate (finite)

buffers and adding source buffers 10 and 20 each with their own ”private”

resource and activities which move jobs from them into 11 and 21 respectively.

The rates of the RS source buffers are α1 and α2 respectively (these are the

arrival rates). The arrival rates along with the service rates determined the

offered load on each of the resources. For resource 1: ρ1 = α1λ1 + α2µ2. For

resource 2: ρ2 = α2λ2 + α1µ1.

We have implemented a simulation of the 2R4BII model and the RS

network that uses the maximum pressure policy ([11]). For the RS network

we have used exponential processing times with the following parameters

λ1 = λ2 = 1.25, µ1 = µ2 = 1.0 and α1 = α2 are set to four different values

such that ρ1 = ρ2 takes one of these four values: (0.9, 0.99, 1.0, 1.2). Following

are four sample paths that were obtained for these increasing offered loads:

This is for ρ = .9:
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This is for ρ = 1.0:
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Each illustration plots the evolution of four queue sizes. Above the x-axis

the queues of route 1 are plotted (first 11 and above it 12). Below the x-axis,

the queues of route 2 are plotted similarly.

Following the simulation of the RS network (using maximum pressure)

we simulated the 2R4BII network also using maximum pressure. In this case,

the maximum pressure was applied as follows: Maximum pressure requires a

value for the grading the state of both the source queues and the intermediate

queues. For the intermediate queues we used the normal queue size and for

the source queue we use this value: αt−Dk(t) where Dk(t) is the number of

jobs which have been taken out of the source buffer by time t.

Following are plots of four sample paths using the same parameters as

before. The plots now indicate buffer 12 above the x-axis and buffer 22 below

the x-axis.

This is for ρ = .9:

2000 4000 6000 8000 10000 12000 14000
−10

−5

0

5

10

15

This is for ρ = .99:
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What can be seen from these traces is that in steady state systems ρ < 1,

a stable level of queue length is reached after a period, where both the time

to stabilize and the level at which the queues stabilize grows with ρ. We

believe that the cases of ρ = 1, namely full utilization, are transient for both

systems, so that while they look quite similar to the case of ρ = .99 over

most of the time horizon of the simulation, they would not stabilize but will

continue to have longer and longer excursion with very high queue lengths.

The overloaded cases clearly show linear growth of the queues.

Weiss and Kopzon have used these results to compare maximum pressure

to their threshold policies. They have shown that the threshold policies are

stable even when ρ = 1. As we continue to research the threshold policies

with regards to this model, we will be interested in continued use of our

simulation software. Hence we propose the following research question:

PRQ7: Simulate the 2R4BII model using both maximum pres-

sure and several variants of the generalized threshold policies. Use
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processing time distributions from several families. Use the simu-

lation results to conjecture with regards to stability, instability of

the policies and to compare the expected queue length achieved

in several stable policies.

1.4.2 PRQ8: Stability Under a GTP with General Ser-
vice Time Distributions.

The stability results of Weiss and Kopzon regarding generalized threshold

policies (GTP) has only been obtained when the processing distributions are

exponential. Under these exponential (memoryless) distributions the state

space is the countable grid in the positive quadrant. We conjecture that this

result continues to be true for general processing times. Perhaps there are

some technical conditions on the distributions such as being spread out (see

[3] for a description on this subject or [9] for an example of using it)? We

thus introduce the following research questions:

PRQ8.0: Find technical conditions needed for stability of the

generalized threshold policies when the service time distributions

are general.

PRQ8.1: Prove that the fixed threshold policy is stable when

the service time distribution is general.

PRQ8.1: Prove that the generalized threshold policy is stable

when the service time distribution is general.

1.5 PRQ9: Further Models

Up to this point we have described a variety of specific research questions.

Some were precisely defined and some were a bit more vague, but in general

they all dealt with concrete questions. As we have stated, our long term
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goal is to analyze the tradeoffs, techniques and possibilities regarding SPNII

models with regards to stability, utilization, fairness and throughout. Each

of our proposed research questions attempts to make a step with regards to

this issue.

It should be noted though, that almost all of the questions do not relate

to issues of, routing, job merging and job splitting. In fact, they almost all

relate to multi-class queueing networks with infinite inputs and do not use

the more general modeling possibilities of stochastic processing networks.

We would thus like to define some more interesting, simple and hopefully

tractable examples that will yield further insight:

PRQ9.0: Define a tractable model with infinite inputs that

embeds with in it some routing decision. Pose feasible questions

regarding this model.

PRQ9.1: Define a tractable model with infinite inputs that

embeds with in it some tradeoffs regarding fairness. Pose feasible

questions regarding this model.

PRQ9.2: Define a tractable model with infinite inputs that

embeds with in it possibilities of job splitting and job merging

and displays how this affects the fairness. Pose feasible questions

regarding this model.

1.6 PRQ11: Extended Abstract Regarding Near

Optimal Control of Queueing Networks

Over a Finite Time Horizon

We have recently prepared this extended abstract regarding Near Optimal

Control of Queueing Networks Over a Finite Time Horizon. We have sub-

mitted this abstract to a conference that deals with communication networks
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hence it is written in a manner consistent with communications applications.

We will label work on this subject by PRQ11:
Extend Abstract: Communication networks are often modeled by

multi-class queueing networks: Messages are classified into several classes (e.g.
according to source and destination) and messages of each class queue up in a
buffer. Processing nodes with finite processing capacity are used to process the
queues of messages, where each node has a constituency of classes which it will
process. Decisions involve the processing capacities allocated at each time by
the nodes to the processing of the buffers, and routing of messages between the
buffers. In many situations it is desired to determine the optimal control of a
communications network for a given time window: In that case one starts from
the state of the system at the beginning of the time window, and one looks for a
control which will react to the input of the system over the time window, and will
optimize both the cost of processing over time and the terminal state at the end
of the time window. Such a problem is called control of a transient system over a
finite time horizon.

We suggest a novel approach to such transient finite horizon control problems:
(1) Approximate the system by a fluid system which is continuous and determin-
istic, in contrast to the original discrete and stochastic communications network.
(2) Calculate the optimal control of the fluid system, and obtain the fluid buffer
levels and processing rates. (3) Track the fluid solution with the real system, us-
ing the states of the fluid and real systems to determine the actions. We base our
approach on the algorithm of Weiss [29] for separated continuous linear programs
to solve the fluid problem, and on an adaptation of the maximum pressure policy
of Dai and Lin [11] to track the fluid solution. In theory this method can be shown
to be asymptotically optimal under appropriate fluid scaling assumptions.

Our main purpose in this paper is to illustrate this approach through a simple
example: We consider a multi-class queueing network with two processing nodes
and three buffers. Messages move from buffer 1 to buffer 2 (processing by node
A), then from buffer 2 to buffer 3 (processing by node B), and finally from buffer 3
and out (processing again by node A). In the communications context, node A can
be thought of as a half-duplex communication link in which each message travels
first in one direction and then in the opposite direction, and each message is also
processed by node B in between its transmission in both directions.

We assume that initial queues of messages in the three buffers are given, Qi(0),
and denote by Qi(t) ≥ 0, i = 1, 2, 3 the queue at time t with time horizon t ∈ [0, T ].
Messages are processed singly, with no preemptions, where node A processes mes-
sages from buffers 1 and 3, and node B processes messages from buffer 2. Process-
ing times are all random and independent, with average processing times 1/µi for
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messages in buffer i. Assuming work conserving processing, the following schedul-
ing decision is to be made: Whenever node A is available, and the queues in buffers
1 and 3 are not empty, decide whether to start processing an item from buffer 1
or start processing an item from buffer 3. The finite horizon control problem is to
choose these decisions so as to minimize the expected value of

∫ T
0

∑3
k=1 Qi(t)dt.

This objective corresponds to minimizing inventory costs, equivalently minimizing
the sum of all the waiting times over the time horizon, equivalently maximizing the
total sum of times from completion of messages to the time horizon. For simplicity
we assume no external inputs in [0, T ].

The corresponding fluid system for this problem consists of the fluid buffers
with qi(t) being the amount of fluid in buffer i at time t, initially qi(0) = Qi(0).
Processing is continuous and allocation of a fraction ai(t) of the processor to buffer i
at time t results in outflow of rate ui(t) = µiai(t). Minimization of

∫ T
0

∑3
k=1 qi(t)dt

is a separated continuous linear programming problem [29]. Its solution partitions
the time horizon into 0 = t0 < t1 < · · · < tN = T , with constant flow rates un

i in
the nth interval, and with continuous piecewise linear buffer levels qi(t).

For each time interval, we partition the buffers into two sets: during time
interval n, Kn

0 is the set of buffers that are empty of fluid, and Kn∞ are buffers
which have positive amount of fluid. These sets are well defined. Note that a fluid
buffer can be empty and still have a positive outflow (equal to the inflow).

For the purpose of control we compare the fluid solution qi(t), ui(t) with the
actual system, Qi(t), Di(t) where Di(t) is the departure counting process. For
i ∈ Kn

0 we use Qi(t), the non-negative queue length of the real system at time
tn−1 < t < tn. For i ∈ Kn∞ we use Ri(t) = un

i (t− tn−1)− (Di(t)−Di(tn−1)), the
backlog of actual departures compared to the nominal optimal fluid output rate.
We let Zi(t), tn−1 < t < tn be equal to Qi(t) for i ∈ Kn

0 , and to Ri(t) for i ∈ Kn∞.
The process Zi(t) is the state used for the control of the system, where our purpose
is to keep Zi(t) close to 0 so that the actual system will track the fluid solution.

Dai and Lin [11] have recently introduced the max pressure policy, for the
control of stochastic processing networks, and in particular for the control of
multi-class queueing networks. A MCQN with traffic intensity ≤ 1 will remain
pathwise stable under the maximum pressure policy. Our approach adapts the
maximum pressure policy so that we control the process Z(t). Using our ap-
proach, the actual maximum pressure control in each interval depends both on
the values of Z(t) and on the sets of buffers Kn

0 ,Kn∞. Under appropriate scaling∫ T
0

∑3
k=1 |Zi(t)|dt

/ ∫ T
0

∑3
k=1 Qi(t)dt approaches 0, and the control is asymptoti-

cally optimal.
Our approach adapts the maximum pressure policy (which keeps all queues

stationary and minimal under long term homogeneous conditions) to a transient
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situation, in which conditions are not homogeneous over the finite time horizon.
We note that in those intervals in which the fluid is positive, the actual queue
length will be strictly positive (at least in the interior of the interval, excluding
short periods at the beginning and end of the interval) and thus Ri is the quantity
that is tracked. As opposed to that, when the fluid is 0 it is expected that the
queue will follow stable busy period - idle period cycles and thus Qi is the quantity
that is tracked. Our fluid tracking approach thus allows us to handle both very big
queues (positive fluid amounts) and small stable queues (zero fluid amounts) using
a single policy while maintaining the proper flow rates and without incorrect bias
towards the big queues (as might result from more naive fluid tracking approaches).

For our two node and three buffer example we obtain simple rules for scheduling

node A to the messages in queues 1 and 3. The asymptotic optimality indicates

that as the initial number of messages becomes large and the processing rate is

increased in proportion, the system performance should approach the optimal fluid

solution. We perform extensive simulation studies to assess how well this works in

practice.
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Chapter 2

Planned Course of Action for
Research

The aim of this short chapter is to lay down the intended work plan of

the research. Section 2.1 states the general disciplines that will be used

during the research and lays down the order and manner in which proposed

research questions will be tackled. Section 2.2 states the planned layout of

the dissertation. Section 2.3 outlines the several publications that may be

submitted based on work that will be performed.

2.1 Work Plan

Our proposed work plan is comprised of the following nine tracks of activ-

ities: general queueing background track, infinite inputs background track,

stochastic optimization track, Lyapunov stability track, fluid stability track,

diffusion approximations track, simulation track, problem solving track and

publication track. In the general queueing background track, we will contin-

uously gain more broad knowledge with regards to known results and theory

of queueing networks. In the infinite inputs background material track, we

will master all previous results (mostly by Weiss et.al) with regards to infi-

nite inputs systems. In the stochastic optimization, Lyapunov stability, fluid



stability and diffusion approximations tracks we will attempt to master these

mathematical techniques. In the simulation track, we will develop and refine

the simulation tools used in our previous work [24] and in section 1.4.1. In

the problem solving track we will tackle the proposed research questions.

Here we will make use of techniques acquired and background material that

has been studied. Finally in the publication track we will prepare papers,

presentations and dissertation chapters.

As our research progresses, we will work on all tracks in parallel. Within

each track, our course of action will be mostly sequential. We will attempt

to synchronize our advance in each of the tracks so that the products of each

of the tracks collaborate. We now describe our intended course of action in

each of these tracks separately.

General Queueing Background Track

In this track we will study general known results of queueing theory and

queueing networks. Our goal is simply to gain general background knowledge

in these fields. As we acquire more knowledge, certain specific bits of it will

be summarized according to our point of view in the background material

dissertation chapters. We would like to touch a variety of classical queueing

systems results. These include some of the rudimentary results that appear

in [36] and some of the more advanced results that appear in [3].

Infinite Inputs Background Track

In this track we will follow closely the known results regarding systems with

infinite inputs. Many of our proposed research questions are extensions of

these known results. Specifically we will study the following: [1], [2], [34],

[30], [31], [24], [10] and [22].
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Stochastic Optimization Track

Several of the proposed research questions deal with finding optimal schedul-

ing policies. For this we require use of both classical and advanced opti-

mization techniques. We plan to start off by gaining basic knowledge in this

exciting field by studying [28]. We will then follow up on more recent ad-

vances with regards to bandit problems and issues regarding the existence of

switching curves of certain problems.

Lyapunov Stability Track

Lyapunov function methods are a very popular and convenient way for show-

ing that a Markov chain is positive recurrent. We will initially study several

applications of this method according to [7] and other resources. We will

then continue to the generalization of the method to general state spaces

that is presented in [13].

Fluid Stability Track

In this track we plan to study recent advances with regards to applications

of fluid models for proving stochastic stability. We will closely study [9] (a

1990’s paper) and [11] (a 2005 paper). A proper understanding of this subject

will require following some 15 to 20 related papers that have appeared during

the last decade and a half. For general reference on this subject we will use

[8].

Diffusion Approximations Track

Diffusion approximation methods have in many ways become the mainstream

methods that are used in the study of queueing networks. We are thus almost

obligated to relate to this subject in our work plan. In this track we will study

the theory and mechanism used in diffusion approximations. Our primary

sources for the basic theory will be [8] and [35]. We will test and sharpen
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our understanding of this subject by attempting to perform an adaptation

of the results of [12] to SPNII models. Proper understanding of this subject

may also require following the theory in [5] and the ideas presented in [15].

We may also need to strengthen our knowledge of analysis and probability,

for this will mostly use [14] and [27].

Simulation Track

Currently we have in hand the following simulation tools that we have de-

signed and programmed: the Job Shop Simulator, the 3 Buffer Maximum

Pressure Simulator and the 4 Buffer Maximum Pressure Simulator. The Job

Shop Simulator was developed during our previous work [24]. It is possible

that we will update this tool to handle the context of general SPNII models.

The 3 Buffer Maximum Pressure Simulator is currently being used for work

related to [33] and PRQ11. The 4 Buffer Maximum Pressure Simulator has

been used for obtaining the results that are presented in section 1.4.1 (PRQ7).

Both of these simulation tools are very specific to their problem instance and

the maximum pressure policy. Given additional simulation related problems

we will probably either write a new tools or use our modification of the Job

Shop Simulator.

Another tool that we have been working on previously is the Fluid Flow

Shop Solver. This tool essentially implements the algorithm presented in

[32]. We may continue working on this tool when handling PRQ6.

Problem Solving Track and Publication Track

Most of our advance in the previously mentioned tracks will be driven and

motivated by the problem solving track. As we handle the research questions

presented in chapter 1, we will advance in parallel in one or more of the

previously mentioned tracks.

We are currently working on PRQ11. Following the submission of the
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proposal our plan is to initially handle PRQ4 and PRQ8. These proposed re-

search questions deal with stability of the 2R3BII and 2R4BII models respec-

tively. Handling these research questions requires advances in the Lyapunov

stability track and fluid stability track.

We next intend to handle PRQ5. This research question deals with sto-

chastic optimization. Thus in parallel we will advance in the stochastic op-

timization track.

In parallel, we intend to work on PRQ3 and PRQ6 independently. PRQ3

deals with more traditional queueing analysis of the 2R3BII model. This

type of analysis will require some advances in the general background and

infinite input background tracks. But this may be done out of order of any

other activity. PRQ6 deals with deterministic optimization and it too may

be handled at any time.

PRQ1 and PRQ2 deal with general RLINEII models. At the moment,

we do not plan to explicitly handle these research questions but rather keep

them in mind during our work.

PRQ0 is our ultimate question and we do not believe that it can be

properly handled at this time. Related to it, is PRQ9, this is an abstract

question asking to define further models. We will give thought to it while

preparing the summary of our dissertation

As a consequence of this plan, our dissertation will include results regard-

ing the following research question: PRQ4, PRQ8, PRQ5 PRQ3 and PRQ6.

As we conquer each of the research questions we will document our results

as part of the publication track.

2.2 Planned Dissertation Chapters

These are the planned chapters:
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1. Overview and Main Results - This chapter will summarize the main

results along with a summary of known results regarding infinite input

systems. This is the only chapter in the dissertation that is to contain

background material except for the appendix. Our main results will be

proofs of stability of systems (PRQ4 and PRQ8), optimizing scheduling

policies (PRQ5) and additional queueing analysis results regarding our

simplest models (PRQ3). We will not post results regarding PRQ6,

the fluid flow shop, in the dissertation. Our results will be presented in

a manner that is meshed with previous results regarding infinite input

systems.

2. Stability of Certain Networks - This chapter will contain the details

of the work performed with respect to PRQ4 and PRQ8.

3. Optimization of Certain Networks - This chapter will contain the

details of the work performed with respect to PRQ5.

4. Future Directions - This chapter will introduce the unsolved PRQ0

and state all that is known regarding this research question.

5. Appendix: Queueing Networks Background - This appendix will

contain a unique compilation of most of the background material that

we will study during the course of the research.

2.3 Planned Publications

This is a list of the publications that we may submit during the duration of

our research. Note that this list also contains some additional items that are

not planned to be included in the dissertation and haven’t been mentioned

anywhere in this research proposal:

• Stability of a Simple Reentrant line under LBFS with General

Distributions - This publication will include the results of PRQ4.
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• Stability of a Push Pull Queueing System with General Dis-

tributions - This publication will include the results of PRQ8.

• An Optimizing Policy of a Simple Reentrant line - This publi-

cation will include the results of PRQ5.

• A Survey of Infinite Input Systems - This publication will be

based on the first chapter of the dissertation. It aggregates all of the

known results regarding infinite input systems.

• Optimizing a Fluid Flow Shop - This publication was prepared by

Weiss but is not ready for publication at this time. We will complement

it with implementations of the algorithms and numerical results as

explained in PRQ6.

• Fluid Tracking of SCLP Solutions Using Maximum Pressure -

This publication was prepared by Weiss but is not ready for publication

at this time. We have performed simulation studies regarding this

publication and will continue this work. A preliminary publication on

this subject might be released due to current work on PRQ11.

• A Push-Pull Queueing System - This publications was prepared

entirely by Weiss and Kopzon and we are only supporting it with sim-

ulations of the 2R4BII problem.

• Asymptomatically optimal Job-Shop Scheduling Heuristics -

This publication will be based on our previous work [24].

• Optimizing the Calender of the Supreme Court - This publica-

tion will be based on near future field work.

• All Sink All Drain Information Passing in Sensor Networks -

We have spent some time planning ideas for this publication and we

may pursue it in the future.
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• Optimizing a Mobile Wireless Network with Known Time

Varying Rates Over a Finite Time Horizon - We have spent

some time planning ideas for this publication and we may pursue it in

the future.
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Chapter 3

Background Material
to be Studied and Summarized

This chapter surveys some of the background material that is to be studied

during the course of our research. In some sections, background material is

summarized. In others, we merely list the references and general principles

that are to be studied. This chapter is also designed to serve as a skeleton

for the background material dissertation chapters and some of our proposed

publications.

We begin with section 3.1 where we overview the field of queueing net-

works. Starting of with a summary of the interesting rudimentary results

and applications of queueing theory. Then continuing to an evolutionary

summary of queueing networks from the most basic networks to the frontier

of research today. We then devote our attention to heavy traffic and fluid

models. We finish the section with a summary of known results regarding

reentrant line models.

In section 3.2 we briefly touch the probalistic and mathematical tools that

we will study, summarize and utilize during our research.

In section 3.3 we summarize all known results regarding models with infi-

nite inputs. This section is directly relevant to the subject of our research and



may be read in conjunction with our introduction of the research questions

in chapter 1.

3.1 Overview of Queueing Networks

This section is written as a skeleton for background chapter (or appendix)

that will be presented in the dissertation. Each of the following sub-sections

is to be expanded to a large section.

3.1.1 Elements of Queueing Theory

There are many elements of queueing theory that are to be covered. We

will obviously not be able to cover them all but there are several principal

issues which we find interesting. In this regard, we intend to study and

summarize the following subjects: (1) Reversibility of Markovian systems

and their applications (from [19]). (2) Results regarding the M/G/1 and

G/M/1 queues and their relations (from [36] and [20]). (3) Priority queues

(from [36] and [21]).

3.1.2 Queueing Networks: From Jackson Networks to
Multi-Class Queueing Networks

We intend to introduce the subject of queueing networks within the Markov-

ian setting: open and closed Jackson networks. We will mainly follow the

lines of [8] for this purpose but in addition we will look for examples in [19]

and study some more rigorous Markovian theory in [3].

We then intend to expand to the description of Multi-Class Queueing

Networks and summarize recent results regarding these models. We intend

to start to summarize this subject by following [4]. This is because [4] deals

with Lyapunov functions (which are of interest to us) and does not focus on

diffusion approximations (which we plan to deal with else where).
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3.1.3 Heavy Traffic and Diffusion Approximations

A single server queue with arrival rate λ and service rate µ is roughly said to

operate under a heavy traffic regime if λ ≈ µ. For a more general queueing

network, heavy traffic has been defined in several ways. In [16], Harrison

proposes to analyze the ”bottleneck subnetwork” of the queueing network

under the assumption that all resources of the subnetwork are heavily loaded.

Harrison’s framework in [16] makes use of the mathematical foundations

previously exemplified by Reiman in [26]. This framework was later expanded

by many others, the notable papers being [18] by Kelly and Laws, [17] by

Harrison and Van Mieghem, yet there are many others.

The motivation for analysis of queueing networks under heavy traffic

stems both from the tractability of these models using variants of the func-

tional central limit theorem (FCLT) and from the fact that the heavy traffic

assumption is argued to be a valid one in modeling.

We intend to study the backbone of this research (the notable papers) and

summarize the evolution of this subject. For reference we will use [35] and

mostly [8]. Understanding this line of results is fundamental to our research

because in many situations we also propose models that operate under heavy

traffic due to their infinite input nature.

3.1.4 Fluid Models

The fluid view of a stochastic system makes usually uses some form of the

functional strong law of large numbers (FSLLN). Regarding this subject, we

intend to study and summarize [9] and [12]. We will use [8] for reference.

3.1.5 Reentrant Line Models

Reentrant line models have been analyzed frequently due to their apparat

applicability to silicon wafer manufacturing plants. These are some notable
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papers regarding this subject that are interesting for our research: [23], [10]

and [37]. We will summarize these and several others.

3.2 Probabilistic Tools of Stability Analysis

We intend to closely follow [13] by Foss and Konstantopoulos. This paper

is an exposition of stochastic stability methods. It is also the only known

reference to us that expands the Lyapunov function method to general polish

spaces. In the description of the content of [13] we will initially fully sum-

marize and give original examples of applications of the Foster-Lyapunov

theorem on countable Markov chains. For this we intend to primarily fol-

low [7]. We will later explore the relation between the Lyapunov function

methods and fluid stability methods.

3.3 Known Results Regarding Models with

Infinite Input

This section summarizes the references to all the known results regarding

models with infinite inputs. All of the known results regarding models of

this nature have been attained by Weiss et. al. Surprisingly this class of

models has not been investigated previously.

We briefly describe the nature of each of the results and will summarize

them in an expansive fashion in our dissertation along with our planned

contributions.

3.3.1 Simulation Results of High Volume Job Shop
Problems

In [24] we conducted a simulation study of job shop scheduling problems (see

[25] for an introduction to this subject) in which there are many jobs on each
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route and the processing times of all steps on each route are i.i.d. random

variables. This study, was motivated by the results of Dai and Weiss in [10]

and Boudoukh, Penn and Weiss in [6]. The previous results had shown that

under several assumptions regarding the processing time distributions the

job shop can be scheduled such that the idle time of the bottleneck machine

is constant in the number of jobs, thus meaning that the schedule is near

optimal when the number of jobs is large. In our study we had relaxed some

of these assumption and we were still able to perform the efficient scheduling.

Results from our simulation study for finite job shops are also applicable

for infinite horizon models with infinite inputs (as was described in [24]).

This is because during the initial operation of a high volume jobs shop (with

N jobs) waiting to be processed, the job shop acts like a model with infinite

inputs. Thus the results in [24] have led to some of the research questions

presented in this proposal. The following picture is a screen shot taken of

the front end of the simulation software that we developed.
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3.3.2 Infinite Input Jackson Networks

In [31], Weiss introduced Jackson networks with an unlimited supply of work.

These are the standard Jackson networks with the following modification:

Some of the nodes have an infinite supply of work. These nodes give priority

to customers that are queued, but when the queue of the node is empty,

it processes jobs from the infinite supply and routes them in accordance

with the normal probabilistic routing matrix P. It is assumed that when an

internal node that is processing a job from the ”infinite supply queue” gets

a ”real job”, it preempts the infinite supply job.

Let E to be set the of nodes with an infinite supply of work. Let λi be

the rate at which items arrive into node i (counting both exogenous input

and routing from other nodes). Let µi be the processing rate of jobs at node

i. For i 6∈ E, let αi be the rate at which external jobs arrive to node i (for

i ∈ E this rate is infinite). Then at equilibrium, for i ∈ E we get:

λi = αi +
∑

j 6∈E

j 6=i

λjPji +
∑

j∈E

j 6=i

µjPji

Based on these equations it is shown that the joint steady state distribu-

tion of the queues of the nodes i 6∈ E is the standard Jackson style product

form distribution. It is also shown that the marginal steady state distribution

of the queues of the nodes i ∈ E is geometric.

In [2], Adan and Weiss investigate a special case where there are two

nodes, both having an infinite supply of work. Here they find the joint

steady state distribution of the system.

3.3.3 The 2R3BII Model

In [30] Weiss investigates stability of the 2R3BII model. This is a reentrant

line with infinite inputs having 3 steps on two resources such that the first and

third steps are on resource 1 and the second step is on resource 2. Exponential
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processing times are assumed so the state space of the model is the grid

on the positive quadrant. Weiss proves that the resulting Markov chain is

positive - recurrent when the LBFS policy is used (priority to buffer 3) and

when resource 1 is the bottleneck. The proof uses both Lyapunov function

methods (on countable state spaces) and coupling arguments. This work is

continued in [1] where the steady state distribution is calculated along with

other interesting sample path properties. The case in which resource 2 is the

bottleneck is also interesting and is promptly described in [30].

3.3.4 The 2R4BII Model

In [34] and [22] Weiss and Kopzon analyze the 2R4BII model. They call

this model ”push-pull”. This model has two routes, each with two buffers

(we use the term route in the context of SPNII models when there is no

job splitting or merging). Route 1 is composed of buffers (activities) 11 and

12 which are powered by resource 1 and resource 2 respectively. Route 2 is

composed of buffers/activities 21 and 22 which are powered by resource 2 and

resource 1 respectively. Buffers 11 and 21 are source buffers. Buffers 12 and

22 are intermediate buffers. Weiss and Kopzon do not explicitly define the

destination buffers but rather indicate that jobs exit the system after being

processed at buffer 12 and 22. The processing rates of the source buffers

are labeled λ1 and λ2 respectively. The processing rates of the destination

buffers are labeled respectively with µ’s.

The picture below is a screen shot of this model, from the front end of the

simulation software developed in [24]. In the picture the buffers of route 1

are labeled 1 and 2 and the buffers of route 2 are labeled 3 and 4. Also note

that the picture shows a finite amount of jobs on the source buffers, while in

the 2R4BII model this should be an infinite amount.
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Note that the notation for the rate parameters is such that if the re-

sources are fully allocated to route i then buffer i2 operates like a GI/GI/1

queue with input rate λi and service rate µi. In [34], the authors handle the

”inherently stable case” in which λi < µi and in [22], the authors handle the

”inherently unstable case” in which µi < λi. In both cases, the authors find a

scheduling policy that is fully utilizing (resources are always being used) and

stable. The stability is in the sense of positive recurrence of the correspond-

ing Markov chain when the processing times are independent exponentials.

These results constitute a surprising positive result that exemplifies a model

in which stability is maintained when there is full utilization.

The Pull Priority Policy in the Inherently Stable Case

In the in the inherently stable case, the authors analyze a buffer priority

policy that gives priority to the intermediate buffers (12 and 22) over the

source buffers (11 and 21). If preemption is allowed the analysis of the system

is quite simple: looking at the recurrent states in the system yields that the
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system acts like two M/M/1 queues such that when one of the queues is non-

empty, the other is empty and when both are empty the system can start a

busy period at one of the two M/M/1 queues. Appropriate probabilities for

this are determined by exponential races.

Continuing in the inherently stable case, things are a bit more compli-

cated when pre-emption is not allowed. For this case, balance equations are

formulated and the steady state distribution is solved by using generating

functions. The authors then expand this case to the situation in which the

service times of the intermediate buffers are from a general distribution. Here

the M/G/1 model with vacations is employed (see [36]) to solve for the steady

state distribution.

Generalized Threshold Policies in the Inherently Unstable Case

The pull priority policy is not stable for the inherently unstable case. The

question arises if there exist other policies that can stabilize the system while

maintaining full utilization of the resources.

The authors have offered a class of policies named generalized threshold

policies that have this attribute. Vaguely, these policies define thresholds for

the buffers 12 and 22. The pushing activity (intermediate buffer) is activated

only when the number of jobs in the buffers is above a given threshold. The

policy is called ”generalized” because the threshold for each buffer is allowed

to be an increasing function of the number of jobs in the buffer.

The authors show that the resulting Markov chain (under generalized

threshold policies) is positive recurrent. They use Lyapunov function meth-

ods for this. In addition, steady state probabilities for fixed thresholds and

increasing thresholds at a constant rate are calculated.
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Production Rates

At the heart of the analysis (in both the inherently stable case and inherently

unstable case) is a calculation of the rates of production on each route. If

destination buffers were assumed, this would be the rate of growth of each

destination buffers. For this, Weiss and Kopzon do the following: assume that

resource i allocates a fraction αi of the time for working on it’s intermediate

buffer (pulling jobs out of the system) and a fraction 1 − αi for working on

it’s source buffer (pushing jobs into the system). Now denote the rate of

production on route i by νi. Stability will now require:

ν1 = (1− α1)λ1 = α2µ2

ν2 = (1− α2)λ2 = α1µ1

Now solving for α1 and α2:

α1 =
λ2(µ2 − λ1)

µ1µ2− λ1λ2

α2 =
λ1(µ1 − λ2)

µ1µ2− λ1λ2

Thus:

ν1 =
µ2λ2(µ2 − λ1)

µ1µ2− λ1λ2

ν2 =
µ1λ1(µ1 − λ2)

µ1µ2− λ1λ2

It is thus evident that in the 2R4BII model, for given processing rates,

there is a single attainable rate of production (ν1, ν2) when full utilization

and stability is assumed.
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