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 האישה המתוקה ,סבתה סופיהלזכרה של עבודה זו ברצוני להקדיש 

הן באמצעות האהבה הטהורה אשר סיפקה לי , שזרעה בי זרעים של חוזק
של אמי לאה המסור עד ימייה האחרונים והן בדרך עקיפה דרך גידולה 

, זוג ההורים הכי נהדרים שאפשר לדמיין,  משהבאופן מסוים גם אביו

  . שאפילו קשה לדמייןלפעמים כה נהדרים
  

הצליחה בדרך , 20 המאה ה שואת היהודים של את  באומץסבתה שרדה
אשר שתי בנות מופלאות וביחד גידלו , נס לפגוש את סבא נחום האהוב

 ויישארכולם אנשים איכותיים וטובים אשר , הביאו שבעה נכדים לעולם
תא שבעה עד היום נולדו לסב, בנוסף. כל עוד הוא פועםקרובים לליבי 

ילדות , שתיים מהם הן אמילי וקיילי,  לא פגשה אמנם את רובם,נינים

כמשהו אבסולוטי , הזהב אשר הגדירו בשבילי מחדש את המושג אהבה
 אשת הברזל והפרחים שאני ,תודות לאימםמכך והרבה , וללא התניות

  . כרמל,אוהב כל כך
  

 אשר נולדה ,נסיכת הנסיכות שלי, סבתה לעולם לא פגשה את אמילי
וגם לא את , דוקטורטבתחילת תקופת ה, מספר חודשים לאחר מותה

סבתא גם לא הייתה . כוכב הזהב המתוקה עלי האדמות, קיילי בת השנה

כנראה   בעודה בחייםלאור מה שהכירהו, מאמינה שאסיים את הדוקטורט
מאמילי  לא הייתי עושה זאת ללא הרוגע והנחת אשר קיבלתי ,שצדקה

רחבת   מטריית העזרה עושה זאת ללאיוגם לא היית מכרמל ווקיילי
  . נעמה וענתי אשר קיבלתי מהורי טובי הלב ומאחי נדב ואחיותיההיקף

  

צריך לתת ,  החיים זה דבר קצר:מוצי הזהש לאחר כל הפוצי ,אז ילללה
  .גז עד ההקדשה הבאה
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On Control of Queueing Networks and the
Asymptotic Variance Rate of Outputs

Yoni Nazarathy

Abstract

In this thesis we study several topics related to the control of queueing networks and analy-

sis of the asymptotic variance rate of output processes. We first address the problem of optimal

control of a multi-class queueing network over a finite time horizon with linear holding costs.

Our method for control and its analysis was published in Nazarathy and Weiss (2008b). We

then analyze the stability properties of an example network with infinite virtual queues which

we call the push-pull network. This network can be controlled in a way such that the servers

operate all of the time while the queues remain stochastically bounded as in Kopzon et al.
(2008). Our analysis generalizes the memoryless processing time results of that paper to the

case of general processing durations. We utilize the fluid stability framework for showing pos-

itive Harris recurrence of Markov processes associated with queueing networks. These results

were published in Nazarathy and Weiss (2008c).

The sample path behavior of the push-pull network has motivated us to analyze the vari-

ability of its output processes. A first measure for such variability is the asymptotic variance

rate: the linear increase of the variance function of a counting process over time. Experiment-

ing with this performance measure, we observe an interesting phenomena that occurs in simple

finite capacity birth-death queues and obtain a closed formula for the asymptotic variance rate

for such systems. These results have been published in Nazarathy and Weiss (2008a). Return-

ing to the Push-Pull system, we obtain expressions for the asymptotic variance rate, by means

of a diffusion limit whose proof relies on our positive Harris recurrence result.

Finite Horizon Control

Our method for control of a multi-class queueing network over a finite time horizon integrates

several ideas: Separated continuous linear programs, infinite virtual queues and rate stable

maximum pressure policies. We approximate the multi-class queueing network by a fluid net-

work and formulate a fluid optimization problem which we solve as a separated continuous

linear program. The optimal fluid solution partitions the time horizon to intervals in which

constant fluid flow rates are maintained. We then use a policy by which the queueing network

tracks the fluid solution. To that end we model the deviations between the queuing and the

fluid network in each of the intervals by a multi-class queueing network with some infinite

virtual queues. We then keep these deviations stable by an adaptation of a maximum pressure

policy. We show that this method is asymptotically optimal when the number of items that are

processed, and the processing speed increases.

vi



Full Utilization Control

As summarized above, our second topic on control deals with the push-pull queueing net-

work. This network is composed of two servers and two types of jobs which are processed by

the two servers in opposite order, with stochastic generally distributed processing times. This

push-pull network is similar to the Kumar-Seidman Rybko-Stolyar (KSRS) multi-class queue-

ing network, with the distinction that instead of random arrivals, there is an infinite supply

of jobs of both types. Thus each server can either process jobs of one of the types, which it

pulls from the other server, or jobs of the other type which it pushes out of the infinite sup-

ply towards the other server. Unlike the KSRS network, we can find policies under which our

push-pull network works at full utilization, with both servers busy at all times, and without

being congested. We perform an asymptotic analysis of the push-pull network under these

policies to quantify its behavior: We show that under fluid scaling the fluid model of the net-

work is stable. We adapt the proofs of Dai, to show that as a result the queues of jobs waiting

for pull operation are positive Harris recurrent.

Asymptotic Variance Rate of Outputs

With regards to the output process of finite capacity birth-death Markovian queues, we de-

velop a formula for the asymptotic variance rate of the form λ∗ +
∑

vi where λ∗ is the rate of

outputs and vi are expressions based on the birth and death rates. We show that if the birth

rates are non-increasing and the death rates are non-decreasing (as is common in many queue-

ing systems) then the values of vi are strictly negative and thus the limiting index of dispersion

of counts of the output process is less than unity. In the M/M/1/K case, our formula evalu-

ates to a closed form expression that shows a rather surprising phenomena: When the system

is balanced, i.e. the arrival and service rates are equal,
∑

vi

λ∗ is minimal. The situation is sim-

ilar for the M/M/c/K queue, the Erlang loss system and some PH/PH/1/K queues: In all

these systems there is a pronounced decrease in the asymptotic variance rate when the system

parameters are balanced.

Moving to the output processes of the push-pull network, we are interested in the asymp-

totic variance rate as well as the covariance rate between the two processes. We do so by means

of diffusion limits. Our results show that the two output streams are highly negatively corre-

lated and that the asymptotic variance rate of outputs is the same for all fully utilizing stable

policies.

We apply the same diffusion limit methodology to a general re-entrant line with infinite

supplies and obtain a simple expression for the asymptotic variance rate of outputs.

Background

We also present an extensive but elementary background chapter about queueing networks

that is written with the non-queueing theorist in mind. In addition we present a survey chapter

on previous results of networks with infinite virtual queues. An additional chapter introduces

concepts related to the asymptotic variance rate of outputs. Hope you enjoy reading.
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OVERVIEW

In this thesis we summarize our research with regards to several topics related to the control

of queueing networks and the analysis of the asymptotic variance rate of output processes. We

now briefly overview our main results and discuss the organization of the text.

Brief Overview

The study of queueing networks probably began with the discovery of the big miracle of prod-

uct form Jackson networks in the 1950’s and ever since it has been an exciting research area

finding applications in manufacturing, communications and service engineering but also mo-

tivated by the mathematical elegance and charm of some results and problems. Controlled

queueing networks have only received serious attention in the past 20 years, possibly due to

the fact that typically an exact analysis of a network under a given control is not possible and

very rarely is one able to find an optimal control. In this respect, one usually seeks to find con-

trols that are either asymptotically optimal or at least sensible in the sense that they maintain

the network stable. The latter issue of stability has become a pressing issue in the late 90’s due

to the discovery of some simple network examples that are unstable under controls that seem

quite innocent at first sight. In general, it appears that the theory of queueing network control

still has a long way to go until reaching maturity.

Our contributions to this field involve queueing networks in which some classes have an

infinite supply of work which we term infinite virtual queues. First we handle the problem of

finite horizon control of a standard multi-class queueing network with respect to minimization

of linear holding costs. We propose a policy which we prove to be asymptotically optimal

when the number of items processed and the processing speed increase. The problem of finite

horizon control is typically a more complicated problem than infinite horizon since one can

not assume that steady state is reached. In this case we approach the problem by assuming

that there is a large amount of items that need to be produced and the processing time of each

item is small. This allows us to approximate the problem by a finite horizon fluid optimization

problem, which may be solved optimally as a separated continuous linear program. We then

show how to track the optimal fluid solution in a way that achieves asymptotic optimality of



the discrete stochastic problem. This tracking procedure involves infinite virtual queues and

the maximum pressure policy.

Secondly, we explore an example of a queueing network in which some buffers have infinite

supplies (infinite virtual queues), this is the push-pull network. We believe that this type of

model may offer an attractive alternative to the Brownian network models which have received

a lot of attention in the past 20 years. We show that the specific model that we analyze, the push-

pull network is positive Harris recurrent under a control that fully utilizes the resources. This

behavior is very different from the typical heavy traffic networks in which congestion increases

when utilization nears 100%.

Following our results regarding network control we focus on analysis of the asymptotic

variance rate of outputs. Classical queueing theory, typically attempts to evaluate performance

measures that are important from the customers point of view, e.g. sojourn times. This is

possibly due to the fact that queueing theory research was initially motivated by problems

of human customer service. Alternatively, when manufacturing systems and some types of

communication networks are considered, it is reasonable to shift attention to other performance

measures related to the output stream. One such important attribute is the variability of the

output stream of jobs which may be measured by the asymptotic variance rate of outputs: the

asymptotic rate of increase of the variance function of the output counting process. When the

output process obeys some sort of central limit theorem then the asymptotic variance rate of

outputs may be used to estimate the distribution of the number of outputs during long time

intervals.

Our interest in the variability of outputs stems from the push-pull network. In this network,

the behavior of the output streams under the proposed controls typically follows an alternating

on-off type behavior: The production of one type of job by the network operates continuously

at a fast rate while the other type of job idles or slows down and the situation is reversed after

a random duration whose length is similar to the order of a busy period. This behavior moti-

vates us to analyze the asymptotic variance rate of outputs with hope that it can be quantified

so that one can search within the class of fully-utilizing stable policies for a policy that yields

low variability of outputs. Analysis of the asymptotic variance rate is typically not relevant

to queueing networks without infinite virtual queues and without losses because in such net-

works the asymptotic variance rate of the outputs usually equals that of the inputs. As a result

of our research we now believe that a similar phenomena appears in networks with infinite

virtual queues: the asymptotic variance of the outputs is not amenable to control under stable

fully utilizing policies.

As a "warm up" of the analysis we are led to explore methods for calculating the asymptotic

variance of point processes that are generated by simple queueing systems. In this respect we

have explored explicit matrix-analytic results related to Markovian arrival processes (MAPs)

and their variance function. For the elementary M/M/1/K queue, we show that the asymptotic

variance of outputs is minimized when the system is balanced (the arrival rate and service rate

are equated). We call this phenomenon BRAVO (Balancing Reduces Asymptotic Variance of

Outputs). It appears to carry over to other finite capacity birth death queues. We also present a
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useful simple formula for calculating the asymptotic variance rate of finite capacity birth death

queues.

Returning to the push-pull network we present a diffusion approximation of the output

processes which yields expressions for the asymptotic variance rate of outputs (as well as the

covariance between output streams). In addition, we derive the asymptotic variance rate of

outputs of an infinite supply re-entrant line. These results confirm the fact that all fully utilizing

stable policies of the push-pull network exhibit the same asymptotic variance rate of outputs.

Organization of the Thesis

Part I is composed of Chapters 1 and 2 which contain supporting material for the results of the

thesis. Reading this material is helpful for following the later chapter but may also be skipped

by a brief reader.

Chapter 1 contains a brief survey of the ideas of queueing network theory. It is written

with the non-specialist in mind but also attempts to entertain readers that are well within the

field. Landmark results and methods of queueing networks are surveyed with only a minor

bias towards results that are relevant to our research.

Chapter 2 introduces the concept of infinite virtual queues. Incorporating this idea in a

queueing network yields interesting network models such as the push-pull network which we

later analyze. In this chapter we survey the work that has been done on this subject until now,

excluding our contribution which appears in later chapters.

Part II is composed of Chapters 3 and 4. Here we present our results with regards to control

of queueing networks.

Chapter 3 handles finite horizon optimal control. Here we present our method for control-

ling a multi-class queueing network over a finite horizon that is asymptotically optimal with

regards to holding costs. This method and its analysis employs three different concepts: sepa-

rated continuous linear programs, multi-class queueing networks with infinite virtual queues

and maximum pressure policies. The results of this chapter were published in Nazarathy and

Weiss (2008b).

Chapter 4 presents our analysis with regards to stability of the push-pull network, showing

that it is possible to control a network under full utilization while keeping the queues stable.

This has actually been shown previously for a memory less system in Kopzon and Weiss (2002)

and in our joint submitted publication Kopzon et al. (2008). Here we expand the results to

the case of general processing times, employing an asymptotic analysis. We show that un-

der certain policies, the network is positive Harris recurrent. The results of this chapter were

published in Nazarathy and Weiss (2008c).

Part III is composed of Chapters 5, 6 and 7. This part deals with the variance of output

processes.

Chapter 5 introduces the performance measure of asymptotic variance rate of outputs. We

look at the M/G/1 queue as an example and also at a specific case of the push-pull analyzed

in the previous chapter.

Chapter 6 contains our results with regards to the asymptotic variance rate of the output
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process of finite capacity queues. As opposed to the results in the previous chapters, this is

a more "classic" queueing result which deals with the most fundamental queueing systems

studied. The results of this chapter were published in Nazarathy and Weiss (2008a).

Chapter 7 analyzes the asymptotic variance rate of outputs of the push-pull network of

Chapter 4 and of a general re-entrant line with infinite supply. Our results are obtained by

means of diffusion limit theorems for both types of networks.

Appendix A outlines some details regarding a simulation software package that we devel-

oped and used to obtain most of the simulation results and illustrations in this thesis.
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Part I

Background
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CHAPTER 1

QUEUES AND NETWORKS

This chapter serves as an introduction to the subject matter of the thesis: queueing networks.

The purpose is to present some basic concepts of queueing theory and queueing networks.

We begin very informally by introducing the basic phenomena of queues, congestion and

stability in Section 1.1. We do this by demonstrating a simulation experiment that uses some

real data set. We then discuss how queueing theory attempts to describe such phenomena and

outline some important measures of performance. We continue our presentation in Section 1.2

where we briefly overview some key results and directions of "classic queueing theory". This

is not a very well defined term, nevertheless we use it to refer to results having to do mainly

with explicit (usually steady state) solution of stochastic systems, often related to the Poisson

process.

Once the queueing setting has been established, we move on to discuss the notion of a

queueing network in section 1.3. Here we describe several variations of queueing network

models. We also explicitly define a multi-class queueing network (MCQN), a concept that re-

appears in future chapters. A very basic queueing network is the 2 station tandem queue, we

use it as an example for analysis in the following three sections.

In Section 1.4, we survey results regarding queueing networks that have a product form.

These networks are quite miraculous in the fact that their steady state behavior may be explic-

itly calculated. Arguably, research with regards to finding such exact solutions of queueing

networks peaked in the early 80’s (at least for the mean time) with the publication of the book,

"Reversibility and Stochastic Networks", Kelly (1979). This in no means implies that "all is

known" but rather indicates that at least for the mean time, approximate solutions should be

attempted. We thus, survey two major approximation paradigms, both of which have enjoyed

great popularity.

The first approximation paradigm is based on a heuristic argument (without any theoretical

justification) and uses the concept of network decomposition. Probably the most notable item

in this line of approximations is Ward Whitt’s Queueing Network Analyzer (QNA). The general

idea is to use approximations for the traffic processes between the nodes of the network. We

demonstrate the method of the QNA on a 2 station tandem queue and briefly describe how it



can be applied to general networks.

The second type of approximation paradigm is based on diffusion approximations of queues

in heavy traffic. As opposed to the QNA scheme, this method is usually backed by theoreti-

cal limit theorems that justify the validity of the approximation as some network parameter

reaches a limiting value. We attempt to introduce the flavor of such limit theorems by dis-

cussing the diffusion approximation of the 2 station tandem queue in Section 1.6.

While obtaining performance measures related to the congestion of the network are of in-

terest, sometimes a much more fundamental question is to be asked: Is the network stable?

Analysis of this question became popular in the 90’s due to some amazingly simple yet sur-

prising discoveries of queueing networks that have enough capacity to handle the offered load

yet are not stable under some quite sensible policies. We demonstrate this in Section 1.7 where

we also define several notions of stability and instability. Some of the instability phenomena

which we survey, emphasized the need to find criteria and methods for analyzing the stabil-

ity of queueing networks. A key method that is utilized in our research is the fluid stability

framework, advanced by Jim Dai (Dai, 1995).

1.1 Demonstration of the Basic Phenomena of Queues

As a prelude to the material of this background chapter and to the contents of this thesis we

choose to present a small queueing experiment that does not implicitly involve any proba-

bilistic assumptions, yet demonstrates the typical behavior of a queue and the phenomena of

congestion, stability and the steady state distribution.

Memory

Buffer

1 byte

per Μs

File

System 1 File

per Τ Μs

Backup

Device

Figure 1.1: Memory buffer fed by files. A file is dumped to the memory buffer every τ micro
seconds. The backup device consumes 1 byte per micro second from the buffer.

We imagine that there is some file backup device that is connected to our lap-top computer

and that there is an allocated memory buffer in the computer’s RAM that is dedicated to the

backup device. We further assume that whenever the memory buffer is not empty, the device

draws bytes from the memory buffer at a constant rate of exactly 1 byte per micro second.

When the buffer is empty, the device idles. In addition there is some software mechanism that

fills up the memory buffer at a constant rate with the data of the files that are on the lap-top.

One file is dumped to the memory buffer every τ micro seconds. Assume that the copying time

of a file from the file system to the memory buffer is instantaneous (or negligible). Note that the

variability in the system is due to the variability of the file sizes. A schematic representation of

this setup is in Figure 1.1.

We shall now experiment with the behavior of this memory buffer (or queue) over time.

Our experiment consists of non-fictitious (real) data drawn from the file system on our lap
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top. Specifically we obtained a list of 76, 904 file sizes by scanning the whole file system. The

maximal size is quite big: 471, 593, 369 bytes (about half a gigabyte). The mean is much smaller:

109, 255 bytes. It should be noted that 6, 324 of these are actually directories and have 0 size,

this is fine, we treat those as files of size 0.

It is easy to simulate the number of bytes in the memory buffer at the times 0, τ, 2τ, . . ..

These are the times at which a new file is put in the buffer. We shall actually look at the time

instances immediately after a new file is put in the buffer. These are calculated by the recursion:

Xnτ = max[X(n−1)τ − τ, 0] + σn, n = 1, 2, . . . , 76904 (1.1)

where σ1, . . . , σ76,904 are the file sizes and we assume X0 = 0. The process {Xt, t ≥ 0} is the

memory buffer (or queue) process over time. Assuming the file sequence is fixed, the realiza-

tion of this process depends only on the value of τ . We plot the initial part of the realization for

several values of τ in Figure 1.2.

1.´109 2.´109 3.´109 4.´109 5.´109 Time

5.´108

1.´109

1.5´109

2.´109

2.5´109

Bytes In

Memory Buffer

Τ=1.8*105

Τ=1.4*105

Τ=1.2*105

Τ=0.8*105

Figure 1.2: Realizations of the buffer content as a function of time for various values of τ .

Note that we have chosen values of τ that are pretty close to the mean files size, which is

approximately 1.1 × 105. It is quite evident that as τ increases, the realization of the buffer

size process decreases. This simple phenomenon is one of the main issues which we wish to

explore in this section, more on it shortly. A second observation is that the realizations are quite

smooth except for several very big instantaneous jumps. These correspond to some extremely

big files that are occasionally encountered. This behavior may be viewed as an attribute of our

file system: the distributions of the files contains a "heavy tail" meaning that there actually exist

some very big files in the presence of a lot of very small files.

While the "heavy tail" phenomenon that we observe is extremely interesting and is actually

related to some very contemporary research on queues, it is not the focus of our thesis and the

current discussion. Thus we choose to avoid it and simplify things. We do this by assuming that

our device does not accept files with more than 5×105 bytes. After removing these "excessively

big files" from our data (a total of 2, 175 files), the new mean file size is 27, 475.

A further issue which is extremely interesting, yet not relevant to our main discussion is

the fact that our list of file sizes is most probably quite structured. This list was obtained by
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traversing through the file system in some lexicographic order. Files from the same directory

were obtained one after the other. It is most probable that some directories contain many small

files and others contain many big files and thus the data may be quite correlated. Actually

by carefully observing Figure 1.2, some correlations in the consecutive file sizes are apparent.

For example, the path for τ = 1.8 × 105 at around the time 1 × 109 appears to contain some

"repetitive behavior". This is most probably due to having several directories with one big file

and a lot of small files. Where the directories are almost exact copies of each other. To remove

this "correlation" from our discussion, we assume that the file backup mechanism traverses

the file system in random order. We simulate this by shuffling the file size list according to a

random permutation.

Before we continue the discussion using our modified "uncorrelated" and "without heavy

tails" file list, let us define,

ρ =
27, 475

τ
,

(remember that the mean file size is 27,475 bytes and that bytes are drained at rate 1). In

queueing theory, ρ usually symbolizes the offered load or traffic intensity of the system under

study. When ρ < 1, the rate of inflow to the queue is less than the potential outflow. When

ρ = 1 the queue is balanced. When ρ > 1 there is more coming into the queue then can be

handled and the system is said to be overloaded. We now repeat the queue simulation (with the

modified data set), for several values of ρ. The results are in Figures 1.3, 1.4 and 1.5.
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Figure 1.3: ρ < 1.
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Figure 1.4: ρ ≈ 1
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Figure 1.5: ρ > 1

The behavior observed in these figures is quite typical of queueing systems. When ρ < 1

the buffer level process alternates between periods of being empty and periods of being full

(these are respectively called the idle period and the busy period). When ρ > 1 there is simply not

enough capacity to match the arrivals and thus the size of the buffer increases at a rate which is
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pretty much linear with time. When ρ ≈ 1 the system is said to be balanced and the realization

of the memory buffer actually looks like a diffusion process (more on that is in Section 7.2).

Without variability, a system with ρ ≤ 1 will stay empty. But in the presence of variability (due

to variable file sizes in our example), queues build up.

0 50 000 100 000 150 000 200 000 250 000 300 000 350 000
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Memory Buffer
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Figure 1.6: File experiment: Observed steady state distributions for ρ = 0.2 and ρ = 0.7

Our purpose in the above discussion was to show how the mode of operation (ρ < 1, ρ = 1

or ρ > 1) affects the general behavior of a queue (stable, marginally stable and unstable). We

now wish to concentrate on the case where ρ < 1. Observe in Figure 1.3 that the realization of

ρ = 0.2 appears to be generally lower than the realization of ρ = 0.7. How can we quantify this?

The most common measure of performance in this respect is to look at the distribution of buffer

level throughout the realization and further at the mean. We hope to be able to assume that

when ρ < 1 this distribution "settles" to some stationary distribution and a further assumption is

that the distribution has a finite mean. Assuming both assumptions to be true, we can look at

histograms of the buffer content distribution sampled at equal points in time and further look

at the mean. Such distributions for ρ = 0.2 and ρ = 0.7 are in Figure 1.6. Indeed the observed

mean for ρ = 0.2 is 37, 200 while the mean for ρ = 0.7 is much higher: 174, 567.

Queueing theory usually attempts to describe such observations as above by assuming a

stochastic model. In our example, the simplest model is to assume that the files sizes {σn, n =

1, 2, . . .} are drawn independently from some identical distribution and the recursion (1.1) con-

tinues indefinitely. The i.i.d. assumption is a fair modeling assumption since we have stated

that files are drawn at random (according to some random permutation) and not in lexico-

graphic order.

Once we have a stochastic model, we can attempt to analyze several performance measures

either analytically or by simulation as we have done here. For example an ambitious task

would be to determine the distribution of the memory buffer at any time t given some initial

buffer level, X0. This is sometimes called the transient or finite time behavior of the system

and is typically much harder to analyze than the behavior at time t → ∞ (as is empirically
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estimated in Figure 1.6). We will not discuss transient behavior any further.

Let us now repeat the file size experiments for different values of ρ and calculate the sample

mean,
∑N

n=1 Xnτ

N where N = 74, 729 is the number of files in the modified data set. In Figure 1.7

we show the observed means for values of ρ less than unity1. It is apparent that as the offered

load increases the mean number of bytes in the queue increases. This type behavior of the

mean work in system is typical of queueing systems and reflects the typical trade-off that exists

between utilization and congestion. We shall now see it in the simplest and most fundamental

queueing model analyzed: The M/M/1 queue.

0.25 0.5 0.75 0.97
Ρ

500 000

1.´106

1.5´106

Mean

BufferContent

Figure 1.7: File experiment: Estimated mean buffer size over time as a function of ρ for ρ < 1.

The M/M/1 queue is a single server queue, see Figure 1.8. This queue is modeled by

assuming that there is some arrival process of discrete jobs that queue up. The server works on

each job for some random duration and then releases it and moves to the next job or idles if the

queue is empty. Note that it differs from the memory buffer simulated above, in that material

flow is discrete (as opposed to an almost continuous byte out flow). The mean number of

jobs arriving per unit time is usually denoted λ and the mean service time is µ−1. The traffic

intensity is denoted by

ρ =
λ

µ
,

and it can be shown that a necessary and sufficient conditions for the existence of a stationary

distribution for the number of jobs in the system is that ρ < 1. In the M/M/1 queue, the

simplest assumptions are assumed on the arrival and processing times: It is assumed that the

arrival process is Poisson with rate λ and the service times are i.i.d. exponential with mean

µ−1. In this case, the number of jobs in the system at time t, denoted by Q(t) is a countable state

space Markov chain and it is easy to show that

lim
t→∞P{Q(t) = k} = (1− ρ)ρk, k = 0, 1, 2, . . . (1.2)

1Note that this is the mean sampled at the points of arrivals of new files and it is not necessarily equal to the
time average over continuous time. For some systems, these two means are the same, e.g. when the arrivals are
according to a Poisson process, but in general they may be different.
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This implies that the steady state mean queue size is ρ/(1 − ρ) and indeed a graph of this

function is similar in nature to the graph we obtained in Figure 1.7: As ρ increases to 1 the mean

queue length increases rapidly. More on queueing models of this sort is in the next section.

ServerArrivals Outputs

Figure 1.8: A schematic representation of a single server queue.

In summary, this is the basic queueing behavior that was demonstrated in this section2:

• Queue levels are typically "stable" when ρ < 1, "marginally stable" when ρ = 1 and

"unstable" when ρ > 1.

• Stable systems with ρ < 1 typically have a stationary distribution for quantities such as

the queue length.

• The mean steady state number of units in the system typically increases as ρ increases to

1 in a manner similar to the M/M/1 queue.

It is always important to keep in mind, that it is variability of the file sizes that caused the

queues to build up (when ρ < 1). This is further demonstrated through steady state formulas

of the M/G/1 queue presented in the next section.

1.2 Classic Analysis of Queues

Queueing theory primarily deals with analysis of stochastic models of queues. This formal

analysis began in the beginning of the previous century with the works of the telephone traffic

engineer A. K. Erlang who set the tone of the theory by analyzing queues that may be repre-

sented as continuous time Markov chains. These are today called (following Kendall’s notation,

see any elementary book on Queueing theory) the M/M/1, M/M/c, M/M/1/K, M/M/K/K

(Erlang loss system) and others. The nice thing about these types of queues, is that one can

quite easily obtain the stationary distribution of the number of jobs in the system. Performing

these types of calculations has been termed "Elementary Queueing Theory" (Kleinrock, 1974)

and is usually covered in introductory courses on stochastic performance analysis. An example

steady state result is given for the M/M/1 queue (1.2) above and the general case is summa-

rized later in this thesis in Section 6.2 of Chapter 6.

Elementary queueing theory models assume a Poisson arrival process which is a reasonable

assumption in many settings because the Poisson process occurs in nature quite frequently

when arrivals are due to independent "micro-Bernoulli" trials or when the arrivals are a super

position of many point processes. The models also assume that processing times follow an

2Some further demonstrations of a similar nature may be found in a web-site which we are now developing:
The Queueing Science Exploratorium: http://www.stat.haifa.ac.il/~yonin/qsm/main.html.
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exponential distribution, i.e. they have constant hazard rates and are thus memory-less. For

many applications, this assumption is often too restrictive.

Some types of systems such as the so-called Erlang loss system (M/M/K/K queue) en-

joy a property called insensitivity which essentially means that the steady state solution of

M/M/K/K is the same as that of an M/G/K/K system with same service mean but some arbi-

trary service distribution. Here the ’G’ in Kendall’s notation stands for "General Distribution"

while the ’M’ stands for "Markovian" assumptions, i.e. Poisson arrival processes and exponen-

tial processing times. In general systems are not insensitive: changing the shape of the service

or inter-arrival distribution (even when the mean does not change) affects the behavior of the

system.

The next step up, after analysis of Markovian systems is analysis of systems where one of

the driving components is based on an exponential memory-less distribution and the other is

based on general service times (from some given distribution). The two typical examples are

the M/G/1 queue and the G/M/1 queue. Here the ’G’ stands for either the service times (in

M/G/1) or inter-arrival times (in G/M/1) being based on a sequence of i.i.d. random variables

from some arbitrary distribution. Obviously M/M/1 is a special case of both. M/G/1 is of

particular practical importance because it removes the sometimes unreasonable assumption of

memory-less service times. For example, as is often encountered in time slotted communication

systems, one can analyze a system with Poisson arrivals and deterministic service times using

known results for M/G/1.

The steady state behavior of the M/G/1 queue is described by the Pollaczek-Khintchine

(P-K) formulas and we present them below. Arguably, these formulas are the most outstanding

success story of classic queueing theory. And further (also arguably) when one tries to go

further than M/G/1 there are quite a bit of hardships and explicit useful results are very hard

or impossible to obtain. For example, it is not known how to obtain the steady state solution

for the number in queue for the M/G/2 queue (this is a 2 server queue). Note though that the

G/M/m with m ≥ 1 queue has been solved. Further, the behavior of the G/G/1 queue can only

be approximated (sometimes the approximation is accompanied by rigorous limit theorems).

This does not mean that research regarding explicit queueing theory results has settled, there

are still many variations and combinations that may be obtained, sometimes employing quite

sophisticated reasoning and analysis. A landmark manuscript of classic queueing theory is

"The Single Server Queue", of Cohen (1982).

For illustration we shall now summarize the (P-K) formulas. Assume that jobs arrive ac-

cording to a Poisson process with rate λ and each job performed with service times that are

taken from an i.i.d. sequence with a mean µ−1 where λ < µ. Denote the distribution function

of the service times H(t) and assume that it has a Laplace-Stieltjes transform denoted by

H∗(s) =
∫ ∞

0−
e−stdH(t).

Further assume that jobs are performed according to a FCFS (first come first served) policy. In

this case the (P-K) formula for the mean waiting time in queue of a job is:
ρ

1− ρ
E [R],

13



where ρ = λ/µ and E [R] is the mean residual service time of a randomly observed job in

operation. From renewal theory it is well known that

E [R] =
1
2µ

(c2
S + 1),

where c2
S is the squared coefficient of variation of the service time. For the special case of the

M/M/1 queue we have c2
S = 1 and thus the mean waiting time in queue is

ρ

µ− λ
.

It is instructive to also look at the case of deterministic service times and see that the mean

waiting time in the queue is half of the exponential service time case. Indeed, as a general rule

in queueing theory, variability increases waiting times and queue sizes. A strong feature of the

M/G/1 queue is that the second moment of the service time distribution is all that is needed

to quantify this.

The above mean waiting time formula of M/G/1 can be derived in several ways, the most

instructive being based on renewal theory (see almost any standard reference on queueing

theory). It can also be obtained by differentiation of the more general (P-K) formula for the

Laplace-Stieltjes transform of the mean waiting time:

W ∗(s) =
s(1− ρ)

s− λ(1−H∗(s))
.

By inverting W ∗(s), one can obtain the distribution function of the waiting time and answer

questions of practical importance such as: "What percentage of the jobs wait in queue more

than 5 minutes". A similar formula exists for the probability generating function of the number

of jobs in the system (it is also sometimes called the (P-K) formula).

In general, many results of "classic queueing theory" are stated in terms of transforms of the

quantities of interest. The results we present in this thesis are not of this nature.

1.3 Queueing Network Models

What is a queueing network3? It is a collection of service stations (nodes) that are intercon-

nected so that the output of some stations are fed into the input of others. Queueing networks

are used to model manufacturing systems, certain communication systems, patients in hos-

pitals, law cases in the justice system and a variety of other applications areas and natural

phenomena. We do not elaborate on applications any further in this thesis.

In this section we introduce several variations of queueing network models. We shall de-

scribe the following notions: open networks, closed networks, single-class networks and multi-

class networks. We shall also briefly comment on networks with infinite virtual queues. Other

types of network concepts such as loss networks, finite buffers networks with blocking, G-

networks and fork-join networks are briefly commented on.

Typical terms in the queueing network setting are: Jobs these are the entities that move

through the queueing networks (also called customers or packets). Buffers (or queues), these are
3Also sometimes refereed to as stochastic network.
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the place holders of jobs as they move around. Activities are the operations that are performed,

servicing the jobs and once completed moving them between buffers (also called steps). Re-
sources, sometimes called servers or processors or machines, are the entities that are used to

perform the activities. Another term is a node or station. This is a collection of one or more

buffers and one or more resources.

1 2

Figure 1.9: The 2 station tandem queue.

The simplest example of a queueing network is in Figure 1.9. We shall refer to it as the

2 station tandem queue, it will be very useful in explaining some of the methods of analysis which

we present in the following sections. Assume customers arrive from the outside world first into

station 1, queue up, receive service and then move to station 2 receive service and then depart.

Further assume that the servers service the customers in a FCFS non-idling fashion. This is an

open, single-class, infinite buffer queueing network. We say it is open because it is connected

to the outside world. We shall explain the term single-class shortly. An alternative to the open

network is in Figure 1.10. This network is closed an contains a fixed finite customer population,

it is an example of a closed queueing network. We shall not be concerned with such networks in

this thesis.4

1 2

Figure 1.10: The closed version of the 2 station tandem queue.

We now wish to formulate mathematical models that describe the evolution of queueing

networks over time. For example, we would like to describe the number of jobs in each buffer

(including the job which is in service) at time t by the processes Qk(t) where k is the buffer

index. We shall do so formally soon, but for starters let us look at the 2 station tandem queue

example. In the next section we show how the above network is solved when the primitive

sequences are exponential and in the following two sections we shall discuss approximations

for the case of general processing times.

Assume that the processing times in the 2 station tandem queue of Figure 1.9 are given by

the two sequences {Xk(`), ` = 1, 2, . . .}, k = 1, 2. Here, Xk(`) is the processing time of the `’th

job in station k. For the example, we shall assume that processing times are constant: X1(`) = 1,
4Actually, when the processing times are assumed to be i.i.d. exponential, the network in Figure 1.10 is

equivalent to the M/M/1/K queue which we analyze in Chapter 6. An extension of this network is analyzed in
Boxma (1988).
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X2(`) = 1.5 for all `. Further data that is required is the arrival process. Here assume that the

arrival times of jobs to the first node (from the outside) are at times,

0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, . . .

These can be described by an arrival process A1(t) which counts how many arrivals have oc-

curred up to time t and by inter-arrival times {X0(`), ` = 1, 2...} = {0, 1, 2, 1, 2, 1, 2, 1, 2, . . .}
(note that X0(0) is the time of the first arrival and not an inter-arrival time), and the relation

A1(t) = sup{n|
n∑

`=1

X0(`) ≤ t}.

Finally, assume that at time 0 the network is empty: Q1(0) = Q2(0) = 0. We now have enough

data to determine the evolution of Qk(t), k = 1, 2 for all time t. We do so systematically in Fig-

ure 1.11. We first plot A1(t), the arrival process into the first node. We then take into account

the fact that the server 1 requires 1 unit of time to service each job and obtain the queue real-

ization Q1(t). Now we look at the output of the first node and use it to construct the process

A2(t). We then use this process to build Q2(t). The resulting network evolution (or realization)

is in Figure 1.11.

1 2 3 4 5 6 7 8 9 10
t

6

5

4

3

2

1

1

2

3

4

5

6

Q1HtL

Q2HtL

A1HtL

A2HtL

Figure 1.11: Deterministic realization of 2 station tandem queue. The processes A1(t), Q1(t) are
shown above the x-axis and the processes A2(t), Q2(t) are below the x-axis. Note that at times
1, 4, 7 and 10 the queues experience 2 simultanious events (arrival and service completion).

We shall often refer to the sequences Xk(t) (including the inter-arrival times) as primitive
sequences. In a sense, a queueing network is a mapping that transforms these primitive se-

quences into realizations of the form Qk(t), Ak(t). As in the analysis of single server queueing

systems, one usually employs stochastic primitive sequences which are usually assumed to be

i.i.d. A further simplifying assumption is the so-called "Kleinrock assumption" which states

that processing times of jobs at different nodes depend (possibly) on the node but not on the

job. This is a pretty strong assumption when one considers packet communication networks

because usually the packet size is directly proportional to the transfer time on links (processing

times) and varies from packet to packet but does not change from link to link. Nevertheless,

without this simplifying assumption, the analysis is typically intractable. In the continuation

of this section we explicitly define this "mapping" for a quite general class of networks
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In general we are interested in queueing networks that are arbitrarily complex (yet have a

finite amount of nodes and buffers). For an illustration look at Figure 1.12. This network has 4

nodes and the arrows indicate that customers may take several possible routes. For example,

the 3 arrows that point out from node 1 indicate that customers that complete service at this

node can move to either nodes 2, 3 or 4. Customers that complete service at node 2 may either

leave the network or more to further service at node 3. These customers later return to node 2.

This type of "re-entrant" behavior often yields interesting analysis. In certain cases when one

assumes its absence (in which case the network is called feed-forward) the analysis simplifies.

One way to specify the routing that actually takes place is by introducing additional primi-

tive sequences. This time we shall use indicator sequences {φij(n), n = 1, 2, . . .} to indicate the

routing that occurred in the network. Specifically φij(n) = 1 if the n’th customer out of node i

moved to node j, otherwise we have φij(n) = 0. Note that
∑

j φij(n) = n. In the next section

we shall assume probabilistic assumptions regarding these sequences. An alternative to the

primitive sequences is to say that the routing is part of the network policy. This is sometimes

called discretionary routing.

1 2

3

4

Figure 1.12: A single-class queueing network.

Suppose we want to add the following characteristic to our network: Jobs that arrive to

node 2 from nodes 1 or 3 are to depart the network after being serviced while jobs that arrive

from node 4 are to move to node 3 after being serviced. To do so we may label the jobs as ’a’

type jobs and ’b’ type jobs and keep track of this labeling of the jobs in the queue of node 4.

This is illustrated in Figure 1.13.

This type of network is called a classed network or multi-class queueing network (MCQN)

because customers are grouped into classes (in this case ’a’ and ’b’). For clarity, we shall also

assume that all jobs in nodes 1 and 3 are ’a’ type and all jobs in node 4 are ’b’ type, but this is

not critical, since we have not specified different behaviors for jobs in 1, 3 or 4. The important

thing is that we allow jobs to change their classes, for example, when a job moves from node 2

to node 3 we say it changes from being a ’b’ type job to being an ’a’ type job. This is opposed

to single-class (also sometimes called Jackson-type) networks which do not distinguish between
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'b' jobs
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'a' jobs
'a' jobs

Figure 1.13: A multi-class queueing network

jobs in a node. A second distinction is that in a multi-class network, we may assume different

probabilistic assumptions on the primitive sequences of different classes.

The illustration of the jobs in node 2 in figure 1.13 hints that the order of the jobs in the

queue is important. This is indeed the case if the scheduling policy of node 4 is FCFS. As an

alternative, suppose that we wish to give full priority to ’a’ type jobs over ’b’ type jobs. In this

case a more illustrative drawing of the node 2 is as in right side of Figure 1.14. Here we actually

associate a queue with every class and group the two classes ’a’ and ’b’ by the resource, or node

which is drawn as a rectangle. We read this figure as implying that at any time, work can only

be performed on a single job at a time and the server has to choose ’a’ or ’b’. In general, this is

the type of representation which we shall use for queueing networks in this thesis.

b a b a b 2
represented

as ->

b

a

Figure 1.14: An alternative representation of a multi-class node

An example of a simple multi-class queueing network is in Figure 1.15. This is a type of a

re-entrant line network, i.e. a network composed of one route in which jobs may re-enter nodes.

We shall use this example for the analysis of our method of finite horizon control in Chapter 3.

Control Policies

The illustration of the node on the right hand side of Figure 1.14 shows that a multi-class

queueing network requires a specification of a control policy: at every time instance, which class
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Figure 1.15: A Simple 3 Buffer Re-entrant line

should be served: ’a’ or ’b’? One can distinguish between control policies that are local, each

node makes information only based on local information, e.g. number of jobs in each queue. A

global control takes into account information regarding the whole network, e.g. queue levels at

other nodes.

A recent book which summarizes some of the advances in the field is Meyn (2008), another

reference which mainly deals with control using diffusion approximations (Section 1.6) is Kush-

ner (2001). A more classic approach is covered in Chapter 8 of Walrand (1988). Our results of

Chapter 3 make heavy use of the maximum pressure control policy, see that chapter for details.

In other chapters, we analyze a specific network under some simple specified control rules.

In this respect, there is no attempt to show that the control is optimal, but rather show that it

has some desired properties. In general there are still many un-answered questions regarding

control of queueing networks and how to do so effectively.

Formulation of a Multi-class Queueing Network Model

We shall now formally define a MCQN. This model was essentially introduced in Harrison

(1988). The network consists of k ∈ K = {1, . . . ,K} job-classes and i ∈ I = {1, . . . , I} servers.

Jobs of class k queue up in buffer k, and we let the queue length Qk(t) be the number of jobs

of class k in the system at time t. We let Qk(0), k ∈ K be the initial queue lengths. Buffer k

is served by server σ(k), and the constituency of server i is Ci = {k | σ(k) = i}. In general

a server may serve several classes, i.e. |Ci| > 1, hence the term multi-class. The topology of

the network is described by the I ×K constituency matrix A with elements Aik = 1 if k ∈ Ci,

Aik = 0 otherwise.

For ` = 1, 2, . . ., the `’s job out of buffer k requires processing amount Xk(`), after which the

job may either leave the system or move to another buffer. Sk(t) = sup{n | ∑n
`=1 Xk(`) ≤ t}

counts the number of jobs completed at buffer k by processing for a total time t. φkk′(`) is

the indicator of the event that the `’s job out of buffer k moved into buffer k′ ∈ K \ k. Let

Φkk′(n) =
∑n

`=1 φkk′(`), this is a count of the number of jobs routed from buffer k to k′ out of

the first n jobs served at buffer k.

We further assume an inter-arrival sequence X0(`), ` = 1, 2, . . ., with,

E(t) = sup{n |
n∑

`=1

X0(`) ≤ t}.
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This sequence is partitioned to the nodes according to the Bernulli sequences φ0k(`) such that

Ek(t) = φ0k(E(t)).

The MCQN is controlled by allocating processing times to the buffers. Let Tk(t) be the total

time allocated to buffer k by server σ(k), during [0, t]. Then the dynamics of the queues are

described by:

Qk(t) = Qk(0) + Ek(t)− Sk(Tk(t)) +
∑

k′∈K\k
Φk′k(Sk′(Tk′(t))).

The allocated times have to satisfy:

Tk(0) = 0, Tk(t) non decreasing,
∑

k∈Ci

Tk(t)− Tk(s) ≤ t− s for all s < t and each i ∈ I.

In particular each Tk(t) is Lipschitz continuous with constant 1, and its derivative Ṫk(t) exists

for almost all t, and satisfies:

AṪ (t) ≤ 1, Ṫ (t) ≥ 0, 0 < t < T, (1.3)

where 1 denotes a vector of 1’s.

Additional constraints have to be satisfied by Tk(t), Qk(t), k ∈ K. First and foremost,

Qk(t) ≥ 0 and no processing can occur when Qk(t) = 0. We also assume that servers cannot

be split so each server can work on only one job at a time. In addition we assume, that jobs are

not preempted. Hence for almost all t, Ṫk = 0 or Ṫk(t) = 1, and Ṫk(t) can only change from 1 to

0 when Sk(Tk(t)) has a jump of 1, that is when the processing of a job is completed.

The above network formulation is now quite standard, see (Bramson, 2008, Chapter 1) for

an introduction. The idea of using accumulating processes is quite novel and is especially

useful since the allocation process T is Lipschitz. It is especially important to realize that for

a given primitive sequence, different network controls yield different realizations of T (·) and

thus different network realizations.

Other Types of Queueing Networks

There are many variations that one can employ for modeling queueing networks. One such

variation is to assume finite buffers. In this case we need to specify the behavior of the network

when a job arrives to a buffer that is full. One option is for the job to get lost (this is common

in the Internet where routers have finite capacity). A survey regarding such networks is Kelly

(1991). A further option is for blocking to occur. In this case congestion in downstream buffers

causes upstream servers to stop working. These types of models are often appropriate for

manufacturing systems. A survey of these types of results is in Balsamo et al. (2001). Other

types of networks are also possible. For example one can assume fork-join type behavior as

in Baccelli et al. (1989). Another alternative is for "negative cutomers" - such customers enter

queues and wipe out other customers, cf. (Artalejo, 2000). Such networks are also considered

in the algebraic study of queueing networks: Dao-Thi and Mairesse (2006).
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Figure 1.16: An example of a multi-class queueing network with infinite virtual queues.

A major extension to the MCQN model is the ability to perform discretionary routing. Here

the policy does not only sequence the jobs but also decides which routes should be taken.

An early study of such networks is in Kelly and Laws (1993). A rather general model which

employs some of the above characteristics is called a stochastic processing network. This network

model proposed in Harrison (2000), Harrison (2002) and Harrison (2003) is currently receiving a

lot of attention. A stochastic processing network generalizes the multi-class queueing network

by allowing job splitting and merging, discretionary routing and the joint use of resources to

perform activities. The idea is to define 4 types of entities: jobs, buffers, activities and resources.

Activities contend for resources by operating on jobs that are placed in buffers. Once an activity

is complete jobs move from the "input buffers" of the activity onto the "output buffers" of the

activity. A control is a rule for allocation of resources to activities. The generality is due to the

allowed many-to-many relationship between activities and buffers and between activities and

resources.

Yet another alternative to queueing network modeling is to assume that there is an infinite

supply of jobs for some as implied for classes 1 and 4 in Figure 1.16. We call such networks,

networks with infinite virtual queues. These networks play a major role in this thesis and are

further reviewed in Chapter 2.

1.4 Product Form Miracles

In this section we shall outline the results and main ideas of what we call "classic queueing

networks". We use this term to refer to queueing networks that exhibit a so-called product

form solution. These queueing networks enjoy the incredible attribute that their steady state

probability vector decomposes into a product of probabilities, each for a different queue. Thus,

in some steady state time, t0, the queue size random variables are mutually independent.

Up to the early 80’s most queueing network research has concentrated on these types of net-

works with the state of the art probably being the release of Kelly’s book in 1979 "Reversibility

and Stochastic Networks" (Kelly, 1979). Other notable and useful sources are Serfozo (1999),

Walrand (1988), Chen and Yao (2001, Chapters 2 and 4) and Bramson (2008, Chapter 2).

As an example, we shall start by analyzing the 2 station tandem network presented in the
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previous section. Assume now that arrivals to the network are according to a rate α Poisson

process and further assume that the service times at station/queue k = 1, 2 are i.i.d. sequences

with exponential distribution and mean µ−1
k . The arrival process, and service sequences are

assumed independent. We also assume that α < µk, k = 1, 2. This turns out (as may be

expected) to be the necessary and sufficient condition for stability, more on that in Section 1.7.

The first station is a stable M/M/1 queue and is not affected by the second station. Now

in steady state, it is an elementary exercise to show that the process Q1(·) is a time reversible

Markov process. This implies that its reversed process is stochastically equivalent to Q1(·).
As a consequence the arrival process into the reversed process is also a Poisson process with

rate α. But each arrival in the reversed process actually corresponds to a departure of the its

reversal (a non-reversed process) so this implies that the output process is a Poisson process!

This remarkable miracle is known as Burke’s theorem (Burke, 1956)5 and is a fundamental

result of queueing theory. A further consequence of the reversibility is that departures prior

to any time t0 are independent of Q1(t0). This is because these departures are matched by the

arrivals of the reversed process.

And now for a "corollary to the miracle": Let us denote the output process from the first

node by A2(t), it is also the arrival process into the second node. We now know it is a Poisson

process. Thus the queue at the second queue is also an M/M/1 queue. Further, the arrivals it

experiences up to time t0 are the departures of the first queue and are independent of Q1(t0).

This immediately implies that Q2(t0) and Q1(t0) are independent and they are each distributed

as in equation (1.2) with ρk = α/µk, k = 1, 2. Thus, we have:

Theorem 1.1. The stationary distribution of the 2 station tandem network with rate α Poisson

arrivals and i.i.d. exponential processing times having rates µk > α, k = 1, 2 is given by

P (n1, n2) as follows:

P (n1, n2) =
2∏

k=1

(1− α

µk
)(

α

µk
)nk , nk = 0, 1, 2, . . .

Classic queueing network theory is all about extending the theorem above as far as possible.

A major early achievement in this respect is the Jackson network (Jackson, 1957, 1963). In brief:

a Jackson network is a single-class network of exponential single-class nodes with Bernoulli

routing (the nodes may actually have state dependent service rates), an example is illustrated

in Figure 1.17.

A Jackson network is a special case of the much more modern MCQN presented in the pre-

vious section. There are K buffers (each buffer is also a node). We assume that the processing

time primitives are exponential with mean µ−1
k and the arrival process to the network is a Pois-

son with rate α (when any of these assumption are violated the network is sometimes called a

generalized Jackson network). In the context of a MCQN, we have:

Xk(`) ∼
{

exp(α) k = 0
exp(µk), k = 1, . . . , K

, i.i.d. for ` = 1, 2, . . .

5Burke did not use the simple reversibility argument to prove this.
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Figure 1.17: A Jackson Queueing Network.

We further assume that the routing primitives are Bernoulli i.i.d. with probabilities Pij . To

analyze this network we need to formulate the traffic equations. These are equations for the

unknowns, λ1, . . . , λk which symbolize the net input and output rates of jobs to each of the

nodes:

λk = αP0k +
∑

j 6=k

λjPjk. (1.4)

If we represent the net input rates as the vector λ, The routing probabilities between nodes in

the square matrix, P, and the exogenous input rates in the vector α (with αk = αP0k) then the

above equations have a unique solution, λ = (I−P′)−1α, if and only if P has a spectral radius

less than 1, we shall assume this holds. The miracle of Jackson networks is that in steady state,

the joint distribution of the queue length of all nodes is:

P (n1, . . . , nk) =
K∏

k=1

(1− λk

µk
)(

λk

µk
)nk , nk = 0, 1, 2, . . . .

The above holds if and only if ρk = λk
µk

< 1 for each node. Thus, as in the special case of

the 2 station tandem queue, at the instant of steady state, the queue lengths of all nodes are

independent and are distributed as if they were M/M/1 queues. Note that this is a different

type of "miracle" (and not a corollary to the previous one) because the decomposition proof of

Theorem 1.1 no longer holds and typically the flows between nodes are not Poisson processes

(they are Poisson when the network is acyclic).

The Jackson network was greatly extended to a multi-class setting with several types of

policies in Baskett et al. (1975). Today these networks are called BCMP after their authors. A

further generalization which appears to be nearly the state of the art was in Kelly (1975) and

Kelly (1976), and the book Kelly (1979). These types of networks are generally called Kelly type
networks. A Kelly network consists of a set of customer classes and a set of nodes. Nodes are

multi-class and may be of two forms, homogeneous or symmetric.

A homogeneous node essentially models stations in which the service policy is FCFS and

processing times are exponentially distributed with the same mean for all customer classes.

23



Variations of the FCFS are allowed but these do not include policies such as priority policies

based on class.

A symmetric node allows phase-type distributions (cf. Breuer and Baum (2005)) which es-

sentially approximate any distribution. Several types of policies and configurations are possi-

ble: M/G/1−PS (processor sharing) queue, M/G/1−LCFS (last come first served), M/G/∞
infinite servers (good for modeling a delay line in the network). In this case different cus-

tomer classes may have different means. Again, variations are allowed but these do not in-

clude FCFS service or priority based policies. Symmetric nodes satisfy a condition known as

quasi-reversibility which is characterized by the property that the input process into a node up

to time t0 is independent of the current state and the output process out of the node after time

t0. It can be shown that in this case the arrival and departure processes are Poisson.

The main result (miracle) of Kelly networks is that homogeneous and symmetric nodes may

be combined with arbitrary customer classes and job routes to obtain a multi-class network that

is modeled by a Markov process with a product form stationary distribution that is explicitly

known. See Bramson (2008, Chapter 2) and Walrand (1988, Chapter 3).

1.5 Network Decomposition Heuristics

If one attempts to upgrade the models of the previous section only slightly, explicit exact results

are usually unobtainable. For example, take the 2 station tandem queue that we analyzed in

the previous section and set the service distribution of the first server to some non-exponential

distribution. This will result in the first queue being an M/G/1 FCFS queue (solvable), but

the second queue now has an arrival process that makes it more complicated than the solvable

GI/M/1 queue6 because the inter-departure times of the first queue are typically no-longer

independent. Further, if one replaces the service time of the second server also by some ’G’

then the second server is typically more complicated than a GI/G/1 queue and it appears that

finding an explicit exact solution is hopeless.

Another type of enrichment to the previous models is to look at a multi-class queueing

network under policies other than the ones described in the previous section. In particular, one

common choice is a static buffer priority policy. Going in this direction, again one ventures into

the land of models that typically lack an explicit steady state solution. For example, the simple

re-entrant line in Figure 1.15 is currently unsolved under the LBFS or FBFS policies, even when

processing times are assumed to be exponential, cf. Kumar (1993). Similarly if one considers

finite capacity buffers with or without blocking then the analysis is typically intractable except

for some special cases7.

As a consequence of these hardships, one now has to resort to approximations. Actually,

most of modern queueing theory deals with approximations that are justified by some type

of limit theorem. For example, stochastic process limits as presented in Whitt (2002) or large

deviation principles as in Ganesh et al. (2004). In this respect one judiciously decides to use an

6’GI’ in Kendall’s notation stands for arrivals according to a renewal process.
7If all buffers are finite and processing times are phase type, the network may in principle be explicitly solved.

But then one quickly meets the ”curse of dimensionality”.
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approximation, knowing that it is exact in some asymptotic sense (some times the asymptotic

result is only conjectured), we outline such approximations in the next section. An alternative

viewpoint regarding approximations that is somewhat less scientific and often more engineer-

ing oriented is to use heuristic approximations that are not fully justified by theory, yet seem

to yield good results. We now briefly survey a major branch of such network approximations:

Network Decomposition and Traffic Process Approximations. This line of queueing network approx-

imations is usually associated with the phrase, QNA (Queueing Network Analyzer) which is a

method and software package that popularized them, (Whitt, 1983b,a).

The general idea behind network decomposition and traffic process approximations is to

decompose the network into subsets of nodes (often with a single node in each subset), charac-

terize or approximate the traffic processes between these decomposed subsets and approximate

the queue levels at each node assuming that it is fed by the approximating traffic processes. By

traffic processes we mean the flows of jobs into and out of nodes (also sometimes overflows

from the nodes in the case of finite queues). The approximation thus relies on 3 types of as-

sumptions:

1. An assumption that the network may be decomposed.

2. An assumption regarding the traffic processes that originate from the node.

3. An assumption regarding the performance of each individual node, given some input

traffic processes and service times.

An Example

We shall now illustrate one variant of this approximation approach on the 2 server tandem

queue. Assume that arrivals are according to a renewal process with inter-arrival times uni-

formly distributed on the range (0.5, 2.05). Let the processing times of the first server be i.i.d.

exponential with mean 1.0 and let the processing times of the second server be uniform on the

range (0.1, 1.9). Note that we have chosen the parameters such that the offered load on both

servers is ρ = 1/1.05 = 0.952.

As a first approximation to this example, we can "relax" the uniform distributions and as-

sume that the arrival process is Poisson and processing times of the second server are also

exponential. Under this assumption, Theorem 1.1 characterizes the steady state distribution of

the queue sizes as:

P (n1, n2) = 0.002268× 0.952n1+n2 , n1, n2 = 0, 1, 2, . . . .

The resulting mean number of jobs in each queue is easily computed to be 20 thus the to-

tal mean is LJackson = 40. Here we used an "exact analysis" that wrongfully assumed that

the "rather deterministic" arrival process was Poisson and that the processing time were ex-

ponential. A measure that shows how strong these assumptions are, is to look at the squared

coefficients of variation (SCV) which is the variance divided by the mean of the inter-arrival

and processing times. Specifically, we have

C2
a = 0.3023, C2

1 = 1.0 C2
2 = 0.27,
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where C2
a is the inter-arrival SCV and C2

k is the SCV of processing times at node k. As two of

these are quite far from the exponential random variable SCV which is 1, it is quite probable

that modeling this network as a Jackson network may yield results that are far from realistic.

We shall now employ the QNA method as described in Whitt (1983b) to this example. A

key phrase in the introduction of that paper is "A natural alternative to an exact analysis of an
approximate model is an approximate analysis of a more exact model". Our more exact model will take

all 3 SCVs into account. QNA assumes that the network may be decomposed in the sense that

each node may be analyzed separately once the traffic processes into it have been characterized.

For our simple network this assumption is actually valid. For more complex networks with re-

entrant traffic flows or conflicting routes, this may be a very strong assumption. Further, the

QNA assumes that all traffic processes in the network are renewal processes (see also Whitt

(1982)). In our simple example this is exact for the first node but an approximation for the

second. In more complicated networks one further needs to assume that when these renewal

processes are merged, the resulting process is again renewal (see also Albin (1984)). QNA

models the expected waiting time (in queue), W̄ , in each node as

W̄ =
x̄ρ

1− ρ

C2
in + C2

s

2
g(ρ,C2

in, C2
s ),

where x̄ is the mean service time, ρ is the offered load at the node as calculated by the set of

equations (1.4), C2
in is the SCV of the inter-arrival time, C2

s is the SCV of the service times and,

g(ρ,C2
in, C2

s ) =

{
exp[−2(1−ρ)

3ρ
(1−C2

in)2

C2
in+C2

s
], C2

in < 1

1, C2
in ≥ 1

This is an approximation of a GI/G/1 queue. Note that it is consistent with the (P-K) formula

when C2
in = 1 as presented in Section 1.2, for further details see Whitt (1982).

Applying this approximation to the first node, we obtain W̄1 = 12.86. Since the mean inter-

arrival time is 1.05, by Little’s law we obtain that the mean number of jobs waiting in Q1 is

12.25. We add to this, the mean number of jobs in service which is 0.952, to obtain a mean

number of jobs in node 1 of 13.2.

Now we continue and analyze the second node, for that we first need to approximate the

traffic process departing from node 1. This is a process with mean rate 0.952. We approximate

it as a renewal process having SCV of inter-arrival times C2
d using the following approximation:

C2
d = ρ2C2

s + (1− ρ2)C2
in,

where ρ is the traffic intensity on the first node. In our example we obtain C2
d = 0.935. We now

again employ the GI/G/1 approximation to the second node as we did for the first and obtain

mean number of jobs in the node (queue + service) of 12.38. As a result, our approximation for

the mean number of jobs in the system is LQNA = 25.6.

Compare the QNA result to LJackson: Taking the SCV’s into consideration almost halved

our assessment of the mean number of jobs in the system. Note also that when SCVs are set to

1, the QNA yields the exact results of a Jackson network.
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Since we are not able to perform an exact analysis of this network, we turn to simulation

(see Appendix A) to asses what is the exact value. We simulated this network for 106 time units

and obtained LSim = 22.3. It thus appears that the QNA approximations is quite good.

More on Network Decomposition Heuristics

We have only shown how to use the QNA approximation on a simple example that does not

involve, merging and splitting of traffic streams. In general the idea of QNA is to first solve

(exactly) the traffic equations (1.4) and then to solve a second set of linear equations for the

SCV’s of the traffic processes. Briefly: The idea is to approximate the SCV of a renewal process

that results from Bernoulli thinning with probability p as C2
out = pC2

in + (1− p) and to approx-

imate the SCV of a renewal process that is a superposition of renewal processes as a weighted

average of the SCVs of the input processes where the weights are given by the traffic rates.

In general, there is agreement that QNA seems to give good results for Jackson type net-

works but performs much more poorly on general MCQNs. This is especially obvious when

one considers the behaviour of simple MCQNs using priority policies. Some proposed refine-

ments to QNA that still make use of the renewal approximation are in Whitt (1994), Whitt

(1995), Caldentey (2001), and Araghi and Balcıoglu (2008). Further refinements to the network

decomposition approach that use a more complicated traffic process than a renewal process are

Bitran and Dasu (1993) and Balcıoglu et al. (2008).

Network decomposition of networks with finite queues is considered in Haverkort (1995),

Sadre et al. (1999), Heindl and Telek (2002) and Mitchell and van de Liefvoort (2003). Here

the traffic processes are known to be quite correlated and thus the approximations resort to

approximating them as processes that may capture some of the correlation structure of the

traffic processes. It is possible that some of the results of our thesis (BRAVO effect presented in

Chapter 6), may be relevant to this line of work. We have not explored this any further.

1.6 Diffusion Approximations

Diffusion approximations provide a more theoretically robust alternative to the heuristic ap-

proximations of the previous section. Such approximations were first applied in the queueing

context in the late 60’s and early 70’s by Kingman, Borvokov, Iglehart and Whitt and since then

have enjoyed great popularity. A diffusion process is a Markov process having continuous sam-

ple paths, the most typical of which is Brownian motion. Diffusion approximations of queueing

systems often assume some sequences of queueing systems, each with its own stochastic queue

length or workload process indexed by n = 1, 2, . . . and employ a weak convergence of these

processes to some limiting process which is shown to be diffusive. The limiting process is often

a mapping of Brownian motion. Thus a diffusion result is usually some sort of weak functional

limit theorem. Such results (in their modern form) first appeared in Iglehart and Whitt (1970)

for the context of single station queues. We now briefly outline this type of result.
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A Diffusion Limit for Single Server Queues

Consider a a sequence of standard GI/G/1 systems indexed by n = 1, 2, . . .. Inter-arrival times

in the n’th system are distributed as a random variable Un having mean 1/λn and SCV c2
a,n.

Service times in the n’th systems are distributed as a random variable Vn with mean 1/µn and

SCV c2
s,n. Define ρn = λn/µn. Now consider the case where ρn → 1 as n → ∞. Look at the

sequence of stochastic process {Qn(·), n ≥ 1}, where Qn(t) is the number of jobs in the system

at time t in the n’th process. A "heavy-traffic" diffusion is performed by letting n → ∞ and

looking at a limiting diffusive process of this sequence.

For n = 1, 2, . . . and 0 ≤ t ≤ T where T < ∞, let

Q̂n(t) =
Qn(nt)√

n
.

For each n we are thus defining a random process Q̂n(t) on the time interval [0, T ] based upon

sample paths of the process Qn(·) over the expanded time interval [0, nT ] and the normalizing

factor n1/2. For d ∈ (−∞,∞) and σ2 ∈ (0,∞) let {B(t), t ≥ 0} be a Brownian motion process

with drift parameter d and variance coefficient σ2. Now look at the reflected Brownian motion:

R(t) = B(t)− inf{B(s), 0 ≤ s ≤ t}.

And let RT (·) denote the restriction of R(·) to [0, T ]. The following result is due to Iglehart and

Whitt (1970)8:

Theorem 1.2. Suppose that as n →∞ we have (λn−µn)n1/2 → d, λn → λ, µn → µ, c2
a,n → c2

a

and c2
s,n → c2

s where each of the limiting values λ, µ, c2
a and c2

s is positive and finite. Further

assume that E [(Un)2+ε] and E [(Vn)2+ε] are uniformly bounded in n for some ε > 0. Then for

all initial values {Qn(0), n ≥ 1},

Q̂n(·) ⇒ RT (·) as n →∞,

where RT (·) is reflected Brownian motion on [0, T ] with drift coefficient d and variance parameter

σ2 = λc2
a + µc2

s.

Since the value of T is arbitrary we can interpret the result of the above theorem as saying

that as n → ∞, the process γnQn(t/γ2
n) converges weakly to R(·) where γn = (λn − µn)/d. In

particular, for each t, the distribution of γnQn(t/γ2
n) converges to the distribution of R(t). Now

one usually employs the following result:

lim
t→∞P (R(t) ≤ x) = 1− e−2|d|x/σ2

, x ≥ 0.

The above result is useful for approximating the behavior of a GI/G/1 queue in heavy

traffic. To utilize the approximation take a GI/G/1 system with parameters λ, µ, c2
a and c2

s.

Now determine the value of n by the difference between λ and µ. As a result, the steady state

queue size is approximately exponentially distributed with expectation:

1
(1− ρ)

ρc2
a + c2

s

2
.

8That paper actually considers more general multi-server systems.
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Much more can be said about diffusion approximations of single station queues (cf. Whitt

(2002)). We now move to briefly discuss networks.

A Diffusion Limit for the 2 Station Tandem Queue

By the late 70’s, it was apparent that queueing networks can be approximated by diffusion

processes under the heavy-traffic regime. The framework for this was laid down by a series

of papers by Harrison with the most notable one being Harrison (1978) which showed that

under a heavy traffic condition the 2 station tandem queue has a diffusion limit. A useful early

survey is Lemoine (1978). Other more contemporary sources for approximations of queueing

networks are Chen and Yao (2001) and Kushner (2001).

Harrison presented a diffusion approximation for the waiting time in the 2 station tandem

queue: Let the inter-arrival times have mean a and variance u2, and let the service times at

station i, i = 1, 2 have mean bi and variance v2
i . Let W i

j denote the waiting time at station i of

the j’th arriving customer. Also denote d = min{(a − b1), (a − b2)}. In order for the network

to be stable we need d > 0. We will look at the network in heavy-traffic, i.e. d is positive but

close to 0. The result of Harrison shows that under heavy traffic conditions, the vector dW is

distributed approximately as a certain two-dimensional random vector W ∗ which is defined

as a certain functional of three-dimensional Brownian motion. Further, the distribution of W ∗

depends only the first and second moments of the service and inter-arrival times.

The precise formulation is in terms of a limit theorem for a sequence of tandem systems

with d → 0. Assume that as n →∞ we have dn → 0, u2
n → σ2

0 , v2
i,n → σ2

i and (ai,n − bin)/dn →
ci for i = 1, 2 where σ0, σ1, σ2, c1 and c2 is positive and finite. Now under similar uniform

boundedness conditions to the theorem above, we have that as n → ∞, the random vector

W (n) converges in distribution to a random vector W ∗ whose distribution depends only on the

parameters σ0, σ1, σ2, c1 and c2. The limiting process, W ∗, is typically called reflected Brownian

motion in an orthant (cf. Harrison and Reiman (1981); Dai and Harrison (1992); Taylor and

Williams (1993)). It’s analysis has posed great challenges to applied probabilists. We shall not

discuss it any further.

The diffusion approximations which we present in this Thesis (Chapter 7) are of a much

simpler nature: We do not look at a sequence of systems with changing parameters but rather

simply scale time by n and space by n1/2. Also, our limiting processes turn out to be simple

Brownian motions as opposed to functionals of Brownian motion.

More General Networks

Following the 2 server tandem queue, the theory of diffusion approximations of queueing net-

works has evolved greatly in the past 30 years. A notable publication is Reiman (1984) which

establishes a diffusion approximation for a generalized Jackson (single-class) network. A fur-

ther pair of papers are Bramson (1998b) and Williams (1998) which lay a framework for dif-

fusion approximations of multi-class queueing networks. Many other works which are not

mentioned here are at the forefront of contemporary queueing network research today.
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Another similar trend in modern queueing theory is the study of queueing networks under

"many - server scaling" which has also grown to be known as the Halfin-Whitt regime (Halfin

and Whitt, 1981). This type of diffusion approximation has been especially fruitfull in queueing

applications related to call-centers (cf. Gans et al. (2003)) Our results are not of this nature.

1.7 Instability Surprises

Positive Harris recurrence is one of the notions of stability that is used in this thesis, especially

in Chapter 4. It implies that the associated Markov process of the network posses a stationary

distribution. Another notion of stability, rate stability implies that there is no linear build up of

queues over time, see Chapter 3. When we say a queueing network is stable we imply that an

associated Markov process is positive Harris recurrent. When we say a queueing network is

unstable (not stable) we imply that it is not rate stable.

As demonstrated in Section 1.1, queues appear to be stable when ρ < 1, rate stable when

ρ ≤ 1 and unstable when ρ > 1. Furthermore, the networks analyzed in Section 1.4 are all

known to posses a stationary distribution when ρ < 1 for each node and are thus stable. In fact,

it has only recently been proven that a generalized Jackson network is positive Harris recurrent

if and only if ρ < 1 for all nodes (Sigman, 1990; Meyn and Down, 1994; Baccelli and Foss, 1994).

For a long time it was believed that ρ < 1 implies stability of any queueing network under

any work conserving policy. This belief was shattered with the discovery of a simple clever

example of a queueing network that is not stable even when ρ < 1 for all nodes. This network

is called the Kumar-Seidman-Rybko-Stoylar Network, (Kumar and Seidman, 1990; Rybko and

Stolyar, 1992). The KSRS network has revolutionized queueing network theory because it il-

lustrated that there exist multi-class queueing networks with quite sensible work conserving

policies that are unstable, even when there are enough resources to handle all of the input. Fol-

lowing the discovery of KSRS there have been other examples of similar networks. An impor-

tant example is a network with a FCFS policy in Bramson (1994) that is unstable. This example

emphasized that in the multi-class setting, even the most naive policy can cause problems. A

survey of several additional examples is in Bramson (2008).

4

1

3

2

Figure 1.18: The KSRS Queueing Network.

The KSRS network is illustrated in Figure 1.18. The policy of interest is the natural policy

to use a last buffer first serve (LBFS) priority rule: the left server gives priority to step 4 and
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the right server gives priority to step 2. This policy is "natural" because it is a greedy policy

for reducing the queue sizes. The distinction between preemptive and non-preemptive policy

is not important. The surprise of KSRS is that in certain cases, this policy may lead to under-

utilization of the resources and in turn to instability.

Denote the processing rates (inverse of mean) of step k by µk , the input rate to buffer 1

by α1 and the input rate to buffer 3 by α3. In that case the offered loads for the servers are

α1/µ1 + α3/µ4 and α3/µ3 + α1/µ2. And a necessary condition for stability is that both offered

loads are less than 1.

Observe that whenever Q4(t) = 0, the stream · → 1 → 2 → · behaves like a 2 station tandem

queue until buffer 2 becomes empty. This is because the right server gives priority only to 2,

thus accumulating jobs in 3 at rate α3 and not passing any jobs to 4. While it is ensured that 2

will become empty in a finite time (because the offered load is less than 1), during this time it

is possible that an excessive amount of jobs will accumulate in 3. Similarly for the case where

Q2(t) = 0. It is thus apparent that buffers 2 and 4 will typically not operate at the same time:

the network essentially alternates between periods in which stream · → 1 → 2 → · is in

operation and periods in which stream · ← 4 ← 3 ← · is in operation. The coupling between

buffers 2 and 4 hints that another condition for stability is that the virtual server composed of

these buffers needs to have an offered load less than 1:

ρv =
α1

µ2
+

α3

µ4
< 1.

It turns out that the virtual server really imposes a necessary condition for stability. We demon-

strate with a numerical example:

α1 = α2 = 1, µ1 = µ3 = 3, , µ2 = µ4 =
20
11
≈ 1.82

In this case the offered loads of both servers are 0.883 (less than 1) but we have that ρv = 1.1.

Figure 1.19 plots a realization of this network with deterministic processing times 9. Indeed in

this case the network appears to be unstable, alternating between "busy periods" of a 2 station

tandem queue and during each period too much work accumulates in the opposite stream.

Similar realizations appear with stochastic processing times 10. We give some more details on

KSRS in Chapters 4 and 7 where we compare it to the push-pull network that we analyze.

The discovery of this type of unstable queueing network behavior motivated the search for

finding criteria for stability of a queueing network. A landmark paper, on which our thesis

relies heavily is Dai (1995). It outlines a framework for proving stability of a queueing network

based on a corresponding fluid model. A comprehensive summary of this framework is in

Bramson (2008). While Dai’s method is of great theoretical importance, there are still many

unanswered questions regarding stability of queueing networks: There is still not an efficient

method to systematically find the stability region of a queueing network with respect to an

arbitrary policy.

9To observe the effect with deterministic processing times, the initial conditions need to be asymmetric.
10An animated demonstration of KSRS is in The Queueing Science Exploratorium: http://www.stat.haifa.

ac.il/~yonin/qsm/main.html.
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Figure 1.19: Realization of the KSRS example with deterministic processing times. The blue
curve is Q1(t) + Q4(t). The red curve is Q2(t) + Q3(t).
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CHAPTER 2

INFINITE VIRTUAL QUEUES

Typically queueing models have exogenous arrival processes. Such are the product form and

multi-class queueing networks that were surveyed in the previous chapter. While this type

of modeling often makes sense, incorporating an input stream in the model may sometime be

unnecessary. For example, when modeling a manufacturing system that is geared to operate

at full capacity, it may be extremely superficial to assume that it is driven by some exogenous

stream of orders because often in the short or medium range the backlog of orders does not

drain. Another example is a communication system in which a transmitter has a constant

supply of messages generated on the spot in addition to serving messages in transit from other

transmitters. We call such "piles" of infinite supplies, infinite virtual queues (IVQs). Surprisingly,

queueing models with IVQs have not received much attention in the literature. In this short

chapter we survey the few literature results that deal with such networks.

In Section 2.1 we motivate the concept of infinite virtual queues. In Section 2.2 we survey

results regarding examples of such networks that are "Jackson-type". In Section 2.3 we survey

results from the literature regarding possibly the simplest non-trivial queueing network with

infinite virtual queues, the 3 buffer infinite supply re-entrant line. We continue in Section 2.4

where we briefly review the few known results regarding general re-entrant lines with infinite

virtual queues. In Section 2.5 we introduce the push-pull network and survey some previous

results about it. This network will be further analyzed in Chapters 4, 5 and 7.

2.1 Motivation

A schematic representation of an IVQ is in Figure 2.1(a). All that is symbolized in the figure is

the fact that the server always has a job to work on. Output from the IVQ will be at rate µ if

the server never idles. IVQs may be used to model exogenous arrivals into a network, as in the

single server queue model in Figure 2.1(b). This semantic representation of arrival processes

has been used by some authors, e.g. Dai and Lin (2005). When viewed as a controlled queueing

network, models with IVQs have a potentially richer control space than models with exogenous

arrivals because now the arrival processes may be controlled (e.g. turned on and off).
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Figure 2.1: (a) An infinite virtual queue. (b) An infinite virtual queue feeding a regular queue.

Things start to get especially interesting with IVQs when we use models in which a control

decision is to be made with regards to either serving an IVQ or serving jobs from some finite

queue. This can be observed by considering the control decisions that are available for the

(multi-class) network in Figure 2.2(a). Here we have two servers and jobs which are processed

first by server 1 at rate µ1, and next by server 2, at rate µ2. An infinite supply of raw jobs will

keep server 1 busy all the time, and produce a stochastic input at rate µ1 into the second server.

To fully utilize the second server we now assume that µ2 > µ1, and add another IVQ of jobs

which need processing only on server 2, at rate µ3.

The network will now produce two output streams of jobs, stream 1, of jobs that are pro-

cessed by both servers, and stream 2 which is processed only by server 2. This network will

fully utilize both servers with no idling, and produce output of stream 1 at rate µ1 and of

stream 2 at rate µ3(1− µ1

µ2
), if we use the following type of control: Whenever the queue of jobs

of stream 1 that wait for server 2 is exhausted, server 2 will switch to stream 2, and will continue

processing it for a duration which is a stopping time with finite expectation. The queue of jobs

of stream 1 between the two servers will in that case be positive recurrent. In fact server 2 will

behave like a server with vacations (see Levy and Yechiali (1975)). The corresponding queueing

network (See Figure 2.2(b)) with two random arrival streams of rates α1, α2 will, under a sim-

ilar vacation policy, produce outputs at rates min(α1, µ1, µ2) and min(α2, max(0, µ3(1 − µ1

µ2
))),

and be subject to idling and congestion.
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Μ3
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Server 1 Server 2 Server 1 Server 2

Α1
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Figure 2.2: Systems with infinite supply of work versus exogenous arrivals

A notable property of the network in 2.2(a) is that the suggested policy achieves full utiliza-

tion, no idling, and no congestion. We conjecture that the same can be done for a large class of

general multi-class queueing networks as well as for more general stochastic processing net-

works: If each resource has an infinite supply of work then, under appropriate conditions, there

exist policies which fully utilize all the resources and which keep all the standard queues pos-
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itive recurrent, and these policies can be implemented without knowing the exact processing

rates of the various activities.

To be specific, we envision the IVQs to be part of the network, and processing of items out

of these IVQs consumes some of the network’s resources. We assume here that each resource of

the network has, among the queues which it is processing, at least one IVQ. In that case none

of the resources ever needs to idle. In the operation of the network we assume that each of the

IVQs has a nominal processing rate at which it introduces items into the network, and each

of the output streams has an output rate at which items are produced. These determine the

rates at which each input activity, intermediate activity, and output activity is performed, and

the offered load of each resource. The network is rate stable if each of the standard queues (i.e.

not IVQs) in which items are stored in intermediate stages has equal input and output rates, so

that there is no linear accumulation of material in these queues. A network operates in balanced
heavy traffic if it is rate stable, and if all the resources are fully utilized. In other words, the input

and output rates are such that the offered load to all the resources is equal to ρ = 1.

When inputs to the network are exogenous and subject to stochastic variability, a rate sta-

ble network in balanced heavy traffic is always congested. As the offered load approaches 1

items accumulate at a rate of Θ(
√

t). In this case the network may behave as a semi-martingale

reflected Brownian motion on the diffusion scale.

In networks with infinite supply of work the situation is radically different: because inputs

are not exogenous but are produced by processing of IVQs within the network, we have much

more control to cope with stochastic fluctuations and with congestion. Hence we conjecture

that such networks can be operated under balanced heavy traffic, with full utilization of all the

resources, and yet show no congestion at all: Under appropriate conditions there exists a wide

range of policies that achieve 0 idling in the network, and keep all the queues which are not

IVQs positive recurrent.

2.2 A Jackson-Type Network with IVQs

The short paper Weiss (2005), introduced Jackson type networks with infinite virtual queues.

The model consists of I nodes where each node has a service rate µi and exogenous input rate

αi. The routing probabilities are Pij , i, j = 1, . . . , I, i 6= j. A subset of the nodes E contain lower

priority infinite virtual queues which means that whenever the queue at this node is empty an

item from the infinite supply is processed. The priority scheme is preemptive. Weiss assumes

that all processing times are independent exponential random variables so it is not necessary

to specify if the preemption is preemption-resume or preemption-restart. The traffic equations

of this network are:

λi = αi +
∑

j∈Ē 6=i

λjPji +
∑

j∈E 6=i

µjPji

These traffic equations are easily solved (in matrix form) and Weiss shows that a necessary and

sufficient condition for stability is λi ≤ µi. A key observation regarding this network is that

each of the nodes i ∈ E works non-stop on processing items for independent and identically

exponentially distributed times at rate µi. Thus departures from these nodes are independent
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Poisson streams. A result of this "Poisson departure" property is that the subnetwork of nodes

i ∈ Ē behaves like a regular Jackson network with Poisson inputs and thus has a steady state

distribution as described in Section 1.4. It is further shown that arrivals to each of the nodes

i ∈ E are Poisson and each of these nodes has a marginal distribution like an M/M/1 queue.

An interesting point is shown in a companion paper, Adan and Weiss (2005), where by ana-

lyzing an example, Adan and Weiss show that while the nodes in E have marginal geometric

distributions, the joint distribution is not product form.

Μ1

¥

¥

Μ2p1

1-p1

p2

1-p2

Figure 2.3: The Jackson-type network with IVQs Analyzed in Adan and Weiss (2005).

The example analyzed in Adan and Weiss (2005) is in Figure 2.3. Their main result is that

when ρ1, ρ2 < 1, the stationary distribution for (n1, n2) 6= (0, 0) is given by an infinite sum of

product forms:

P (n1, n2) =
∞∑

k=1

(−1)k+1[(1− αk)αn1
k (1− βk+1)βn2

k+1 + (1− αk+1)αn1
k+1(1− βk)βn2

k ]

where for k ≥ 1:

α−1
k+1 =

µ1 + µ2

µ2p2
β−1

k − α−1
k−1 −

1− p2

p2
, β−1

k+1 =
µ1 + µ2

µ1p1
α−1

k − β−1
k−1 −

1− p1

p2

and we initialize the sequence with α0 = β0 = 1 and α1 = ρ1, β1 = ρ2. Further expressions

are given for P (0, 0), for the distribution of the sum of the queues, the joint factorial moments

and for the queue length correlation. Their derivation of the steady state probabilities is per-

formed by analyzing the detailed balance equations and using the method of compensations

introduced in Adan et al. (1993).

2.3 The 3 Buffer Infinite Supply Re-Entrant Line

The 3 buffer infinite supply re-entrant line is pictured in Figure 2.4. It has been analyzed in the

literature quite extensively with respect to the last buffer first serve (LBFS) priority policy. This

policy is as follows: The first server gives priority to activity 3 whenever Q3(t) > 0, other-

wise it works on activity 1 (the IVQ). The second server serves jobs sequentially or idles when

Q2(t) = 0.

Under LBFS, server 1 operates continuously, the situation of server 2 is different and we

need to distinguish between 3 cases:
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Figure 2.4: The 3 buffer re-entrant line with infinite supply

Server 1 bottleneck (m1 + m3 > m2): The traffic intensity on server 2 is m2
m1+m3

< 1.

Server 2 bottleneck (m1 + m3 < m2): The arrival rate of jobs to server 2 is ≥ 1
m1+m3

> 1
m2

.

Hence the traffic intensity on server 2 is > 1.

Servers balanced (m1 + m3 = m2): The traffic intensity on server 2 equals 1.

The stability (in the sense of positive Harris recurrence) of this model for the server 1 bot-

tleneck case was first handled in Weiss (2004) for i.i.d. exponential processing times and later

in Guo and Zhang (2006) where the fluid stability framework of Dai (1995) was employed for

general processing times1. The instability of the server 2 bottleneck case is shown in Guo (2008)

as an example of an application of a criterion for instability of a re-entrant line with an infinite

virtual queue.

Further, Guo and Zhang (2006) shows that for exponential processing times, a necessary

condition for stability is m1 + m3 > m2. Guo (2008) shows that the system is not stable if

m1 + m3 < m2 for general processing times.

Adan and Weiss (2006) were able to take the stability results further and obtained the joint

steady state distribution of queue 2 and queue 3 (under the exponential processing times as-

sumption). Their expression for the steady state distribution of (n2, n3) is:

P (n2, n3) =

{
m1

m1+m3
(1− α2)αn2

2 αn3
3 , n2 > 0, n3 ≥ 0 or (n2, n3) = (0, 0)

m1
m1+m3

(1− α2)αn3−1
3 , n2 = 0, n3 > 0

where,

α2 =
µ1

µ2

−µ1 − µ2 + µ3 −
√

(µ1 + µ2 + µ3)2 − 4µ1µ3

2µ3
,

α3 =
µ1 + µ2 + µ3 −

√
(µ1 + µ2 + µ3)2 − 4µ1µ3

2µ3
.

An interesting fact that stems from this steady state distribution is that the marginal distribu-

tions are equal to stationary distributions of corresponding G/M/1 queues with the appro-

priate traffic intensities. This is currently unexplained. Adan and Weiss (2006) continue their

analysis with some sample path properties, monotonicity results and also obtain stationary

distributions for the more involved non-preemptive case (which is slightly more involved).
1Guo and Zhang (2006) also show stability for the case of exponential processing times using Foster Lyapounov

and random walk techniques similar to Weiss (2004).
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2.4 The General Infinite Supply Re-Entrant Line

The model of the previous section is a simple example of a re-entrant line with K consecutive

steps on I servers where the first step is an IVQ. As in a MCQN, we denote the server of step

k by σ(k) and Ci = {k : σ(k) = i}. One sensible family of policies to use for such a network

is a preemptive priority policy that only serves jobs from the IVQ at time t, if Qk(t) = 0 for all

k ∈ C1. A quite general analysis of this policy is in Guo and Zhang (2007) and Guo (2008) 2. In

the first paper, the authors adapt the fluid stability framework of Dai (Dai, 1995) for this model.

They then show that the fluid models for several policies are stable and thus they show that

under some technical conditions the network represented as a continuous time general state

space Markov process is positive Harris recurrent. The second paper (Guo, 2008) shows that

under the sensible condition of ρi > 1 for some server i, the network is unstable. This paper

adapts the results of Dai (1996). For this network, ρi is defined as follows:

ρi =

∑
k∈Ci

mk∑
k∈C1

mk
.

This is sensible because every job that enters the system should perform all steps on processing

station 1 and requires
∑

k∈C(1) mk time units from it. Station 1 operates continuously at full

capacity and thus the number of jobs it processes in the system per time unit is λ := 1∑
k∈C(1) mk

.

For other stations j 6= 1, the number of jobs that are processed when the station is fully utilized

is µj := 1∑
k∈C(j) mk

per time unit. Thus for the system to be weakly stable we should intuitively

expect that ρj = λ
µj
≤ 1. An additional paper, Guo and Yang (2007), illustrates the Positive

Harris recurrence results for a 5 buffer example.

In Chapter 7 of this Thesis, we present a diffusion limit for the output process of this re-

entrant line.

The case of ”sub-bottlenecks”

Our Master’s Thesis, (Nazarathy, 2001, Chapter 5) also discusses the general infinite supply

re-entrant line. In that work we discuss the operation under the LBFS policy without requiring

the condition ρi < 1. In that case we give a deterministic iterative algorithm that partitions the

buffer indexes into L groups as follows:

{1, . . . , K} = {a(L), . . . ,K(L)} ∪ . . . ∪ {a(1), . . . , K(1)}

Here all of the buffers in the group {a(`), . . . ,K(`)} are upstream buffers to the bottleneck server
of the group: K`. We conjecture that under LBFS, these upstream buffers are positive recurrent

while the bottleneck server of each group grows without bound.

2.5 The Push-Pull Network

The push-pull network is pictured in Figure 2.5, it consists of two servers, numbered 1, 2 and two

types of jobs numbered 1, 2 each of which is processed by both servers. Type 1 is processed by
2Actually those papers only claim to handle static buffer priority policies (SBP) of this type but it appears

that their analysis is not restricted to SBP.
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server 1 and then by server 2, while type 2 is first processed by server 2 and then by server 1.

We call the first step of each type a push activity and the second step a pull activity. We denote

the finite queues of the pull activities, Qi(·), i = 1, 2. The mean duration of the push activities

are λ−1
i , i = 1, 2 and the mean durations of the pull activities are µ−1

i , i = 1, 2. There is no

arrival stream, arrivals are generated by the push activities from the IVQs.

Μ2

¥ Λ1

¥

Λ2

Μ1

Server 1 Server 2

Type 1

Type 2

Figure 2.5: The push-pull queueing network.

This network is quite similar to the KSRS network, shown in Figure 1.18, a comparison

of the two is in Chapter 4 and further detailed comparisons along with some simulations are

in our publication, Kopzon et al. (2008), which is not fully included in this thesis. As stated

in Section 2.1 a novelty of queueing networks with IVQs is that servers that have an IVQ are

never forced to idle due to emptiness. The push-pull network is special in this respect because

in certain cases there are simple policies that may control it under full utilization while still

maintaining finite stochastically bounded queues. This was first shown in Kopzon and Weiss

(2002), is further explored in Kopzon et al. (2008) and expanded to the case of general processing

times in Nazarathy and Weiss (2008c) as covered in this thesis in Chapter 4. We shall now

review the results of Kopzon and Weiss (2002) and Kopzon et al. (2008).

Consider some policy in which both servers are working all the time, and assume that this

policy is rate stable i.e. input rates equal output rates at all the queues. Denote by θi, i = 1, 2 the

long run average fraction of time that server i is working on jobs of type i, in a push operation.

Since servers are working all the time, 1 − θi, i = 1, 2 is the long run average fraction of time

that server i is working on jobs of type 3 − i, in a pull operation. If the network is to be rate

stable then we have the following equations for the production rates νi of jobs of types i = 1, 2:

ν1 = θ1λ1 = (1− θ2)µ1,

ν2 = θ2λ2 = (1− θ1)µ2,

which are solved by

θi =
µi(µı̄−λı̄)
µ1µ2−λ1λ2

,

νi =
µiλi(µı̄−λı̄)
µ1µ2−λ1λ2

,

i = 1, 2, ı̄ = 3− i. (2.1)

One needs to distinguish between several cases:
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Inherently stable network: When λi < µi, i = 1, 2, service of each type of jobs alone, by its

second server, is a stable single server queue.

Inherently unstable network: When λi > µi, i = 1, 2, service of each type of jobs alone, by

both servers results in an unstable single server queue.

Unbalanced network: When λ1 > µ1 and λ2 < µ2, then server 2 has more work to do than

server 1, for both types of jobs, and the network cannot be stable unless server 1 idles

some of the time. Similarly for λ1 < µ1 and λ2 > µ2. We do not consider this case any

further.

Completely balanced network When λi = µi, i = 1, 2 it is possible to find policies which

work with full utilization of both servers, and which are rate stable, i.e. they satisfy

ν1 = ν2 and ν3 = ν4, however these rates are not uniquely determined. We can choose

0 ≤ θ ≤ 1, and specify θ1 = θ2 = 1 − θ3 = 1 − θ4 = θ, and use νi = µiθi as nominal rate.

As shown in Nazarathy and Weiss (2008b), we can use an adaptation of the maximum

pressure policy of Dai and Lin (2005) to serve jobs of types 1 and 2 at these rates, under

full utilization. However, the system will become congested, with expected O(
√

T ) jobs

in the system at time T . We conjecture that this cannot be improved.

50 100 150 200 250 300

5

10

Figure 2.6: Queue sizes realization of ”pull-priority” in the preemptive case: alternating single
server busy periods. λ1 = λ2 = 0.8, µ1 = µ2 = 1. Q1(t) – Red. Q2(t) – Blue.

The results that we survey in this section assume that all processing times are i.i.d. expo-

nential random variables3.

Control Policies for the Inherently Stable Case

A quite sensible control for the inherently stable case is to give priority to pull over push (i.e.

operate using LBFS). This method yields realizations that look like "geometrically alternating

busy periods of single server queues", see Figure 2.6. If preemption is allowed then the busy

periods always start with an empty system. If preemptions are not allowed then busy periods

start with a random amount of customers in the queue as in classical vacation models (Wolff,

1989, Chapter 10). The steady state distribution for the simpler preemptive case is used as a

motivating opening theorem in Kopzon et al. (2008). The more involved non-premptive case is

in the earlier paper Kopzon and Weiss (2002). We now summarize.

3Actually, Kopzon and Weiss (2002) also analyzed the more general M/G/. case for the inherently stable
network under pull priority without preemption. Similar (even simpler) analysis may also be applied to the
preemptive case and has not been done yet.
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Denote by (n1, n2, I1, I2) the state of the network as follows: ni are the number of jobs in the

pull queue of type i. Ii is 1 when there is a non-premptable job in service of the push activity i,

it is 0 otherwise. Then the for the non-preemptive case the set of recurrent states is:

(+, 0, 0, 0) ∪ (+, 0, 0, 1) ∪ (0, +, 0, 0) ∪ (0, +, 1, 0),

where we use + to indicate that a coordinate is strictly positive. All these states communicate.

For the preemptive case the set of recurrent states is

(0, 0, 0, 0) ∪ (+, 0, 0, 0) ∪ (0,+, 0, 0),

again all states communicate. The stationary distributions on the above states spaces are

P (n1, 0, 0, I2) =

{
λ1(µ1−λ1)(µ2−λ2)

(µ1µ2−λ1λ2)(λ1+λ2−µ2) × ((λ2
µ2

)n1 − ( λ2
λ1+λ2

)n1) I2 = 0
(µ1−λ1)(µ2−λ2)

(µ1µ2−λ1λ2)
λ1

λ1+λ2
( λ2

λ1+λ2
)n1 I2 = 1

for the preemptive case with a symmetric expression for P (0, n2, I1, 0). And,

P (n1, 0, 0, 0) =
(µ1 − λ1)(µ2 − λ2)

µ1µ2 − λ1λ2

(
λ1

µ1

)n1

for the non-preemptive case with a symmetric expression for P (0, n2, 0, 0).

Control Policies for the Inherently Unstable Case

Control of the inherently unstable case is not as simple, in this case pull priority policies yields

transient behavior. Nevertheless, a class of fully utilizing, stable policies is proposed and an-

alyzed in Kopzon et al. (2008), the analysis is largely due to the Ph.D thesis of Kopzon (2006).

Only the preemptive case is considered. The class of policies is called "Generalized Threshold

Policies", they are essentially threshold policies where each server observes the queue of the

other server and maintains the jobs in that queue above a certain threshold. Stability of the

preemptive case is considered under exponential processing times using Lyapounov functions.

Further results include steady state analysis of two special cases which we detail below: Fixed
threshold policies and the queue balancing policy.

500 1000 1500 2000

10

20

30

40

50

Figure 2.7: Queue sizes realization of the fixed threshold policy. λ1 = λ2 = 1.25, µ1 = µ2 = 1.
s1 = s2 = 3, Q1(t) – Red. Q2(t) – Blue.

Fixed threshold policies: This policy is based on two fixed positive integer thresholds, s1

and s2 that are interpreted as follows: Server 1 only pulls (from Q2) when Q1 has at least s1 jobs

41



and Q2 is not empty. Similarly, server 2 only pulls (from Q1) when Q2 has at least s2 jobs. The

resulting CTMC has one recurrent communicating class:

{(n1, n2) : n1 ≥ s1, 0 ≤ n2 ≤ s2} ∪ {(n1, n2) : n2 ≥ s2, 0 ≤ n1 ≤ s1}.

An example realization is in Figure 2.7. As explained in Kopzon et al. (2008), minimal values of

the thresholds need to satisfy:

λ2

µ2
(
λ1

µ1
)s1 < 1,

λ1

µ1
(
λ2

µ2
)s2 < 1.

An intuitive explanation of this is in Kopzon et al. (2008). Under these conditions, the stationary

distribution, P (n1, n2) is:

P (n1, n2) =





P (s1, s2)

(
λ2
µ2

)n2
+

λ1
λ2−µ2

((
λ2
µ2

)n2−1
)

(
λ2
µ2

)s2
+

λ1
λ2−µ2

((
λ2
µ2

)s2−1
) , n1 = s1, 0 ≤ n2 ≤ s2

P (s1, s2)

[
λ1
µ1

+
λ1

λ2−µ2

((
λ2
µ2

)s2−1
)]n1−s1−1

[(
λ2
µ2

)s2
+

λ1
λ2−µ2

((
λ2
µ2

)s2−1
)]n1−s1+1×

{
λ1

λ2−µ2

((
λ2
µ2

)s2 − λ1
µ1

)
+ λ1

µ1

λ1+λ2−µ1−µ2

λ2−µ2

(
λ2
µ2

)n2
}

, n1 > s1, 0 ≤ n2 ≤ s2,

with analogous expressions for n2 ≥ s2, 0 ≤ n1 ≤ s1. The expression for P (s1, s2) is:

P (s1, s2) =


 λ1 + µ1

2(λ1 − µ1)
+

λ2
µ2

λ1
λ1−µ1

− µ1

λ1−µ1(
λ1
µ1

)s1 − λ2
µ2

+
λ2 + µ2

2(λ2 − µ2)
+

λ1
µ1

λ2
λ2−µ2

− µ2

λ2−µ2(
λ2
µ2

)s2 − λ1
µ1



−1

. (2.2)

Queue balancing policy: The fixed threshold policy described above alternates between

periods in which s1 ≤ Q1(t) and s2 ≤ Q2(t), always passing through the "shifted origin",

(s1, s2), in the process. As a consequence, it appears that the difference between Q1 and Q2 is

often large. This is hinted in Figure 2.7 but has not been explicitly analyzed. An alternative is

the queue balancing policy. With this policy the control attempts to balance the size of the queues.

A realization of it is in Figure 2.8.
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Figure 2.8: Queue sizes realization of the ”Queue balancing policy”. λ = 1.25, µ = 1. Q1(t) –
Red. Q2(t) – Blue.

The policy is defined as follows: If |Q2(t) − Q1(t)| ≥ 2, the system (both servers 1 and 2)

operate on the type with the shortest queue. Otherwise, both servers push. More specifically, if

Q2(t) > Q1(t) + 1 then server 1 pushes and server 2 pulls. Similarly for type 2. The stationary
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policy was only found for the symetric case in which λ = λ1 = λ2 and µ = µ1 = µ2. The

stationary distribution over Z2
+ is given below:

P (n1, n2) =





P (0, 0)
∏n1−1

i=0

λ
µ

+ λ
λ−µ

((
λ
µ

)i−1

)

(
λ
µ

)i
+ λ

λ−µ

((
λ
µ

)i−1

) , n1 > 0, n2 = 0

P (n1, 0)
λ

λ−µ

(
λ
µ

)n1−1
+2

(
λ
µ

)n2+1−λ
µ

λ
λ−µ

λ
µ

+ λ
λ−µ

((
λ
µ

)n1−1−1

) , n1 > n2 > 0

P (n1, 0)λ
µ , n1 = n2 > 0,

where P (0, 0) normalizes the sum to 1.
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Part II

Control

44



CHAPTER 3

FINITE HORIZON CONTROL

In this chapter we handle the problem of control of a multi-class queueing network over a finite

time horizon. The control method employs the concepts of infinite virtual queues to achieve

near optimal tracking of an optimal fluid solution. The contents of this chapter was published

in Nazarathy and Weiss (2008b).

3.1 Introduction

Queueing networks are commonly used to model service, manufacturing and communication

systems. In many situations one is interested in control of the network over a finite time horizon

that attempts to minimize costs and maximize utility. In this respect, a sensible objective is to

minimize the holding costs of the queues accumulated over the time horizon.

One theoretical approach to such finite horizon problems is to consider them as determinis-

tic, discrete scheduling problems, cf. Lawler et al. (1993), Goemans and Williamson (1996) and

Fleischer and Sethuraman (2003). In practice however these scheduling problems are too large

to be tractable, and furthermore, an optimal schedule may not withstand the trial of applica-

tion: As it is implemented over time, inaccuracies in the data and unexpected events (many

small ones and a few large ones) accumulate and interfere with the solution, and there is no

theory to say how close or far from optimum the result may be. Another theoretical approach

is to model these problems by discrete stochastic systems and solve them as Markov decision

problems, or approximate them on a diffusion scale by a continuous stochastic Brownian con-

trol problem, cf. Harrison (1988), Wein (1992), Kelly and Laws (1993), Harrison (1996), Harrison

and Van Mieghem (1997), Maglaras (1999) and Kushner (2001). Markov decision problems or

Brownian control problems usually focus on the optimization of the steady state of the sys-

tem. They may therefore not be suitable for finite horizon problems, where typically the initial

queue lengths and the total number of items processed are of the same order of magnitude,

and one does not expect the system to reach steady state.

The problem which we address here has features of both approaches: In the finite time hori-

zon we only schedule a finite batch of jobs, but we model these jobs in a multi-class queueing



network. As suggested in Weiss (1999), the method we use is to solve a deterministic fluid op-

timization problem which approximates the system, and then use decentralized local on-line

controls to track the fluid solution. To carry this out we integrate three recent ideas which have

been developed independently: (1) Solution of separated continuous linear programs (SCLP)

by means of an exact simplex type algorithm, see Weiss (2008). (2) Modeling of queueing sys-

tems with unlimited supply of work by means of infinite virtual queues, as surveyed in our

Chapter 2. (3) Maximum Pressure policies for stochastic processing networks as described in

Dai and Lin (2005), see also Dai and Lin (2006), and Ata and Lin (2008).

As a first step, we discard the detailed information on jobs, and aggregate them into classes

which are characterized by average processing times, and by their routes through the system.

This yields a multi-class queueing network, which we wish to control optimally (Section 3.2).

Next, our method approximates the multi-class queueing network by a deterministic continu-

ous multi-class fluid network for which we formulate a finite horizon optimal control problem

which is solved as a SCLP. The optimal fluid solution partitions the finite time horizon into

time intervals distinguished by sets of empty and non-empty fluid buffers, and by constant

fluid flow rates (Section 3.3). We now associate with each time interval a multi-class queueing

network where each empty fluid buffer corresponds to a standard queue and each non-empty

fluid buffer corresponds to an infinite virtual queue. The state of this associated system mea-

sures the deviation of the original system from the fluid solution (Section 3.4).

We then implement an on-line control of the queueing network by the use of a maximum

pressure policy, where the pressure is calculated from the state of the associated network. This

keeps the deviations from the fluid solution rate stable, and so the queueing network tracks

the optimal fluid solution (Section 3.5). We call this procedure the Maximum Pressure Fluid

Tracking Policy (MaxFTP).

The solution of the fluid control problem is centralized, and performed at the outset. The

maximum pressure tracking is decentralized, and performed on-line using at each queue its

own queue length and the queue lengths of queues directly downstream from it. This scheme is

asymptotically optimal in the following sense: If we scale up the number of jobs in the system,

and speed up the processing by the same amount, then the discrete stochastic system will

converge to the optimal fluid solution, and no other policy can achieve asymptotically better

results (Section 3.6).

Our purpose in this chapter is to introduce this method, and to sketch the proofs. In fact

there is not much to prove, as most of the results we need were derived in Weiss (1999) and

Dai and Lin (2005), and we need merely to adapt them to our framework, in Section 3.3, in

Theorem 3.1 and Corollary 3.1. The main new result is the asymptotic optimality of MaxFTP

which is proven in Theorem 3.2.

To illustrate MaxFTP, we describe its implementation for a simple re-entrant line with 2

servers and 3 classes. We also demonstrate the effectiveness of our results by means of simula-

tions in which the asymptotic attributes of MaxFTP are empirically tested (Section 3.7).

Related fluid approaches for controlling multi-class queueing networks have been used in

Avram et al. (1995); Maglaras (1999, 2000); Chen and Meyn (1999); Meyn (2001, 2003); Chen
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et al. (2003) and others. MaxFTP is distinguished in that it is geared to control the transient

finite horizon system, and for that purpose we use an optimal fluid solution.

In the context of wireless communication systems the proposed framework may be ap-

plied to mobile ad-hoc wireless networks (MANETs) that are both highly dynamic and heavily

congested: When the network is highly dynamic, link conditions vary quickly and as a result

link capacities, network topology and routes constantly change. When the network is heavily

congested, the sojourn time of messages is high. Combining both highly variable dynamics

and heavy congestion has the consequence that messages may experience changes in link ca-

pacities, network topology and routes while in transit. If a predictive, location based, routing

scheme is employed, such as that presented by Shah and Nahrstedt in Shah and Nahrstedt

(2002), predictions regarding the relative stability of link conditions may be made and the du-

ration of the finite time horizons determined. In this case, our finite horizon approach may be

used repeatedly for the short durations in which link conditions are relatively stable.

3.2 Finite Horizon Multi-Class Queueing Networks

We now define a MCQN similarly to the definition of Section 1.3. A MCQN consists of k ∈
K = {1, . . . ,K} job-classes and i ∈ I = {1, . . . , I} servers. Jobs of class k queue up in buffer

k, and we let the queue length Qk(t) be the number of jobs of class k in the system at time t.

We let Qk(0), k ∈ K be the initial queue lengths. Buffer k is served by server σ(k), and the

constituency of server i is Ci = {k | σ(k) = i}. In general a server may serve several classes,

i.e. |Ci| > 1, hence the term multi-class. The topology of the network is described by the I ×K

constituency matrix A with elements Aik = 1 if k ∈ Ci, Aik = 0 otherwise.

We are only interested in the MCQN over a finite time horizon [0, T ]. We may assume that

all the jobs which will be processed during that time are already in the system at time 0. This

assumption is without loss of generality: The general multi-class model has an arrival stream

E(t) which is often thought of as being supplied by buffer 0 that represents the outside world

and contains an infinite supply of jobs. Since we are only interested in a finite time horizon, the

supply of jobs can be taken as finite, so that the outside world can be replaced by an additional

buffer in the network with a finite initial supply of all the jobs that will be served, and with a

dedicated server that will release them into the rest of the system as the arrival process.

For ` = 1, 2, . . ., the `’s job out of buffer k requires processing amount Xk(`), after which the

job may either leave the system or move to another buffer. Sk(t) = max{n | ∑n
`=1 Xk(`) ≤ t}

counts the number of jobs completed at buffer k by processing for a total time t. φkk′(`) is

the indicator of the event that the `’s job out of buffer k moved into buffer k′ ∈ K \ k. Let

Φkk′(n) =
∑n

`=1 φkk′(`), this is a count of the number of jobs routed from buffer k to k′ out of

the first n jobs served at buffer k.

The MCQN is controlled by allocating processing times to the buffers. Let Tk(t) be the total

time allocated to buffer k by server σ(k), during [0, t]. Then the dynamics of the queues are

described by:
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Qk(t) = Qk(0)− Sk(Tk(t)) +
∑

k′∈K\k
Φk′k(Sk′(Tk′(t))). (3.1)

The allocated times have to satisfy:

Tk(0) = 0, Tk(t) non decreasing,
∑

k∈Ci

Tk(t)− Tk(s) ≤ t− s for all s < t and each i ∈ I.

In particular each Tk(t) is Lipschitz continuous with constant 1, and its derivative Ṫk(t) exists

for almost all t, and satisfies:

AṪ (t) ≤ 1, Ṫ (t) ≥ 0, 0 < t < T, (3.2)

where 1 denotes a vector of 1’s.

Additional constraints have to be satisfied by Tk(t), Qk(t), k ∈ K. First and foremost,

Qk(t) ≥ 0 and no processing can occur when Qk(t) = 0. We will also assume throughout

this chapter that servers cannot be split so each server can work on only one job at a time. In

addition we assume, that jobs are not preempted. Hence for almost all t, Ṫk = 0 or Ṫk(t) =

1, and Ṫk(t) can only change from 1 to 0 when Sk(Tk(t)) has a jump of 1, that is when the

processing of a job is completed.

The cost associated with the MCQN over the finite time horizon is

V =
∫ T

0

K∑

k=1

wkQk(t)dt (3.3)

which is the total inventory cost over the time horizon with holding costs rates wk. If wk = 1

for all k then V is the total work in process during the time horizon, also equal to the sum of

sojourn times over [0, T ) of all jobs, where we assume that the sojourn time of a job that does

not leave the system by time T is T . Minimization of V is also equivalent to maximization of

the sum of the times from the completion of each job until T .

Minimization of V when Xk(`), φkk′(`) are known is an NP hard scheduling problem (job

shop scheduling). The probabilistic version for infinite time horizon, with long term average

cost minimization, is a Markov decision problem, which can sometimes be approximated by

a Brownian control problem. Exact solution of the finite horizon problem under probabilistic

assumptions is intractable. We will therefore attempt to solve the problem approximately.

To do so, we first of all discard all the detailed information of Xk(`), φkk′(`), and retain

only averages. Remarkably, our asymptotic results show that for large systems this loss of

information does not degrade the performance: The value achieved by our method converges

to the value of the optimal solution with full information (Theorem 3.2).

We assume the following about the sequences of processing times and routing of the jobs:

lim
t→∞

Sk(t)
t

= µk (3.4)

lim
n→∞

Φkk′(n)
n

= Pkk′ (3.5)

lim
n→∞

1
n

n∑

`=1

Xk(`)1+ε ≤ C (3.6)

48



where the last requirement has to hold for some ε > 0 and some C < ∞. µk is the long term

average processing rate, and Pkk′ the long term routing proportion (P is the K ×K matrix of

these values).

It is customary in papers on MCQN to cast (3.4–3.6) in a probabilistic framework. One

assumes a stochastic process on probability space Ω and requires (3.4–3.6) to hold for almost

every ω ∈ Ω. Examination of the proofs in Dai and Lin (2005) shows that for our purposes this

is not necessary: our results hold for every sequence of Xk(`), φkk′(`) which satisfies (3.4–3.6).

We define the input output matrix of the network by:

R = (I−P′)diag(µ) (3.7)

where I is the identity matrix and diag(µ) is a matrix with the rates µk in the diagonal. Here

Rk′k is the long term average rate at which buffer k′ is depleted as a result of processing buffer

k:

Rk′k =
{

µk k′ = k
−µkPkk′ k′ 6= k

Our approximate solution is in two stages: We first use Q(0), w,R,A to formulate and solve

a fluid optimization problem. This is done off line, centrally. We then use the fluid solution and

the current queue lengths for decentralized tracking of the fluid solution.

The fluid approximation is suitable only when we process a large number of jobs over the

time horizon. Our results are therefore asymptotic when the initial workload and processing

speed are scaled up. We let the queueing network with Q(0) and µ be our basic unit system

and define a sequence of queueing networks. All the networks share the same sequence of

processing times and routing indicators. For N = 1, 2, . . ., the N scaled network is represented

by QN
k (t), TN

k (t), in which we have QN
k (0) = NQk(0), and the processing times are Xk(`)/N .

Thus the initial work load is N times larger than the basic network, and the processing is

speeded up N fold. In particular, µN
k = Nµk, and RN = NR.

Example Model

1

3

2

Server 1 Server 2

Figure 3.1: Example network.

The example model that we use throughout this chapter is the K = 3, I = 2 re-entrant

line with C1 = {1, 3}, C2 = {2}. An illustration of the network is in Figure 3.1. Routing is
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deterministic: jobs move from class 1 to class 2 and then to class 3, so that φ12(`) = φ23(`) =

1, ` = 1, 2, . . ., and all other routing indicators are 0. The processing time sequences are drawn

from independent exponential random variables. The processing rates are µ1 = 1, µ2 = 1
4 and

µ3 = 1. The resulting input-output matrix is:

R =




1 0 0
−1 1

4 0
0 −1

4 1




We assume initial queue amounts: Q1(0) = 8, Q2(0) = 1, Q3(0) = 15, a time horizon of T = 40

and holding costs w1 = w2 = w3 = 1.

3.3 Optimization of the Multi-Class Fluid Network

Fluid approximations have been a major tool in the research on multi-class queueing networks,

they have been used to verify the stability of networks, to evaluate performance in steady state,

and to control multi-class queueing networks so as to improve their steady state performance.

For some relevant recent work see Chen and Yao (1993), Connors et al. (1994), Avram et al.
(1995), Dai (1995), Chen and Meyn (1999) ,Meyn (2001), Meyn (2003) and Chen et al. (2003).

Corresponding to the MCQN, we formulate a multi-class fluid network (MCFN) optimiza-

tion problem: find bounded measurable functions uk(t) and absolutely continuous functions

qk(t) such that

minVf =
∫ T

0
w′q(t)dt (3.8)

s.t.

q(t) = q(0)−
∫ t

0
Ru(s)ds (3.9)

Au(t) ≤ 1 (3.10)

q(t), u(t) ≥ 0 (3.11)

t ∈ [0, T ]

Here the dynamics of q(t) are given by

qk(t) = qk(0)− µkTk(t) +
∑

k′∈K\k
Pk′kµk′Tk′(t) ≥ 0

which is the fluid analog of the MCQN dynamics (3.1). The processing of fluid out of buffer

k is at a deterministic continuous rate µk, and the fluid out of k is routed in exact proportions

Pkk′ to the other buffers k′ 6= k. Thus instead of the discrete stochastic nature of the MCQN the

MCFN is a continuous deterministic system. A fraction uk(t) of the server σ(k) is allocated to

the fluid buffer k at time t, and Tk(t) =
∫ t
0 uk(s)ds. uk(t) satisfy the same constraints as Ṫ in

(3.2), but servers are infinitely divisible, so that uk(t) can take any value in [0, 1].

The problem (3.8–3.11) is a special case of a separated continuous linear program (SCLP),

cf. Anderson (1981), Anderson and Nash (1987), Bellman (1953) and Pullan (1993). A simplex

based algorithm that solves a wide class of SCLP problems optimally in a finite number of
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steps has been recently found, see Weiss (2008). This has been an open problem for half a

century. Current naive implementations1 of the simplex based algorithm are able to quickly

solve MCFN problems in which the dimensions of K and I are of the order of 100.

The analysis in Weiss (2008) reveals important features of the solution, essential to our con-

trol method. The MCFN problem is always feasible and bounded, and the SCLP simplex al-

gorithm will always produce a fluid solution that consists of a partition of the time horizon

0 = t0 < t1 < · · · < tM = T , where M is bounded, and in each of the time intervals the

server allocations uk(t) are constant, and as a result the fluid buffer levels qk(t) are continuous

piecewise linear.

We let τm = (tm−1, tm) denote the m’th time interval of the solution, and we denote by

um
k = uk(t), t ∈ τm the values of the server allocations. During τm, server i will be busy for a

fraction ρm
i =

∑
k∈Ci

um
k . This is the utilization of server i during τm, and is always ≤ 1.

In each τm some of the buffers will be empty throughout the whole time interval, and the

remaining buffers will be non-empty throughout the whole time interval. In general empty

buffers are not inactive: they may have fluid flowing into them as well as out of them, with the

inflow rate and outflow rates equal. We partition K during the m’th time interval as follows:

Km
0 = {k | qk(t) = 0, t ∈ τm}

Km∞ = {k | qk(t) > 0, t ∈ τm}

In our control approach, the fluid solution, summarized by τm, um,Km
0 ,Km∞, is calculated

off-line at the outset (time 0), from the data T,w,R,A, and the initial fluid levels qk(0) = Qk(0).

This solution is made available to all the servers.

Solution of the Example Fluid Network

The multi-class fluid network problem for our example is:

minVf =
∫ T

0
q1(t) + q2(t) + q3(t)dt

s.t.

q1(t) = q1(0)−
∫ t

0
µ1u1(s)ds

q2(t) = q2(0)−
∫ t

0
µ2u2(s)ds +

∫ t

0
µ1u1(s)ds (3.12)

q3(t) = q3(0)−
∫ t

0
µ3u3(s)ds +

∫ t

0
µ2u2(s)ds

u1(t) + u3(t) ≤ 1

u2(t) ≤ 1

u(t), q(t) ≥ 0 t ∈ [0, T ]

To understand the dynamic of the fluid solution, we study three different feasible solutions

of (3.12). These are shown in Figures 3.2, 3.3, and 3.4 where we plot the values {q1(t), q1(t) +

q2(t), q1(t) + q2(t) + q3(t)} for 0 < t < T . The three solutions are the last buffer first served
1Updated demonstrations and versions of this implementation are posted at http://www.stat.haifa.ac.il/

~gweiss.

51



0 10 20 30 40
0

5

10

15

20

Figure 3.2: LBFS. Vf = 376.
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Figure 3.3: Minimal makespan. Vf = 360.
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Figure 3.4: Optimal SCLP. Vf = 352.

(LBFS) solution, and minimum makespan solution and the optimal solution of (3.12) respec-

tively.

The LBFS policy for a general re-entrant line with flow 1 → 2 → · · · → K gives priority to

higher indexed buffers. In our example, server 1 gives priority to buffer 3 over buffer 1, and

hence it allocates full capacity to buffer 3 until it is empty, and thereafter enough capacity is

allocated to buffer 3 to keep it empty, and the remaining capacity is allocated to buffer 1. Server

2 is allocating full capacity to buffer 2. This is illustrated in Figure 3.2. The cost over time [0, 40]

is 376. Note that under LBFS server 2 which is the bottleneck server is kept idle from time 4 to

time 16. If we continue using LBFS after time 40 the system will empty at 48, for a total cost of

384, (over the time horizon [0, 48]).

We can avoid idleness of the bottleneck server, by allocating u1(t) = 1/4 once buffer 2 is

empty. Doing so will keep server 2 busy and the system will empty in minimal time: (q1(0) +
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q2(0))µ−1
2 = 36. This is called a minimum makespan solution. It is illustrated in Figure 3.3:

Server 1 is allocated to buffer 3 until t = 4, when buffer 2 is empty, at which point server

1 allocates u1 = 1/4 to buffer 1, and the remaining capacity u3 = 3/4 to buffer 3, which is

emptying at rate 3/4. The total cost is 360.

The optimal solution, which minimizes the cost in (3.12) over the time horizon of T = 40

is presented in Figure 3.4. It is a compromise between LBFS and minimal makespan. LBFS

is employed until time t = 8, and after that, the bottleneck server is kept fully utilized. The

optimal cost is 352. All details of this fluid solution are in Table 3.1.

Let t∗ be the time at which we start to divert processing capacity from buffer 3 to buffer 1

in order that server 2 will be fully utilized. For minimum makespan t∗ = 4, for the optimal

solution it is t∗ = 8 and for LBFS it is t∗ = 16. The cost to empty the system is actually given by

the quadratic function W (t∗) = 1
2(t∗)2−8t∗+384 and it is minimized at t∗ = 8. It thus happens

that for our example this simple "local optimization" actually solves the optimization problem

over all possible controls, as we find by solving the SCLP2.

3.4 Modeling as MCQN+IVQ

The fluid solution indicates that in time interval τm, buffers k ∈ Km∞ are not empty throughout

the entire time interval. Assume that we are able to track the fluid solution with the actual

MCQN, so that Qk(t) > 0, k ∈ Km∞ for all t ∈ τm. In that case, the class k buffer always has

work available, and so for the dynamics of the network, its level during τm is not relevant. This

can be modeled by MCQN with infinite virtual queues (MCQN+IVQ), which we describe now.

For background on infinite virtual queues see Chapter 2.

A multi-class queueing network with infinite virtual queues (MCQN+IVQ) is defined as

follows: It consists of classes K = K0 ∪ K∞, servers I and constituency matrix A. Queues of

classes k ∈ K0 are standard queues. Queues of classes k ∈ K∞ are infinite virtual queues: They

always have an unlimited supply of jobs available for processing. Let Sk(t) be the counting

process of job completions after processing duration t. Let Φkk′(n) count the number of jobs

routed from queue k to queue k′ out of the first n job completions of class k, where k ∈ K, and

k′ ∈ K0\k. Since buffers with infinite virtual queues are never empty, we do not keep record of

jobs which are routed into them, hence we do not consider Φkk′(n) when k′ ∈ K∞.

For k ∈ K0 we let Qk(t) ≥ 0 denote the number of jobs of class k in the system at time t. For

k ∈ K∞ we indicate the relative state of the queue by counting the departures, and by relating

them to some nominal input rate αk. We denote this relative queue length by Rk(t). For time

allocations Tk(t), k ∈ K we then have the dynamics of a MCQN with IVQs:

Zk(t) =
{

Qk(t) = Qk(0)− Sk(Tk(t)) +
∑

k′∈K\k Φk′k(Sk′(Tk′(t))) k ∈ K0

Rk(t) = Rk(0)− Sk(Tk(t)) + αkt k ∈ K∞ (3.13)

Here Qk(0) are initial queue lengths, and Rk(0) are some arbitrarily chosen initial values.

To summarize: The MCQN with IVQs is controlled by time allocations Tk(t). The standard

queues Qk(t), k ∈ K0 have input of jobs routed from other queues, and output Sk(Tk(t)). They
2A graphical demonstration of this fluid solution is at http://www.stat.haifa.ac.il/~yonin/qsm/main.html.
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are non-negative integer valued. The infinite virtual queues supply a stream of jobs into the

system with their output Sk(Tk(t)) and sustain continuous input themselves at nominal rates

αk. Thus their relative level Rk(t) is not restricted in sign and is not restricted to be integer.

The infinite virtual queues replace the input stream of standard MCQN. If Rk(t) is stable in

the sense that it is kept close to zero, then the departure process of the infinite virtual queue

provides input to the rest of the system at the rate αk. There are two new elements here which

provide wider modeling capacity: (i) the input streams are controlled from within the network,

by the allocation of processing time Tk(t), and (ii) the infinite virtual queues share servers with

other classes. In particular, if a server i serves some standard as well as some infinite virtual

queues, then it will always have work to do, and so it can work at full utilization of ρi = 1, and

yet, it is possible that the standard queues Qk(t) will be stable, and behave like queues in light

traffic.

Let α = (α1, . . . , αK)′ be the vector of nominal input rates for k ∈ K∞ and αk = 0 for k ∈ K0.

The overall traffic intensity ρ for this exogenous input vector α is determined by the following

linear program, which is a modified version of the static planning problem LP introduced in

Harrison (2000):

min ρ

s.t. Ru = α, (3.14)

Au ≤ 1ρ,

u ≥ 0.

Here R is the input-output matrix for the MCQN with IVQs and thus the first constraint in

(3.14) reads:
µkuk −

∑
k′∈K\k Pk′kµk′uk′ = 0, k ∈ K0

µkuk = αk, k ∈ K∞ (3.15)

A MCQN with IVQs is called rate stable if limt→∞ 1
t Z(t) = 0. It can be shown that a necessary

condition for rate stability of MCQN with IVQs, under any policy, is that the overall traffic

intensity is ρ ≤ 1 (see Dai and Lin (2005)).

MCQN with IVQs for each Time Interval

We return to our original MCQN over the finite time horizon, with its fluid solution. We as-

sociate a MCQN with IVQs to each of the M intervals of the fluid solution. During τm the

associated MCQN with IVQs is defined by the partition Km
0 and Km∞. The nominal input rates

of k ∈ Km∞ are set to αm
k = µku

m
k , which is the optimal outflow rate from the non-empty fluid

buffer in the solution of (3.12). The corresponding matrix Rm is that of (3.7) changed to have

Rm
k′k = 0 for k′ ∈ Km∞, k′ 6= k.

Table 3.1 describes the 4 MCQN with IVQs associated with the 4 intervals of the fluid so-

lution of the example network. The flow rates of the fluid solution, um
k , k ∈ K, provide a

feasible solution of (3.14, 3.15), with ρm = maxi∈I ρm
i ≤ 1. Hence the necessary condition

for rate stability is satisfied by each of the MCQN with IVQs. Clearly, in the fluid solution,

qk(t) = 0 for k ∈ Km
0 , and so Qk(t) is the deviation from the fluid solution for buffers k ∈ Km

0 .
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Time interval m = 1 2 3 4
τm = (0, 4) (4, 8) (8, 24) (24, 40)

(um
1 , um

2 , um
3 ) = (0, 0, 1) (0, 1, 1) (1

4 , 1, 3
4) (1

4 , 1, 1
4)

(ρm
1 , ρm

2 ) = (1, 0) (1, 1) (1, 1) (1
2 , 1)

Km
0 = ∅ ∅ {2} {2, 3}

Km∞ = {1, 2, 3} {1, 2, 3} {1, 3} {1}
(αm

1 , αm
2 , αm

3 ) = (0, 0, 1) (0, 1
4 , 1) (1

4 , 0, 3
4) (1

4 , 0, 0)

Rm =




1 0 0
0 1

4 0
0 0 1







1 0 0
0 1

4 0
0 0 1







1 0 0
−1 1

4 0
0 0 1







1 0 0
−1 1

4 0
0 −1

4 1




Table 3.1: Fluid Solution of the example network and parameters of the associated MCQNs
with IVQs

For the classes k ∈ Km∞ the fluid solution has outflow at rate µku
m
k , and so Rk(t) measures

the deviation from the fluid outflow rate for k ∈ Km∞. If we keep Zm(t) rate stable we will

keep these deviations small. Furthermore, for k ∈ Km∞, rate stability of Zm(t) will yield that

Φk′k(Sk′(Tk′(t))) − Pk′kµk′u
m
k′ will also be stable, but this is the deviation between the actual

fluid inflow into buffer k, and the fluid inflow in the fluid solution. It follows that keeping

Zm(t) rate stable implies good tracking of the fluid solution during τm (this is formally stated

in Theorem 3.2).

3.5 Application of Maximum Pressure Policies

Brief background regarding maximum pressure policies is in Chapter 1. These scheduling poli-

cies were studied in the general framework of stochastic processing networks (introduced by

Harrison (2000, 2002, 2003)) in Dai and Lin (2005) (see also Dai and Lin (2006), and Ata and

Lin (2008)). Maximum pressure policies are distinguished by two properties: Under sufficient

conditions they are rate stable for systems with overall traffic intensity ρ ≤ 1, and in heavy

traffic (ρ ≈ 1), networks with complete resource pooling have optimal diffusion scale approxi-

mations. We now briefly describe maximum pressure policies and their adaptation to MCQN

with IVQs. The results presented in this section are an adaptation from Dai and Lin (2005).

Denote by ak = Ṫk(t) the level at which class k jobs are served. When ak = 1 server σ(k)

serves class k fully. When ak = 0, there is no processing of jobs from class k. Momentarily

assume that we allow processor sharing, thus 0 ≤ ak ≤ 1. The column vector a = (a1, . . . , aK)′

is an allocation. Let the set of feasible allocations A be defined as the non-negative vectors a

such that
∑

k∈Ci
ak ≤ 1 for all i ∈ I (these are the conditions 3.2). A is a non-empty (contains

0), bounded convex polytope, and has a finite number of extreme points. Denote the set of

extreme points of A by E . While A summarizes the set of allocations that satisfy the resource

consumption constraints, it may be that due to emptiness of buffers k ∈ K0 some allocations in

A are not available at certain times. Denote by A(t) ⊆ A the set of available allocations at time

t. Let E(t) = E ∩ A(t) denote the set of the extreme allocations which are available at time t.

Denote the column vector that is the state of a MCQN at time t by z = (Z1(t), . . . , ZK(t))′.
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Define the total network pressure for an allocation a to be z′Ra (where z′ is a row vector,

R is the input-output matrix and a is a column allocation vector). A service policy is said

to be a maximum pressure policy if at each time t, the network chooses an allocation a∗ ∈
argmaxa∈E(t)z

′Ra.

By following all the steps in the proofs of the results of Dai and Lin (2005) one can see

that they hold without any change also for MCQN with IVQs, as defined in Section 3.4. We

therefore adopt Dai and Lin’s main throughput optimality result to our context:

Theorem 3.1. Let Z(t) be a MCQN with IVQs. Assume that the processing and routing counts

satisfy conditions (3.4–3.6). Let ρ be the overall traffic intensity of the network for nominal

input α, and assume that ρ ≤ 1. Then under maximum pressure policy with no splitting of

servers and with no preemptions limt→∞ 1
t Z(t) = 0.

We make just one comment about the proof: One needs to show that MCQN with IVQs

satisfy EAA assumption, see Dai and Lin (2005). The steps of the proof are as in Dai and Lin

(2005), but we need to make use of the fact that φkk′(`) = 0 for k′ ∈ K∞.

In fact we need the asymptotic result for slightly different scaling. Let Z(t) be a MCQN

with IVQs. Let Sk(t), Φkk′(n) be the processing and routing counts of Z(t), and let α be its

nominal inputs vector. ZN (t) is called an N scaling of Z(t) with initial conditions ZN (0), if

it has processing counts SN
k (t) = Sk(Nt), routing counts Φkk′(n), and nominal input Nα. We

then have:

Corollary 3.1. Let Z(t) be a MCQN with IVQs. Assume that the processing and routing counts

satisfy conditions (3.4–3.6). Let ρ be the overall traffic intensity of the network for nominal input

α, and assume that ρ ≤ 1. Let ZN (t) be a sequence of N scalings of Z(t), with initial states

ZN (0) that satisfy ZN (0)/N → 0 as N → ∞. Then under a maximum pressure policy with no

splitting of servers and with no preemptions, ZN (t)/N → 0 uniformly for 0 < t < T for any

T > 0.

As observed in Dai and Lin (2005) and Tassiulas (1995), the maximization of the pressure

z′Ra over Aa ≤ 1, a ≥ 0 separates into maximization of the pressure for each of the servers.

This in turn is achieved by

k∗ ∈ arg max
k∈Ci∪0

{µk(Zk(t)−
∑

k′∈K0\k
Pkk′Zk′(t)), 0}

where k∗ = 0 corresponds to idling because all available queues have non-positive pressure.

3.6 Maximum Pressure Tracking of the Optimal Fluid Solution

We come now to integration of the SCLP fluid solution, the associated MCQN with IVQs, and

the maximum pressure policy, as described in Sections 3.4–3.6 into a policy for the solution of

the finite horizon MCQN control problem of Section 3.2.

Maximum Pressure Fluid Tracking Policy (MaxFTP):

56



Phase 1 (at time 0, centralized): Use Q(0), w,R,A to solve the fluid network problem

(3.8–3.11), and obtain the time intervals τm, the sets of empty and non-empty fluid buffers

Km
0 ,Km∞ and the flow rates αm

k = um
k µk for k ∈ Km∞.

Phase 2 (on-line, decentralized): Track the fluid solution, for t ∈ [0, T ) by applying a max-

imum pressure policy in each of the intervals τm, m = 1, . . . , M as follows:

• Let Q(t) be the queue lengths process for t ∈ τm.

• Let Zm(t) for t ∈ τm be the state process of an associated MCQN with IVQs Km∞,

and nominal inputs αm, such that the processing times and routings of Zm(t) are

identical to those of Q for t ∈ τm. (Note that Zm is as defined in (3.13) but with the

time shifted by tm−1).

• Set initial values for Zm:

Zm
k (tm−1) =

{
Qk(tm−1) k ∈ Km

0

−hm
k αm

k

√
|Q(0)| k ∈ Km∞

(3.16)

where |Q(0)| =
∑

k∈KQk(0), and hm
k = 0 if k ∈ Km

0 or if k ∈ Km∞ and qk(tm−1) > 0,

and hm
k = min{k′:Pk′k>0} hm

k′ + 1 for the remaining k.

• At every time t let E(t) be the set of extreme allocations available for Q(t).

Let Zm(t)′Rma be the pressure of allocation a, calculated for Zm(t).

Use the maximum pressure allocation, maxa∈E(t) Zm(t)′Rma, without processor split-

ting or preemptions.

For the example network (and in fact for any re-entrant line), implementation of the maxi-

mum pressure fluid tracking policy is described in Table 3.2. When server i is available at time

t ∈ τm, it calculates the pressure of all buffers k ∈ Ci which have Qk(t) > 0 according to Table

3.2 and starts to process a job from the queue with the highest pressure if the resulting pressure

is positive. Otherwise, it idles.

k ∈ Km
0 k ∈ Km∞

k + 1 ∈ Km
0 µk(Qk(t)−Qk+1(t))

Zm
k (tm−1)+µk(αk(t−tm−1)−(Sk(Tk(t))−

Sk(Tk(tm−1)))−Qk+1(t))

k + 1 ∈ Km∞ µkQk(t)
Zm

k (tm−1)+µk(αk(t−tm−1)−(Sk(Tk(t))−
Sk(Tk(tm−1)))

Table 3.2: Calculation of pressure in a re-entrant line, for interval τm. Pressure at buffer k
depends on type of queue and queue length of classes k, k + 1. By convention K + 1 ∈ Km∞.

Our main result in this Chapter is:

Theorem 3.2. Let Q(t) be the queue length process of a finite horizon MCQN. Assume that

the processing and routing counts satisfy conditions (3.4–3.6). Let QN (t) be N scalings of Q(t),

with QN (0) = NQ(0). Let q(t) be the optimal fluid solution, and let Vf be its objective value.
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(i) Let V N denote the objective value of QN (t) for any general policy. Then

lim inf
N→∞

1
N

V N ≥ Vf

(ii) Under MaxFTP policy:

lim
N→∞

1
N

QN (t) = q(t) uniformly on 0 ≤ t ≤ T

and limN→∞ 1
N V N = Vf .

Proof. (i) Consider some general policy and let V̄ = lim infN→∞ 1
N V N . Let r be a subsequence

for which V̄ = limr→∞ 1
rV r. By the argument of Dai and Lin (2005), Section A.2 we can find a

subsequence r′ of the r such that limr′→∞( 1
r′Q

r′(t), T r′(t), 1
r′V

r′) = (Q̄(t), T̄ (t), V̄ ) uniformly on

[0, T ], where Q̄(t), T̄ (t) are Lipschitz continuous fluid limits, and in particular T̄ has derivative
˙̄T almost everywhere. One can see that Q̄(t), ˙̄T (t), V̄ must be a feasible solution to (3.8–3.11).

Hence, V̄ ≥ Vf .

(ii) We now consider the sequence (QN (t), ZN (t), TN (t), V N ) under the MaxFTP policy,

where ZN are the processes of deviations from the fluid solution. As above we have that for

a subsequence r limr→∞(1
rQr(t), 1

rZr(t), T r(t), 1
rV r) = (Q̄(t), Z̄(t), T̄ (t), V̄ ), uniformly on [0, T ].

Our goal is to show that Q̄(t), ˙̄T (t) equal the optimal solution of (3.8–3.11). We do this by

induction on the intervals τm, m = 1, . . . , M . There is nothing to show for t = 0. Assume then

that Q̄(tm−1) = q(tm−1). Assume first that qk(tm−1) > 0 for all k ∈ Km∞. In that case we have

that the initial values Zm,N
k (tm−1) as defined by (3.16) are equal to 0. We define:

¯̄t = min[tm, inf{t : tm−1 < t < tm, Q̄k(t) = 0 for some k ∈ Km
∞}]

By continuity of Q̄, ¯̄t > tm−1. Let tm−1 < t̄ < ¯̄t. Then for r > r0 we will have Qr
k(t) > 0 for

tm−1 < t < t̄, k ∈ Km∞. Hence for r > r0 the MaxFTP policy will act on Zm,r(t) identical to max

pressure policy. Consider then the sequence of scalings Zm,r under maximum pressure policy.

The optimal solution of SCLP in the mth interval satisfies:

Rmum =
[

RKm
0 ,Km

0
RKm

0 ,Km∞
0 diag(µKm∞)

]
um = αm

Aum ≤ 1, um ≥ 0,

hence, comparing with (3.14) we see that ρ ≤ 1 for the network Zm,1. Hence, by Corollary 3.1,

limr→∞ Zm,r(t) = 0 on 0 < t < t̄, and because t̄ < ¯̄t was arbitrary the same holds for 0 < t < ¯̄t.

We then have for all 0 < t < ¯̄t:

Q̄k(t) = Z̄k(t) = 0, k ∈ Km
0 ,

Z̄k(t) = αk(t− tm−1)− µk(T̄k(t)− T̄k(tm−1)) = 0 implies ˙̄T k(t) = αk/µk, k ∈ Km
∞

so Q̄k(t) = qk(t), k ∈ Km
0 , and ˙̄T k(t) = um

k , k ∈ Km∞. We next obtain for Km
0 :

Q̄Km
0

(t) = 0−RKm
0 ,Km

0
[T̄K0(t)− T̄K0(tm−1)]−RKm

0 ,Km∞ [T̄K∞(t)− T̄K∞(tm−1)] = 0

implies ˙̄TK0(t) = −(RKm
0 ,Km

0
)−1RKm

0 ,Km∞diag(αk/µk)k∈Km∞
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Figure 3.5: Example Realizations: 4 replicates (columns) with scalings N = {1, 10, 100} for each
replicate.

and so ˙̄T k(t) = um
k , k ∈ Km

0 . Finally we substitute these values into

Q̄Km∞(t) = Q̄Km∞(tm−1)−RKm∞,Km
0

[T̄K0(t)− T̄K0(tm−1)]−RKm∞,Km∞ [T̄K∞(t)− T̄K∞(tm−1)]

to get Q̄k(t) = qk(t), k ∈ Km∞. Since Q̄k (̄t̄) = qk (̄t̄) we must have ¯̄t = tm.

Consider now the case that for some of the k ∈ Km∞, qk(tm−1) = 0. We sketch the proof in

this case. The MaxFTP policy will start off at time tm−1 with negative pressure in these buffers.

As a result there will be no processing out of these buffers for a duration of hm
k

√
N |Q(0)|. All

the buffers with hm
k = 0 will be processed according to maximum pressure. It can then be seen

that the buffers with hm
k > 0 will fill up with a quantity of jobs of the order of magnitude

√
N

by the time they reach positive pressure. As a result we get that d
dtQ̄(tm−1) > 0, and the proof

proceeds as before.

We have shown that each fluid limit must equal the optimal fluid solution, and we also know

that every sequence of scalings has a subsequence which has a fluid limit. This proves that

limN→∞ 1
N QN (t) = q(t), uniformly on [0, T ]. In particular this implies that limN→∞ 1

N V N =

Vf .

3.7 Simulation Results

We simulated the example network for N scalings of up to N = 106. We generated the pro-

cessing times for each of the classes as pseudo random i.i.d. exponential random variables.

For each single replicate we used 3 × 4 = 12 generator seeds which gave us long sequences

of processing times for each of the three buffers in each of the four time intervals of the fluid

solution. We then created N scalings of each replicate as defined in Section 3.5.

Figure 3.5 illustrates the simulation results for 4 such replicates (the four columns) and N

scalings of N = {1, 10, 100}. In the Figure we show for each of the 12 simulated queueing
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processes the values of QN (t) plotted against the optimal fluid solution for that N (this is the

fluid solution q(t) multiplied by N for each t). The illustrations show that even for N = 10, the

approximation is quite good.

Figure 3.6 examines the asymptotics of our policy in more detail and on a mass scale.

Here we have plotted unscaled deviations, namely QN
k (t) − Nqk(t), at the time points t =

4, 8, 24, 40, which are the breakpoint times of the optimal fluid solution. This is performed

for each queue k = 1, 2, 3. For 100 replicates we have performed the following N scalings:

N = {1, 5 · 103, 104, 5 · 104, 105, 2 · 105, 4 · 105, 6 · 105, 8 · 105, 106}. The N scalings of

each replicate are plotted as a continuous line. This allows us to appreciate how the deviations

evolve along a single sample path, as the scaling increases.

As may be expected, the deviations all appear to be of the order of magnitude of
√

N . An

exception is for the N scalings for k = 3 and t = 40, where the deviations look like queue

lengths of a queue in light traffic (indeed the utilization of server 1 in the last interval is 1/2).
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Figure 3.6: Empirical asymptotics: 100 replicates with N scalings up to N = 106.
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CHAPTER 4

FULL UTILIZATION CONTROL

In this chapter we present an example of a queueing network with general processing times that

may operate under full utilization while maintaining stability. The network we consider is a

the push-pull network that has a similar structure to the KSRS network described in Section 1.7.

This push-pull network was first analyzed in Kopzon and Weiss (2002) and further analyzed in

Kopzon et al. (2008). We summarized the main results from those papers in Chapter 2. In both

cases, the analysis was for the exponential processing time case. We now remove this memory

less assumptions and thus resort to asymptotic methods of analysis. The results presented in

this chapter were published in Nazarathy and Weiss (2008c).

The structure of this Chapter is as follows: In Section 4.1 we define the push-pull network

and the policies that we analyze. In Section 4.2 we formulate the network as a multi-class

queueing network with infinite virtual queues (MCQN+IVQ). Here we make the needed as-

sumptions regarding the processing times. In Section 4.3 we analyze the fluid limit model of

this network under fluid scaling, and show that the fluid model is stable under the correspond-

ing policies. In Section 4.4 we assume i.i.d. processing times and formulate the network as

a Markov process. We then follow the proof method of Dai (1995) to show that this Markov

process is positive Harris recurrent, and so the two queues of the network posses a stationary

limiting distribution. In Section 4.5 we present a minorization proof which is needed to show

positive Harris recurrence.

4.1 The Push-Pull Network and Policies

We defined the push-pull network in Chapter 2. We now repeat the definition, this time with

slightly different notation (the job classes are now labeled 1, 2, 3, 4).

The push-pull network is pictured in Figure 4.1, it consists of two servers, numbered 1, 2 and

two types of jobs numbered 1, 2 each of which is processed by both servers. Type 1 is processed

by server 1 and then by server 2 (activities 1 and 2), while type 2 is first processed by server 2

and then by server 1 (activities 3 and 4). We call the first step of each type a push activity and

the second step a pull activity. We denote by Qi(t), i = 2, 4 the number of jobs in the two queues



at time t (including the job in process), and by Di(t), i = 1, 2, 3, 4 the number of jobs that have

completed activity i in the time interval [0, t]. When Q4(t) > 0, server 1 can either pull, by

serving a type 2 job from Q4(t) or push, by serving a type 1 job from the infinite supply. When

Q4(t) = 0 server 1 can still always push jobs of type 1. Hence, server 1 never needs to idle.

Similarly for server 2.

4

¥ 1

¥

3

2

Server 1 Server 2

Figure 4.1: The push-pull queueing network with jobs classes labeled 1, 2, 3, 4.

Assume that the long term average processing time for activity i is 1/µi, i = 1, 2, 3, 4. Let

θi, i = 1, 2, 3, 4 be the long term fraction of time spent in activity i. If the system never idles

then,

θ1 = 1− θ4, θ3 = 1− θ2.

Furthermore, if Qi(t) are stable then their input and output rates are equal, so:

ν1 = ν2 = θ1µ1 = θ2µ2, ν3 = ν4 = θ3µ3 = θ4µ4

where νi is the long term average rate of the departure process Di, i = 1, 2, 3, 4, and in particu-

lar ν2 (ν4) is the rate at which jobs of type 1 (type 2) leave the network. Solving these equations

we get:

ν1 = ν2 =
µ1µ2(µ3 − µ4)
µ1µ3 − µ2µ4

, ν3 = ν4 =
µ3µ4(µ1 − µ2)
µ1µ3 − µ2µ4

.

We now specify the policies which we use. We consider preemptive resume head of the line

policies for the inherently stable case and inherently unstable case, we do not consider the

other two cases which were described in Chapter 2: the unbalanced case and the completely

balanced case.

Inherently stable network: When µ1 < µ2 and µ3 < µ4, operation of the network on just

one type causes the network to behave like a stable single server queue. In this case the

policy which we use is preemptive resume head of the line priority for pull activities 4

and 2 over push activities 1 and 3. We refer to this as Case 1, and to the policy as pull
priority policy.

Inherently unstable network: When µ1 > µ2 and µ3 > µ4, operation of the network on

just one type causes the network to behave like an unstable single server queue. In this

case priority to pull over push is unstable. A policy that works here is that while Q2(t)
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Figure 4.2: The linear threshold policy for the inherently unstable network (Case 2).

is below some threshold level server 1 will push work to server 2, and server 1 will only

pull from Q4(t) when Q2(t) is above the threshold, with a similar rule for server 2. We

use a linear threshold to determine pull or push preemptive head of the line priority.

We define a family of such policies, each determined by a pair of constants κ1, κ2 which

satisfy κ1 > µ3

µ1
, κ2 > µ1

µ3
:

Server 1: Priority to pull activity 4 over push activity 1 if 0 < Q4(t) < κ1Q2(t).

Server 2: Priority to pull activity 2 over push activity 3 if 0 < Q2(t) < κ2Q4(t).

We refer to this as Case 2, and to the policy as linear threshold policy, see Figure 4.2.

Preliminary Comparison to KSRS

We now wish to survey known results about the well studied Kumar-Seidman Rybko-Stolyar

(KSRS) network, and contrast them with the very different behavior of our push-pull network.

The Kumar-Seidman Rybko-Stolyar multi-class queueing network (see Chapter 1) differs

from our push-pull network in that instead of infinite supply of jobs there are two stochastic

arrival streams of jobs of type 1 and of type 2, with long term average arrival rates α1, α3.

In that case there are 4 queues Qi(t) of jobs waiting for activities i = 1, 2, 3, 4 in the network,

and the offered loads for servers 1 and 2 are ρ1 = α1/µ1 + α3/µ4 and ρ2 = α3/µ3 + α1/µ2

respectively. A necessary condition for stability is ρi < 1, i = 1, 2.

The same two cases of parameters reappear: If µ1 < µ2 and µ3 < µ4 then ρi < 1, i = 1, 2 is

sufficient for stability of the network under any work conserving (i.e. any non idling) policy.

On the other hand, if µ1 > µ2 and µ3 > µ4 then ρi < 1, i = 1, 2 may not be sufficient for

stability. In particular, there exist γi < 1 such that the last buffer first served policy (LBFS),

which gives priority to the pull activities 2 and 4, will not be stable for γi < ρi < 1, i = 1, 2.

The discovery of this phenomenon by Kumar and Seidman Kumar and Seidman (1990) (de-

terministic processing times) and by Rybko and Stolyar Rybko and Stolyar (1992) (exponential
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processing times) revolutionized research on multi-class queueing networks, and it is now re-

alized that stability is not a property of the network, but of the policy in conjunction with the

network. In our network, this is exemplified by the need to use the pull priority (last buffer

first served) for the inherently stable Case 1, and a different policy for the inherently unstable

Case 2.

Nevertheless, if ρi < 1, i = 1, 2 then there are some work conserving (non idling) policies

which keep all four queues of the KSRS network stable. However, as ρi increase towards 1,

either for one of the servers or for both together, the network becomes increasingly congested

under any policy.

Of particular interest is the behavior of multi-class queueing networks under balanced

heavy traffic conditions (cf. Harrison (1988)). Balanced heavy traffic in the KSRS network

occurs when α1 → ν1, α3 → ν3. When this happens queues at both servers become congested

under any policy.

A diffusion scale analysis of KSRS under balanced heavy traffic considers a sequence n =

1, 2, . . . of networks, parameterized by αn
i , i = 1, 3 such that

√
n(αn

i − νi) converges to some

constant as n →∞. In that case one can hope to show that the diffusion scaled queues,

Q̂n
i (t) =

Qn
i (nt)√

n
, i = 1, 2, 3, 4,

will converge to a 4 dimensional Reflected Brownian Motion.

Recent results of Dai and Lin Dai and Lin (2005, 2006) and Ata and Lin Ata and Lin (2008)

show that with the use of a maximum pressure policy,(Q̂n
1 (t), . . . , Q̂n

4 (t)), converges to a 4 di-

mensional reflected Brownian motion which is actually lifted from a 2 dimensional workload

process. Henderson, Meyn and Tadic Henderson et al. (2003) also considered the KSRS net-

work and obtained stability. Their policy uses affine switching curves, and is similar to our

linear threshold policy for the push-pull network.

As the scaling indicates, for the KSRS network under balanced heavy traffic, the diffusion

approximation relates to a sequence of networks in which the total number of jobs in the nth

network at any time is expected to be of order Θ(
√

n).

The behavior of the push-pull network, as we will show, is of an entirely different nature:

Both servers are active all the time, which can be thought of as operating at ρi = 1, i = 1, 2 and

jobs leave the network at the rates νi, i = 1, 3. At the same time, with i.i.d. processing times the

network is positive Harris recurrent. Thus in the push-pull network with ρi = 1 the number of

jobs in the queues Q2(t), Q4(t) is expected to be O(1), and it is 0 under diffusion scaling.

4.2 Formulation as MCQN+IVQ

We assume that the processing durations of the jobs in activity i = 1, 2, 3, 4 are drawn from a

sequence of positive random variables: ξi = {ξj
i , j = 1, 2, . . .}. The assumptions that we make

regarding the processing durations are as follows:

(A1) lim
n→∞

∑n
j=1 ξj

i

n
=

1
µi

, a.s.

for some µi ∈ (0,∞), i = 1, 2, 3, 4.
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(A2)





(a) ξi, i = 1, 2, 3, 4
are mutually independent i.i.d.

(b) P (ξ1
i ≥ x) > 0 for all x > 0, i = 1, 3.

∃ki
0 > 0, qi(·) ≥ 0 with

∫∞
0 qi(x)dx > 0 :

P (ξ1
i + . . . + ξ

ki
0

i ∈ dx) ≥ qi(x)dx, i = 1, 3.
(b′) Compact sets are petite.

Assumptions (A1) require that there exist strong laws of large numbers for the sequences of

processing times and that the rate of processing of activity i be µi. Assumptions (A2) are to be

used in a Markov process setting. (a) implies renewal processing. (b) States that the processing

times of the push operations are unbounded and spread-out. (b’) is a technical assumption to

be made precise in Section 4.4. It is used to prove positive Harris recurrence. We show that

under the pull priority policy, (b) implies (b’).

We associate counting processes with each activity i:

Si(t) = sup{n :
n∑

j=1

ξj
i ≤ t}, t ≥ 0.

We denote by Ti(t), i = 1, 2, 3, 4, the total time that the server allocates to the processing of

activity i during the interval [0, t]. We require that Ti(0) = 0 and that Ti(·) be nondecreasing.

Under our policies of full utilization, the servers never idle, thus:

T1(t) + T4(t) = t, T2(t) + T3(t) = t. (4.1)

Note that Ti(·) are Lipschitz, and are therefore absolutely continuous. Thus their derivative

exists almost everywhere with respect to Lebesgue measure on [0,∞).

The number of jobs that have completed processing of activity i by time t is Di(t) = Si(Ti(t)).

Let Qi(0), i = 2, 4 be the initial queue lengths. The number of jobs at time t is:

Qi(t) = Qi(0) + Di−1(t)−Di(t), i = 2, 4. (4.2)

We further require that Qi(·) ≥ 0 for i = 2, 4.

The policies which we use in the two cases impose additional conditions on the dynamics of

the queues. In the inherently stable Case 1, we use pull priority policy. Hence we will not serve

activities 1 or 3 (push activities) unless the corresponding Q4 or Q2 are empty. This implies that

the allocation processes T (·) need to satisfy:
∫ t
0 Q4(s)dT1(s) = 0,∫ t
0 Q2(s)dT3(s) = 0.

(4.3)

In the inherently unstable Case 2, we use a linear threshold policy. The linear threshold for

server 1 is the line Q4(t) = κ1Q2(t). Server 1 will give preemptive priority to activity 4 only if

0 < Q4(t) < κ1Q2(t), and in that case it will not allocate time to activity 1. On the other hand, if

Q4(t) ≥ κ1Q2(t) then server 1 will give priority to activity 1, to prevent starvation at the queue

of server 2, and will not allocate time to activity 4. A symmetric rule is used by server 2, with

the linear threshold given by the line Q2(t) = κ2Q4(t). Hence, for Case 2:
∫ t
0 1{0 < Q4(s) < κ1Q2(s)}dT1(s) = 0,∫ t

0 1{Q2(s) ≤ 1
κ1

Q4(s)}dT4(s) = 0,∫ t
0 1{0 < Q2(s) < κ2Q4(s)}dT3(s) = 0,∫ t

0 1{Q4(s) ≤ 1
κ2

Q2(s)}dT2(s) = 0.

(4.4)
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Recall that we require κ1 > µ3

µ1
, κ2 > µ1

µ3
.

4.3 Fluid Limits and Fluid Models

In this section we assume (A1), and consider the behavior of the push-pull network under fluid

scaling. We use the pull priority policy in Case 1, and the linear threshold policy in Case 2.

To study the network under fluid scaling we consider the six dimensional network process

Y (t) = (Q(t), T (t)), and parameterize it by n = 1, 2, ... as follows: For each n set the initial

queue lengths as Qn(0), and let Y n(t) be the network process starting from this initial condition,

where all the Y n share the same sequences of random processing times ξi, i = 1, 2, 3, 4. Denote

by Y n(t, ω) the realization of the n’th network process for some ω in the sample space. We

define fluid scalings as:

Ȳ n(t, ω) =
Y n(nt, ω)

n
.

A function Ȳ (t) = (Q̄(t), T̄ (t)) is said to be a fluid limit of our network if there exists a sequence

of integers r →∞ and a sample path ω such that:

Ȳ r(·, ω) → Ȳ (·), u.o.c.

It may now be shown (cf. Theorem 4.1 of Dai (1995) or Appendix A.2 of Dai and Lin (2005))

that under Assumption (A1), except for a set of ω of measure zero, fluid limits exist for every

ω, and every one of them satisfies the following fluid equations:

Q̄i(t) = Q̄i(0) + µi−1T̄i−1(t)− µiT̄i(t) , i = 2, 4
Q̄i(t) ≥ 0, i = 2, 4
T̄i(0) = 0, T̄i is non-decreasing, i = 1, 2, 3, 4

(4.5)

as well as

T̄1(t) + T̄4(t) = t, T̄2(t) + T̄3(t) = t, (4.6)

and in addition, under pull priority they satisfy:
∫ t
0 Q̄4(s)dT̄1(s) = 0,∫ t
0 Q̄2(s)dT̄3(s) = 0,

(4.7)

and under linear threshold policy they satisfy:
∫ t
0 1{0 < Q̄4(s) < κ1Q̄2(s)}dT̄1(s) = 0,∫ t

0 1{Q̄2(s) ≤ 1
κ1

Q̄4(s)}dT̄4(s) = 0,∫ t
0 1{0 < Q̄2(s) < κ2Q̄4(s)}dT̄3(s) = 0,∫ t

0 1{Q̄4(s) ≤ 1
κ2

Q̄2(s)}dT̄2(s) = 0.

(4.8)

Equations (4.5)-(4.8) represent a deterministic continuous fluid analog of the stochastic model

introduced in the previous section. We shall refer to equations (4.5)–(4.7) as the fluid model of
Case 1. Similarly we shall refer to (4.5),(4.6) and (4.8) as the fluid model of Case 2.

A fluid solution of Case 1 (Case 2) is any pair (Q̄, T̄ ) that satisfies the fluid model equations of

Case 1 (Case 2). We say that the fluid model of Case 1 (Case 2) is stable if there exists a δ > 0

such that for every fluid solution of Case 1 (Case 2), whenever |Q̄(0)| = 1 then Q̄(t) = 0 for any

t ≥ δ.

Our main result in this section is:
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Theorem 4.1. Consider the push-pull network, assume that Assumption (A1) holds, and use

in Case 1 the pull priority policy, and in Case 2 the linear threshold policy. Then the fluid model

is stable.

This theorem will be used to show positive Harris Recurrence in the next section. It also

immediately leads to the following corollary, which describes the fluid scale behavior of the

push-pull network:

Corollary 4.1. Consider the push-pull network with some fixed initial queue lengths, Q(0),

under the assumptions of Theorem 4.1. Then almost surely Y (nt)/n will converge as n → ∞
u.o.c. to a fluid limit Ȳ (t) = (Q̄(t), T̄ (t)) which satisfies:

T̄i(t) = θit, D̄i(t) = νit, Q̄i(t) = 0, i = 1, 2, 3, 4.

The proof of Theorem 4.1 is by means of a Lyapounov function, f . As in Dai and Weiss

(1996), we shall make use of the following elementary Lemma 4.1. Recall that Ti(t) are Lip-

schitz with constant 1. It then follows that T̄i, and also Q̄i(t), are Lipschitz, for every fluid

solution. Hence they are absolutely continuous with derivative defined almost everywhere.

We say that t is a regular point of a fluid solution if the derivatives of Ȳ exist at t.

Lemma 4.1. Let f be an absolutely continuous nonnegative function, and let ḟ denote its

derivative whenever it exists.

(i) If f(t) = 0 and ḟ(t) exists, then ḟ(t) = 0.

(ii) Assume that for some ε > 0 at regular points t > 0, whenever f(t) > 0 then ḟ(t) ≤ −ε.

Then f(t) = 0 for all t ≥ f(0)/ε. Furthermore, f(·) is non increasing and hence once it reaches

0 it stays there forever.

Proof of Theorem 4.1: Case 1: Define f(t) = Q̄2(t) + Q̄4(t). Clearly f(t) ≥ 0 and f(t) = 0 if

and only if Q̄(t) = 0. Also, if |Q̄(0)| = 1 then f(0) is bounded (by B = 1). We show that f

satisfies the conditions of Lemma 4.1, for some ε, and hence f(t) = 0 for t > f(0)/ε, and so if

|Q̄(0)| = 1, Q̄(t) = 0 for t ≥ B/ε which proves stability of the fluid model.

Define ε = min{µ2 − µ1, µ4 − µ3}. The values of µi in Case 1 ensure that ε > 0. We now

bound ḟ(t) by −ε for all regular time points t at which f(t) > 0 by analyzing all possible values

of Q̄i(t), i = 2, 4:

• Assume Q̄2(t), Q̄4(t) > 0:

By (4.7), ˙̄T 1 = ˙̄T 3 = 0 and thus by (4.6), ˙̄T 2 = ˙̄T 4 = 1. As a consequence, ˙̄Qi(t) = −µi

for i = 2, 4 and

ḟ = −(µ2 + µ4) ≤ −ε.

• Assume Q̄2(t) > 0, Q̄4(t) = 0:

By (4.7) ˙̄T 3 = 0 and thus by (4.6), ˙̄T 2 = 1. As a consequence,

ḟ = µ1
˙̄T 1 − µ2 − µ4

˙̄T 4 = µ1 − µ2 − (µ1 + µ4) ˙̄T 4 ≤ −(µ2 − µ1) ≤ −ε.
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• Assume Q̄2(t) = 0, Q̄4(t) > 0:

Similarly to the previous argument,

ḟ ≤ −(µ4 − µ3) ≤ −ε.

This completes the proof for Case 1.

Case 2: We use the same technique as in Case 1. Define:

f(t) =





(1 + β)Q̄2(t)− (κ2 − β)Q̄4(t) if Q̄2(t) ≥ κ2Q̄4(t),
(1 + β)Q̄4(t)− (κ1 − β)Q̄2(t) if Q̄4(t) ≥ κ1Q̄2(t),
β(Q̄2(t) + Q̄4(t)) otherwise.

where

β =
1
2

min{
κ1 − µ3

µ1

1 + µ3

µ1

,
κ2 − µ1

µ3

1 + µ1

µ3

}.

Q1

Q2

Figure 4.3: Lyapounov function for case 2.

An example contour plot of this Lyapounov function and the mean drift arrows (in red) is

in Figure 4.3. Again, it is easily seen that f(t) ≥ 0 and f(t) = 0 if and only if Q̄(t) = 0, and if

|Q̄(0)| = 1 then f(0) is bounded by some finite value B.

All we need to do is find an ε to satisfy the conditions of Lemma 4.1. We now bound ḟ(t)

for all regular time points t at which f(t) > 0, by analyzing all possible values of Q̄i(t), i = 2, 4:

• Assume 1
κ2

Q̄2(t) < Q̄4(t) < κ1Q̄2(t):

Then f(t) = β(Q̄2(t) + Q̄4(t)), and in this region both servers use pull priority. Hence

ḟ = β(µ1Ṫ1 − µ2Ṫ2 + µ3Ṫ3 − µ4Ṫ4)

and by (4.8) we have that Ṫ1 = Ṫ3 = 0 and thus Ṫ2 = Ṫ4 = 1. Hence

ḟ = −β(µ2 + µ4).
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• Assume 0 < Q̄4(t) ≤ 1
κ2

Q̄2(t):

Then f(t) = (1 + β)Q̄2(t) − (κ2 − β)Q̄4(t) and in this region both queues are not empty,

and server 1 gives priority to pull while server 2 gives priority to push. Hence

ḟ = (1 + β)(µ1Ṫ1 − µ2Ṫ2)− (κ2 − β)(µ3Ṫ3 − µ4Ṫ4),

and by (4.8) we have that Ṫ1 = Ṫ2 = 0 and thus Ṫ3 = Ṫ4 = 1. Hence

ḟ = −(κ2 − β)(µ3 − µ4).

• Assume 0 < Q̄2(t) ≤ 1
κ1

Q̄4(t):

The analysis is symmetric to the previous case, and yields:

ḟ = −(κ1 − β)(µ1 − µ2).

• Assume Q̄2(t) > 0, Q̄4(t) = 0:

Again f(t) = (1 + β)Q̄2(t) − (κ2 − β)Q̄4(t), and in this region server 2 gives priority to

push. With Q̄4(t) = 0 we cannot say where server 1 will work. Hence

ḟ = (1 + β)(µ1Ṫ1 − µ2Ṫ2)− (κ2 − β)(µ3Ṫ3 − µ4Ṫ4)

and by (4.8) Ṫ2 = 0 and as a result Ṫ3 = 1. Hence:

ḟ = (1 + β)µ1Ṫ1 − (κ2 − β)(µ3 − µ4Ṫ4)

= (1 + β)µ1Ṫ1 − (κ2 − β)[µ3(Ṫ1 + Ṫ4)− µ4Ṫ4]

= −(κ2 − β)[(µ3 − 1 + β

κ2 − β
µ1)Ṫ1 + (µ3 − µ4)Ṫ4]

≤ −(κ2 − β)min{µ3 − 1 + β

κ2 − β
µ1 , µ3 − µ4}.

• Assume Q̄4(t) > 0, Q̄2(t) = 0: The analysis is symmetric to the previous case, and yields:

ḟ ≤ −(κ1 − β) min{µ1 − 1 + β

κ1 − β
µ3 , µ1 − µ2}.

All five bounds above are negative, and we choose −ε as their maximum. This completes the

proof.

Remark: So far in this section we assumed that the nth system starts with queue lengths

Qn(0), and that all the jobs in the system had no previous processing, so that the Si(t) are

counting processes, with intervals ξi which have long term rate µi. A more general model

assumes that at time 0 the head of the line job in each queue or infinite supply has received

some processing, and let ξi,0 be the residual processing time of this first job. Then the first

interval is a residual processing time with a different mean from the other ξj
i , j > 1. In that

case Si(t) are delayed counting processes. We now associate with the nth system an initial state

consisting of Qn
i (0), ξn

i,0, i = 1, 2, 3, 4. All the results of this section remain valid and unchanged

as long as we assume that ξn
i,0/n → 0 a.s. (see Bramson (1998a)).
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4.4 Positive Harris Recurrence

In this section we add the set of Assumptions (A2) to Assumption (A1), and use the fluid stabil-

ity results from the previous section to show that the push-pull network under our policies can

be described by a positive Harris recurrent Markov chain. To do so we adapt the framework

developed by Dai Dai (1995), see also Bramson (1998a).

We begin by defining the network state process. Denote by Ui(t), Vi(t) the residual process-

ing times of the head of the line activities which are in process or preempted at the current time

t. Ui(t), i = 2, 4 is for the pull activities and Vi(t), i = 1, 3 is for the push activities. Now denote

the network state process by,

X(t) = (Q(t), U(t), V (t)).

The state space is S = Z2
+ × R2

+ × R2
+, and |X(t)| is the sum of the components of X(t). Since

the evolution of X(t) between arrivals and departures is deterministic, X(t) is piecewise de-

terministic, and it is not difficult to show that X(t) is a piecewise deterministic strong Markov

process (cf. Davis (1984)):

Proposition 4.1. Under Assumptions (A1), (A2a), X = {X(t), t ≥ 0} is a strong Markov

process with state space S.

Let P t(x, ·) be the transition probability of X . That is for x ∈ S, B ∈ B(S),

P t(x,B) ≡ Px{X(t) ∈ B} ≡ P{X(t) ∈ B |X(0) = x}.

A nonzero measure π on (S, B(S)) is invariant for X if π is σ-finite, and for each t ≥ 0,

π(B) =
∫

S
P t(x,B) π(dx), B ∈ B(S).

Let τA = inf{t ≥ 0 : X(t) ∈ A}. We say that X is Harris recurrent if there exists some σ-finite

measure ν on (S, B(S)), such that for all A ∈ B(S) with ν(A) > 0 we have Px(τA < ∞) = 1 for

all x ∈ S. If X is Harris recurrent then an essentially (up to a positive scalar multiplier) unique

invariant measure π exists. When π is finite (in which case we normalize it to a probability

measure) we say that X is positive Harris recurrent. Positive Harris recurrence is a common

notion of stability since it implies certain ergodicity properties. For example, given f : S 7→ R+,

denote

π(f) =
∫

S
f(x) π(dx)

whenever the integral makes sense. Then if π(|f |) < ∞:

lim
t→∞

1
t

∫ t

0
f(X(s))ds = π(f) Px a.s. for each x ∈ S.

To establish positive Harris recurrence of X(t), we need a further concept: A non-empty set A

is said to be petite if there exists a probability distribution a on (0,∞) and a nontrivial measure

ν on (S,B(S)), such that for all x ∈ A

∫ ∞

0
P t(x,B)a(dt) ≥ ν(B), for all B ∈ B(S).
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Petiteness of A may be interpreted as the property that all sets B are "equally accessible" from

any x ∈ A. For more on Markov processes, positive Harris recurrence and petite sets, see Meyn

and Tweedie (1993a) for an introduction and discrete time results, and Meyn and Tweedie

(1993b,c) for continuous time results.

We are now in a position to rigorously define Assumption (A2b’):

(A2b′) A = {x : |x| ≤ σ} is petite for any σ > 0.

Our main result in this chapter is:

Theorem 4.2. Under Assumptions (A1), (A2a) and (A2b’), the network state process X is

Positive Harris Recurrent for Case 1 under the pull priority policy and for Case 2 under the

linear threshold policy. Furthermore, for Case 1 we may substitute Assumptions (A2b’) with

(A2b).

Proof. The proof uses the framework of Dai Dai (1995). The main theorem in that paper (Theo-

rem 4.2) states that if the fluid model of a multi-class queueing network (with exogenous arrival

streams) is stable then the associated Markov process is positive Harris recurrent. However, our

model does not fall in that scope and hence we must adapt the proof.

The following discussion outlines the adaptation. Dai shows that positive Harris recurrence

of the network state process follows directly from two statements:

(i) Convergence of a fluid scaled process scaled by its initial state: There exists δ > 0 such

that

lim
|x|→∞

1
|x|Ex|X(δ|x|)| = 0.

(ii) Petiteness of closed bounded sets as in our Assumption (A2b’).

The arguments of Dai that statements (i) and (ii) imply positive Harris recurrence are valid

also for our push-pull network, and so to prove the theorem we need to show that (i) and (ii)

hold.

The main result of Dai is to show that stability of the fluid model, as defined in the previous

Section 4.3, implies (i). The proof that fluid stability implies (i) needs no changes in our case.

Hence, under Assumptions (A1) and (A2a), our Theorem 4.1, in which we have proved stability

of the fluid model, implies (i) for the push-pull network.

Hence, if we make Assumption (A2b’), the positive Harris recurrence of the push-pull network

follows.

The technical Assumption (ii), that all compact sets are petite is awkward, as it is difficult to

check. Thus it is useful instead of Assumption (A2b’) to find a sufficient condition which is easier

to check. Dai’s paper asserts that for multi-class queueing networks with an exogenous input

stream the assumption that inter-arrival times have a spread out distribution with unbounded

support implies (ii). His proof follows directly from the earlier work of Meyn and Down Meyn

and Down (1994), who proved the same result for generalized Jackson networks. This needs to

be extended to the case of infinite supply of work. The difference is that with infinite supply of

work the output process from an infinite virtual queue is in general not independent of the state

of the other queues. Guo and Zhang Guo and Zhang (2007) have adapted Meyn and Down’s
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ideas to a reentrant line with infinite supply of work where the policy is to give lowest priority

to the activity with the infinite supply.

The following Lemma 4.2 extends these results, and shows that in Case 1, under pull priority,

the Assumption (A2b) implies (A2b’), and hence positive Harris recurrence

Lemma 4.2. For the network state process X, operating with the pull priority policy, under

Assumptions (A1) and (A2a), the Assumption (A2b) implies (A2b’).

The proof of the above Lemma is called a "Minorization". It is in the next section. Up to

now, we were unable to provide a similar result for the more complex linear threshold policy.

4.5 A Minorization Proof

The proof requires some more concepts (cf. Meyn and Tweedie (1993b)): We say that X is

ψ-irreducible, if there exists a measure ψ on (S,B(S)) such that, whenever ψ(A) > 0, we have

Px{τA < ∞} > 0 for all x ∈ S.

Let a be a probability distribution on R+. Define the Markov transition function Ka as

Ka(x, ·) =
∫ ∞

0
P t(x, ·)a(dt).

A continuous component of Ka is a non-negative function T (x,A) which is lower semi-

continuous in x, and satisfies

Ka(x,A) ≥ T (x,A), x ∈ S, A ∈ B(S),

We say that X is a T-process if there exists a distribution a such that Ka possesses a continuous

component T , with T (x,S) > 0 for all x ∈ S. The following proposition (cf. Theorem 4.1(i) of

Meyn and Tweedie (1993b)), connects ψ-irreducible T-processes and petiteness of compacts.

Proposition 4.2. If X is a ψ-irreducible T-process then every compact set in B(S) is petite.

We say that a state x∗ is reachable if
∫∞
0 P t(x,O)dt > 0 for every open neighborhood O of

x∗ and every x ∈ S. It can be shown (cf Guo and Zhang (2007)) that if X is a T-process with a

reachable point x∗ then it is also ψ-irreducible with ψ(·) = T (x∗, ·).
Returning to our push-pull queueing network with pull priority, it is easy to see, by As-

sumption (A2b), that the state Q(t) = 0, U(t) = 0, V (t) = 0 is reachable.

Thus the main part of the proof is to show that X is a T-process: We need to construct a

lower semi-continuous function T (·, A) and a transition kernel Ka(·, A), so that Ka(x,A) ≥
T (x,A), for all (x,A) ∈ (S,B(S)).

Following Meyn and Down Meyn and Down (1994) the construction is in several steps.

The crucial step in the construction of T is to consider the initial state in a bounded rectangle,

the set of states to be reached is an empty system with both servers engaged in push activity,

and to then bound the probability of reaching this set after a deterministic integer time by a

continuous function.
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For an integer ` define R` = {0, . . . , `}2 × [0, `)2 × [0, `)2. Now take the initial state at time 0

as x0 ∈ R`.

Define Z(t) = (Q2(t), Q4(t), U2(t), U4(t)). Then the network state process is X(t) = (Z(t), V (t)).

Let A1, A3 ∈ B(R+). The set to be reached is the set {Z = 0, V ∈ A1 × A3}. For an integer time

nl we will bound Px0(Z(n`) = 0, V (n`) ∈ A1 × A3) from below by a function T ′l (x0, A1, A3),

which is continuous in x0.

Define two events:

D` = {
ki
0∑

j=1

ξj
i ≤

n`

4
, ξ

ki
0+1

i ≥ 2n` for i = 1, 3},

for large nl it has a positive probability, since we assume that the distribution of ξ1
1 , ξ

1
3 has

infinite support.

EL,` = {ξj
i ≤ L, j = 1, . . . , ` + ki

0 for i = 2, 4},
where L is taken large enough such that, εL,` = P (EL,`) > 0. If we require that

n` > 4` + 2(`− 1)L + 2
n`

4
+ (k1

0 + k3
0)L, (4.9)

that is set n` to

n` > 8` + 4(`− 1)L + 2(k1
0 + k3

0)L,

then we have that the event D` ∩ EL,` implies that at time n`, Z(n`) = 0 and server 1 (server

3) is engaged in push activity 1 (push activity 3) with the long k1
0 + 1st (k3

0 + 1st) job from the

infinite supply. To see this, recall that our policy is head of the line with low priority to push

activities. Therefore prior to the first time that the servers are both working on the long push

activities, at least one of them is working on pull activities or on the first ki
0 push activities. The

expression (4.9) is an upper bound on the total amount of work that has to be done, and it will

therefore be completed by time nl. The long push activities will of course not be complete by

time nl.

With the above definitions in hand,

Px0(Z(n`) = 0, V (n`) ∈ A1 ×A3)
≥ Px0(Z(n`) = 0, V (n`) ∈ A1 ×A3, D`, EL,`)
= Px0(V (n`) ∈ A1 ×A3, D`, EL,`)
= εL,`Px0(V (n`) ∈ A1 ×A3, D`|EL,`).

The number of jobs to be processed by activity i = 2, 4 by time n`, apart from the residuals, is

`i = Qi(0)− I{Qi(0) > 0}+ ki−1
0 .

Now define the truncation ζj
i = I{ξj

i ≤ L} ξj
i for i = 2, 4, and observe that when D` occurs and

conditional on EL,`,

V1(n`) = V1(0) + U4(0) +
k1
0∑

j=1

ξj
1 +

`4∑

j=1

ξj
4 + ξ

k1
0+1

1 − n`

= V1(0) + U4(0) +
k1
0∑

j=1

ξj
1 +

`4∑

j=1

ζj
4 + ξ

k1
0+1

1 − n`,
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with a similar expression for V3(n`).

Denote the distribution of ξ1
i by ηi and the ki

0 fold convolutions of these distributions by

η
∗ki

0
i for i = 1, 3. Also, for i = 2, 4, use η′i to denote the distribution of

∑`i
j=1 ζj

i .

We now have

Px0(V (n`) ∈ A1 ×A3, D`|EL,`) =∫
Is1,s3,t1,t3,r2,r4η

∗k1
0

1 (ds1)η
∗k3

0
3 (ds3)η1(dt1)η3(dt3)η′2(dr2)η′4(dr4)

(4.10)

where the integral is on the range (s1, s3, t1, t3, r2, r4) ∈ [0,∞)6, and the integrand is the indica-

tor function
Is1,s3,t1,t3,r2,r4 =
I{V1(0) + U4(0) + s1 + r4 + t1 − n` ∈ A1}·
I{V3(0) + U2(0) + s3 + r2 + t3 − n` ∈ A3}·
I{s1 ≤ n`

4 }I{s3 ≤ n`
4 }I{t1 ≥ 2n`}I{t3 ≥ 2n`}.

(4.11)

We now use Assumption (A2b) to get,

Px0(V (n`) ∈ A,Gn`
|EL,`) ≥

∫
Is1,s3,t1,t3,r2,r4q1(s1)ds1q3(s3)ds3η1(dt1)η3(dt3)η′2(dr2)η′4(dr4)

(4.12)

We define the function T ′`(x0, A) as εL,` multiplied by the integral in (4.12). It is evident that T ′`
is continuous in each of the coordinates V1(0), V3(0), U2(0), U4(0) and hence it is continuous in

x0. It is also strictly positive, as required.

For every x0 this T ′`(x0, A1 ×A3) is now defined for A1 ×A3 ∈ B(R2). We can extend it to a

measure on the whole B(R2), so that T ′`(x0, A) > 0 for every A ∈ B(R2) with positive Lebesgue

measure, and so that T ′`(x0, A) is continuous in x0 and satisfies

Px0(Z(n`) = 0, V (n`) ∈ A) ≥ T ′`(x0, A).

The remainder of the construction of the continuous component T follows exactly the steps of

Meyn and Down Meyn and Down (1994).

Remark: The above proof can be extended to a proof for petiteness of compacts of the net-

work state process of a multi-class queueing network with infinite virtual queues (cf Section 3

of Nazarathy and Weiss (2008b)) operating under a policy that gives lowest priority to the in-

finite virtual queues. Writing this statement and proof does not require any further ideas than

those presented here.
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Part III

Output Variance
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CHAPTER 5

ASYMPTOTIC VARIANCE RATE OF
OUTPUTS

The purpose of this chapter is to serve as an introduction to Chapters 6 and 7 which contain

our main contribution with regards to the asymptotic variance rate of outputs. In Chapter 6

we consider outputs from finite capacity queues with overflows and in Chapter 7 we consider

outputs of examples of multi-class queueing networks with infinite virtual queues.

In Chapters 3 and 4 we presented our results about control of queueing networks that at-

tempt to minimize holding costs or insure maximum utilization and throughput. These types of

performance measures are often reasonable in many applications: In classical queueing theory

where the typical phrase for a job is a customer (i.e. a person), it only makes sense to concen-

trate most attention on performance analysis of sojourn times or delays whose mean is directly

related to the holding costs by Little’s result. On the contrary in supply chains, manufacturing

and certain type of communication networks, the output processes of the system are typically

of great importance. A first measure of interest regarding the output process is the throughput

and typically the next thing that is of interest is the variability of these processes. We now shift

attention to analysis of the variability of outputs.

There is not one agreed upon performance measure for the variability of output point pro-

cesses and it appears that different applications are best analyzed by different types of perfor-

mance measures. We choose to concentrate on the asymptotic variance rate of the outputs which

measures the linear growth rate of the variance of the number of outputs in the interval [0, t].

We define it more rigorously in the discussion that follows. This is a natural measure to con-

sider if one assumes that the output process follows some central limit theorem law, as it can be

immediately used to estimate the variance and the distribution of the number of outputs in a

long time interval. On the contrary it appears that this performance measure does not capture

short term variability when the point process at hand is a non-renewal process.

This chapter is organized as follows: We start with Section 5.1 where we make definitions

and overview some methods that may be used to evaluate the asymptotic variance rate. We

then move on to present some introductory examples: In Section 5.2 we discuss the asymptotic



variance rate of a GI/G/1 queue with input rate λ and service mean µ−1. We know that when

λ < µ, the asymptotic variance rate of outputs equals the asymptotic variance rate of the input

process and when the inequality is reversed it equals that of a renewal processes generated

by services. The asymptotic variance rate in the critically loaded case (λ = µ) is still an open

problem. In Section 5.3 we look at the special case of the M/G/1 queue with λ < µ. We

show how the asymptotic variance rate can be used to obtain the cross moment between the

busy cycle and the number served in it. This result is used in the next Section, 5.4 where we

analyze the asymptotic variance rate of the outputs of the inherently stable push-pull network

operating under pull priority. The results of that Section are presented here as a prelude to the

more general diffusion limit results in Chapter 7.

5.1 Methods for Calculating Asymptotic Variance Rate

We denote by D(t) a counting point process, i.e. D(t) counts the number of events during

the interval [0, t]. We shall typically assume it counts the number of outputs from a queueing

system. We now define the asymptotic variance rate as:

V = lim
t→∞

Var(D(t))
t

,

whenever the limit exists. We shall typically ignore situations in which the limit does not exists,

such cases have been termed "long range dependent" processes in the literature. Although

extremely interesting and important, they are not within the scope of this thesis. The first order

rate of increase of the point process (throughput) is labeled by:

λ∗ = lim
t→∞

E [D(t)]
t

.

When the point process at hand is a renewal process then V = c2λ∗ where c2 = σ2

m2 denotes the

squared coefficient of variation (SCV) of the stationary inter-output time having expectation m

and variance σ2, cf. Asmussen (2003, pp. 161). In the special case of a Poisson process we have

V = λ∗.

Evaluation of V is important in manufacturing type settings. When the system operates for

a long duration, T , the variance of the number of items produced is approximately V T . Several

studies have investigated computational procedures that evaluate this quantity for the output

of a series of queues, cf. Miltenburg (1987); Hendricks (1992); Gershwin (1993); Hendricks

and McClain (1993); Tan (1999, 2000); Ciprut et al. (1999). The results in our work are not of a

computational nature. Instead we exploit some analytic methods for determining V . Here are

the methods we use:

Markovian Arrival Processes Method: A Markovian Arrival Process (MAP) is a point pro-

cess that is associated with a "background" finite state space CTMC. The process essen-

tially counts transitions of the CTMC (including fake transitions from a state to itself).

There are well known matrix formulas for the asymptotic variance rate of these processes.

MAPs can easily be used to model outputs from queueing systems whose queue level
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process can be modeled as a CTMC with a finite number of states. We do so in the next

chapter and present the details regarding MAPs there.

Diffusion Limit Method: One can look at diffusion scaled versions of a counting process:

D̂n(t) =
D(nt)− D̄(nt)√

nt
, n = 1, 2, ...

Here, D̄(t) is the mean of the process at time t. When the above sequence of processes

converges to some diffusive process, then typically the asymptotic variance rate of the

diffusive process equals that of the original process. We employ such an analysis in Chap-

ter 7.

Renewal Reward Method: If the queueing process that is analyzed has a regenerative struc-

ture then we can associate with it a renewal reward process as follows. Let {(Xi, Yi), i =

0, 1, . . .} be a sequence of independent vectors (the coordinates are not necessarily inde-

pendent) where (Xi, Yi), i ≥ 1 are identically distributed. Assume that {Xi, i = 0, 1, . . .}
is the sequence of inter-regeneration times (e.g. busy cycles of a queue) and define the

renewal process A(t):

A(t) = inf{n :
n∑

j=0

Xj > t}.

Now let {Yi, i = 0, 1, . . .} denote the number of outputs from the queueing system during

the i’th regeneration cycle. Define the renewal reward process

D(t) =
A(t)−1∑

i=0

Yi.

Then D(t) counts the number of outputs during the interval [0, τ ] where τ ≤ t is the last

regeneration time that is not later than t. It is clear that as long as P (X1 < ∞) = 1, then

the asymptotic variance rate of D(t) is the asymptotic variance rate of the outputs, V .

Let us denote, xk = E [Xk
1 ], yk = E [Y k

1 ] and nk` = E [Xk
1 Y `

1 ]. Smith (1955), presents

a formula for V when x2, y2, n11 < ∞ and the distribution of X1 is spread-out. Brown

and Solomon (1974) extend Smith’s result and approximate the y-intercept of the linear

asymptote. Their result also requires that y3 < ∞ and n12 < ∞. These conditions ensure

that:

Var(D(t)) = V t + B + o(1)

Where the asymptotic variance rate is1:

V =
1
x1

(
x2y

2
1

x2
1

− 2
n11y1

x1
+ y2). (5.1)

Observe that in case of a renewal process, y1 = 1, y2 = 0, n11 = x1 and as expected,

V = x2−x2
1

x3
1

. The formula for B depends on the distribution of the first renewal-reward

1Whitt (2002) obtains a special case of this formula by means of a diffusion approximation when Xi and Yi

are independent.
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pair2, X0, Y0:

B = d− V E [X0] + Var(Y0 − y1

x1
X0).

Where,

d =
5
4

x2
2y

2
1

x4
1

− 2
3

x3y
2
1

x3
1

+ 2
n21y1

x2
1

− 3
x2y1n11

x3
1

+
n2

11

x2
1

+
1
2

x2y2

x2
1

− n12

x1
.

In case (X0, Y0) is identically 0 then B = d.

Other approaches: There are other approaches which we haven’t explored: For example,

one may analyze queueing systems using large deviations theory and strong approximations. A

more classic method is to analyze so-called traffic sets of a Markovian process (cf. Disney and

Kiessler (1987) and Barnes and Disney (1990)). Other important results are related to point
processes in random environments, as in Whitt (2002, pp. 312). We make use of these results

which also require solving Poisson’s equation, in the next chapter.

5.2 The Infinite Buffer Single Server Queue

We have the following theorem:

Theorem 5.1. Consider a single server GI/G/1 queue with inter-arrival and service distribu-

tions having a second moment. Denote the squared coefficients of variation of the inter-arrival

and service times by c2
a and c2

s respectively. Denote by Q(t), the queue level process at time t

and D(t) the cumulative number of departures during the interval [0, t]. Define the asymptotic

variance rate of the outputs:

V = lim
t→∞

Var(D(t))
t

,

whenever the limit exists. Then,

(i) If λ < µ then V = λc2
a for any distribution of Q(0).

(ii) If λ > µ then V = µc2
s for any distribution of Q(0).

This intuitive theorem states that any stable single server queue preserves the asymptotic

variance rate of the arrival process and any unstable single server queue overrides the asymp-

totic variance of the arrival process by that of the service process.

Proof. Case (i) is proved in the same way as Lemma 6.1 in the next chapter. We omit the details.

Case (ii) is immediate because if λ > µ, then after some random time which is finite w.p. 1,

the queue will never empty and produce with a renewal process having asymptotic variance rate

µc2
s

Handling the borderline case of λ = µ appears more complicated. Personal communication

with W. Whitt 2008 along with some simulation experiments indicate that it is possible that the

λ = µ case contains a singularity in terms of the asymptotic variance rate. This is still not clear

and will hopefully be resolved in the near future3.
2It would be somewhat interesting to obtain this formula for single server queueing systems, even for the

M/M/1 queue. It is an open question. It is known that B = 0 when the M/M/1 is stationary by Burke’s theorem.
3B. Fralix (Personal Communication 2008) has independently found a formula for the variance function of the

outputs. His formula is in terms of probabilities of two independent busy period random variables and holds also
for the λ = µ case. It may in principle be used to evaluate the asymptotic variance rate.
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5.3 Example: The Stable M/G/1 Queue

There are some obvious special cases to Theorem 5.1. The simplest is if one considers a station-

ary M/M/1 queue, then by Burke’s theorem the output is Poisson and thus V = λ.

Another case that may be handled is the stable (not necessarily stationary) M/G/1 queue

operating under some work conserving policy. The arrival rate is λ and the service mean is µ−1.

We denote ρ = λ/µ and assume ρ < 1. We further assume that the service time distribution

has a squared coefficient of variation, c2 and a Laplace transform H∗(·). In this case we can

use the renewal reward method discussed in Section 5.1 to obtain the asymptotic variance rate

of the outputs. To do so we need to calculate the first, second and cross moments of the busy

period, idle period and number served during a busy period. Calculation of these first and

second moments is a simple exercise using classic queueing results: functional equations for

transforms of these random variables. For the cross moment, one can use a similar functional

equation for the joint Laplace transform and generating function of both the busy period and

number served (cf. Prabhu (1998))4.

For illustrative purposes, we shall do the reverse: Calculate the cross moment by means

of the asymptotic variance rate. While this calculation does not introduce any new results we

believe that possibly this type of "mean value analysis method" can be useful in other types

of settings in which one knows the asymptotic variance rate and wants to calculate certain

moments or cross moments.

The following functional equations are well known (cf. Kleinrock (1974)):

G∗(s) = H∗(s + λ− λG∗(s)), F ∗(z) = zH∗(λ− λF ∗(z)).

Here G∗(·) is the Laplace transform of the busy period duration and F ∗(z) is the z-transform of

the number of jobs served during the busy period. Differentiating each of the above equations

seperatly and setting s = 0 and z = 1 respectively, we obtain equations for the moments which

are easily solved (separately) to yield the well known results:

E [B] = 1/µ
1−ρ , E [N ] = 1

1−ρ ,

E [B2] = c2+1
µ2(1−ρ)3

, E [N2] = 1+ρ2c2

(1−ρ)3
.

(5.2)

In addition, the idle period is exponentially distributed with rate λ, so,

E [I] =
1
λ

, E [I2] =
2
λ2

. (5.3)

We now use Theorem 5.1 for the left hand side and formula (5.1) for the right hand side of the

equation:

λ =
1

E [B + I]

(
E [(B + I)2]E [N2]

(E [B + I])2
− 2

E [N ]E [(B + I)N ]
E [B + I]

+ E [N2]
)

.

Here Xi are taken to be busy cycles composed of a busy period and idle period. And Yi are the

number of jobs served during a busy cycle (also during a busy period). Now we may plug in,

4An alternative derivation is due to personal communication with Y. Kerner and D. Perry, August 2008.
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(5.2) and (5.3) and use the fact that I and N are independent. Solving, we obtain:

E [NB] =
1 + ρc2

µ(1− ρ)3
(5.4)

We shall make use of this result in the next section.

5.4 Example: Inherently Stable Push-Pull Network

We are interested in the asymptotic variance rate of outputs of the push-pull network (de-

scribed in Chapters 2 and 4). In Chapter 7 we use a diffusion limit to obtain it for both the

inherently stable case and the inherently unstable case under general processing times. For

illustration, we now derive the asymptotic variance of the outputs for a special case of the

push-pull network using the renewal reward method described above.

Consider the push-pull network as described in Chapter 4 operating in the inherently stable

case (λ1 < µ1 and λ2 < µ2) under a pull-priority preemptive policy. Assume that the process-

ing times of the push operations are exponentially distributed and the processing times of the

pull operations have some general distribution functions H1(·) and H2(·) with finite second

moments and coefficients of variation c2
1 and c2

2.

As we described in previous chapters, the behavior of the network in this case is like two

alternating single server queues. Also, since the push operations are exponential, every time

the system empties is a regeneration epoch. We can thus employ the renewal reward method

to evaluate the asymptotic variance rate of outputs. We shall do all calculations for the outputs

of type 1, the calculation for output of type 2 is symmetric.

We now look at the sequence of times between successive returns to an empty system.

Since the process is regenerative, we may analyze one such cycle. Denote the cycle time, X .

Also, denote by ξ an indicator random variables that takes 1 when the first push operation to

complete during a start of a cycle is of type 1 and takes 0 otherwise. Denote by Ĩ , the duration

of the period until the first push operation (this is similar to the idle-period). Denote by B1 the

duration of a busy period of type 1 and B2 the duration of a busy period of type 2. Then:

X =d Ĩ + ξB1 + (1− ξ)B2, X2 =d Ĩ2 + ξ(B2
1 + 2ĨB1) + (1− ξ)(B2

2 + 2ĨB2),

where the above equalities are in distribution. The reward, Y and its square, equals:

Y = ξN1, Y 2 = ξ2N2
1

where N1 is distributed as the number of jobs of type 1 served during a busy period. Also,

XY =d ξ(N1Ĩ + N1B1).

Now ξ is independent of N1 and Ĩ . And N1 is independent of Ĩ . We also have,

E [ξ] =
λ1

λ1 + λ2
, E [Ĩ] =

1
λ1 + λ2

, E [Ĩ2] =
2

(λ1 + λ2)2
. (5.5)
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Now the ingrediants of (5.2), (5.4) and (5.5) are ready to plug into:

n11 = E [ξ](E [N1]E [Ĩ] + E [N1B1]),

x1 = E [Ĩ] + E [ξ]E [B1] + (1− E [ξ])E [B2],

x2 = E [Ĩ2] + E [ξ](E [B2
1 ] + 2E [Ĩ]E [B1]) + (1− E [ξ])(E [B2

2 ] + 2E [Ĩ]E [B2]),

y1 = E [ξ]E [N1],

y2 = E [ξ]E [N2
1 ].

The above is substituted into (5.1), and after considerable simplification we obtain the

asymptotic variance rate of type 1 outputs:

V 1 =
λ1µ1

(µ1µ2 − λ1λ2)3

(
λ1λ2µ1µ2(1 + c2

2)(µ1 − λ1) + (λ2
1λ

2
2c

2
1 + µ2

1µ
2
2)(µ2 − λ2)

)
. (5.6)

The expression for V 2, the asymptotic variance rate of outputs of type 2 is symmetric. As stated

previously, this result will be generalized in Chapter 7.

Discussion

For illustration let us evaluate (5.6) for the symmetric exponential case with unit service time

of the pull activities: λ1 = λ2 = λ, µ1 = µ2 = 1 and c2
1 = c2

2 = 1:

V 1 =
λ

λ + 1

(
1 + 1

λ2

1− 1
λ2

)2

In this case, the output rate as specified in Chapter 2 or Chapter 4 is:

ν1 =
λ

λ + 1
.

So the limiting index of dispersion of counts (V 1/ν1) grows to infinity as λ increases to 1 (µ). It is

simple to observe that the push-pull network is congested when λ ≈ µ (the reader should keep

in mind that this is not the typical congestion level that is associated with high utilization as in

standard queueing systems). Thus the outputs of the push-pull network become more variable

(in the sense of limiting index of dispersion of counts) as the system becomes more congested.

This behavior is different from a GI/G/1 queue in which the limiting index of dispersion of

counts is constant for any congestion level. And is also different from the BRAVO phenomena

that we detail in the next Chapter.

The above observations tempt us to consider the following question: Find control policies for
the push-pull network that minimize the limiting index of dispersion of counts while maintaining full
utilization and stable queues. Indeed it seems possible that one can "improve" the pull-priority

policy that we have just analyzed in that respect. To our surprise, the diffusion limit result that

we present in Chapter 7 has shown us that the asymptotic variance rate of outputs (or limiting

index of dispersion of counts) is insensitive to the scheduling policy.
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CHAPTER 6

ASYMPTOTIC VARIANCE RATE OF
FINITE QUEUE OUTPUTS

In this chapter we analyze the asymptotic variance rate of outputs of some of the most fun-

damental queueing systems: Finite capacity birth-death queues. In general, output processes

of one-pass single class systems and their second moments have been studied extensively, cf.

the surveys Reynolds (1975); Daley (1976); Disney and Konig (1985). For finite state space loss

systems, the overflow process has received a considerable amount of attention, cf. Cinlar and

Disney (1967); van Doorn (1984); Branford (1986); Pourbabai (1987); Berger and Whitt (1992);

Whitt (2004); Parthasarathy and Sudhesh (2005). Fewer papers have considered the output

process of loss systems, cf. Disney and de Morais (1976); Barnes and Disney (1990); Neuts and

Li (2000)) and to the best of our knowledge none have analyzed the asymptotic variance rate

of the outputs.

This chapter is organized as follows: Section 6.1 is an introduction. In Section 6.2 we present

some chapter specific notation and fundamental results that are used throughout. In section 6.3

we state and prove the main theorem of this Chapter. In section 6.4 we analyze the M/M/1/K

queue. In Section 6.5 we further discuss the BRAVO effect. The contents of this chapter was

published in Nazarathy and Weiss (2008a).

6.1 Introduction

Let Q = {Q(t), t ≥ 0} be the number of jobs in a queueing system and assume that it is an

irreducible, stationary continuous time Markov chain (CTMC) with a birth-death structure on

the finite state space {0, . . . , K}. Let D = {D(t), t ≥ 0} be the output process associated with the

queue: D(0) = 0 and D increases by 1 when Q decreases. It can be shown that the expectation

and the variance functions of D are O(t) (cf. formulas (6.9, 6.10) and accompanying discussion

and references) and may thus be described by the flow rate, λ∗ and asymptotic variance rate, V̄D:

E [D(t)] = λ∗t (6.1)

Var(D(t)) = V̄Dt + o(t) (6.2)
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Figure 6.1: M/M/1/K: λ∗ (top curve) and V̄D (bottom curve) as a function of λ when µ = 1 for
various buffer sizes.

Figures 6.1 and 6.2 display V̄D for different parameter values of the M/M/1/K queue with

arrival rate λ and service rate µ. The plots may be partially understood as follows: For λ ¿ µ

the finite queue is hardly ever full and it behaves almost like an M/M/1 queue. In the M/M/1

queue, reversibility arguments imply thatD is a Poisson process (cf. Kelly (1979)), and thus for

M/M/1/K we expect V̄D ≈ λ∗ ≈ λ when λ ¿ µ. For λ À µ the queue is almost always full

and thus the outputs are similar to a Poisson process with rate µ so we expect V̄D ≈ λ∗ ≈ µ

when λ À µ. The behavior of the plots of V̄D when λ ≈ µ is not easily explained: There is

a pronounced decrease to a value of approximately 2
3λ. To the best of our knowledge, this

phenomenon has not been documented previously. We loosely refer to this as the BRAVO

effect which stands for: Balancing Reduces Asymptotic Variance of Outputs. Our results

show that BRAVO occurs in a variety of finite capacity queueing models with losses.

Still focusing on the M/M/1/K queue as an example, notice that while it can be shown

that the process which is the sum of the outputs and the overflows is Poisson, D by itself is not

Poisson. One may attempt to evaluate the asymptotic variance rate by treating D as a renewal

process. In this case V̄D = c2λ∗ where c2 = σ2

m2 denotes the squared coefficient of variation

(SCV) of the stationary inter-output time having expectation m and variance σ2 (cf. Asmussen

(2003), pp. 161). Variations of this method have been used to approximate inter-node flows

in queueing networks (cf. Whitt (1982), Whitt (1983b) and references therein, or our review in

Chapter 1). But it is known that the output process of most finite buffer queueing systems is

not a renewal process (cf. Disney and Konig (1985), Section VII) and thus there is no theoretical
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Figure 6.2: M/M/1/40: V̄D as a function of λ and µ.

justification for approximating V̄D using a renewal process. In fact, this type of approximation

may yield completely incorrect results when the service rate and arrival rate are similar. For

example, in the M/M/1/K queue case, the renewal approximation yields V̄D
λ∗ = 1 for λ = µ,

while the actual value is nearly 2
3 .

The probability law of D has been thoroughly researched. It is a Markov Renewal Process

and also a Markovian Arrival Process (MAP) (cf. Asmussen (2003) and Disney and Kiessler

(1987)). It is possible numerically to compute V̄D, and even Var(D(t)) for any t, using well

established matrix analytic results (see formulas (6.10) and (6.11) and references Naryana and

Neuts (1992) and Neuts and Li (2000)). An alternative method for calculation is by the renewal

reward approach that we described in Chapter 5. Thus, discovery of BRAVO did not require

any new machinery.

Our results that we present in this Chapter are as follows: Part (i) of our main theorem

(Theorem 6.1) is the formula V̄D = λ∗ +
∑K−1

i=0 vi, where vi, i = 0, . . . ,K − 1 are expressions

based on the birth and death rates. When applied to the M/M/1/K queue this formula yields

a simple closed form expression. Part (ii) shows that when the birth rates are non-increasing

and the death rates are non-decreasing (as is the case in many queueing systems), vi < 0 for

i = 0, . . . ,K−1 and hence, V̄D
λ∗ , the limiting index of dispersion of counts (cf. Cox and Isham (1980))

is less than unity. For the M/M/1/K queue we also derive additional results: an expression for

the asymptotic correlation between the output and overflow processes and an expression for

the y-intercept of the linear asymptote of Var(D(t)) for the balanced case.

The proof of Part (i) of our main theorem relies on a complementary result (Proposition 6.2)

which relates to a class of MAPs that count every transition of a CTMC. We show that such

MAPs have an associated Markov Modulated Poisson Process (MMPP) which has the same

expectation and variance functions as the original MAP. This result may be of independent

interest.

6.2 Preliminaries

We now introduce further notation and preliminary results that will be used.
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Birth-Death CTMCs: We assume throughout thatQ is a finite state space stationary birth-

death process with generator matrix:

Λ =




−λ0 λ0 0
µ1 −(µ1 + λ1) λ1

. . . . . . . . .
µK−1 −(µK−1 + λK−1) λK−1

0 µK −µK




(6.3)

The birth rates are λ0, . . . , λK−1 > 0 and the death rates are µ1, . . . , µK > 0. The stationary

probability distribution π = {πi, i = 0, . . . ,K} is the solution of the equations: πΛ = 0,

π1 = 1, where we take π to be a row vector, 0 to be a row vector of 0s and 1 to be column

vectors of 1s. It is well known that the stationary distribution is:

πi =
λ0 · . . . · λi−1

µ1 · . . . · µi
π0, where π0 is such that π sums to 1. (6.4)

We also have that the flow rate is:

λ∗ =
K−1∑

i=0

πiλi =
K∑

i=1

πiµi (6.5)

We shall also be interested in systems for which λ0 ≥ . . . ≥ λK−1 and µ1 ≤ . . . ≤ µK .

Examples include M/M/c/K queue where service effort is increased when more customers

are present, as well as systems where queue build up discourages arrivals.

Traffic Processes: In addition to the output process D, we shall also be interested in the

following counting processes: Let A = {A(t), t ≥ 0} count arrivals, E = {E(t), t ≥ 0} count

entrances (admissions) and L = {L(t), t ≥ 0} count overflows (jobs that arrive to a full system

and are thus immediately lost). Immediate relations are:

A(t) = E(t) + L(t) (6.6)

E(t) = Q(t) + D(t) (6.7)

We shall also make use of the process M = {M(t), t ≥ 0} defined as follows:

M(t) := E(t) + D(t) (6.8)

M counts the number of transitions in the birth-death state space. The asymptotic variance

rates of the processes Q, A, E , L and M are defined similarly to V̄D (see (6.2)) and are labeled

V̄Q, V̄A, V̄E , V̄L and V̄M respectively. Note that when A is Poisson with rate λ, V̄A = λ, and

that V̄Q = 0 because 0 ≤ Q(t) ≤ K.

The following lemma is a version of Theorem 5.1 from the previous chapter for finite ca-

pacity queues. It shows that analysis of the entrances, outputs or transitions in terms of the

asymptotic variance rate is equivalent:

Lemma 6.1. V̄E = V̄D = 1
4 V̄M
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Proof. Using (6.7) we have, V̄E = V̄Q + V̄D + 2CovQ,D where,

CovQ,D := lim
t→∞

Cov(Q(t), D(t))
t

,

is the asymptotic covariance rate of the pair (Q,D). Using (6.8) and (6.7) we have M(t) =

Q(t) + 2D(t) and thus

V̄M = V̄Q + 4V̄D + 4CovQ,D

The result follows since CovQ,D and V̄Q are 0. To show that CovQ,D = 0 we note:

| Cov(Q(t), D(t))√
Var(Q(t))(V̄Dt + o(t))

| ≤ 1

which implies that Cov(Q(t), D(t)) = O(
√

t), and hence CovQ,D = 0.

MAPs: We now briefly review Markov Arrival Processes (MAPs) and define the specific

MAPs that are used throughout this chapter. A brief description of MAPs is in Asmussen

(2003), Chapter XI, Section 1a, more examples, results and applications are in Breuer and Baum

(2005) and Latouche and Ramaswami (1999). A MAP, N = {N(t), t ≥ 0}, is a counting pro-

cess specified by a generator matrix, Q, of a finite irreducible CTMC on the states {0, . . . , K}
with stationary distribution η (row vector), and two matrices, C, D such that Q = C + D. C

has negative diagonal elements and non-negative off-diagonal elements. D is a non-negative

matrix. We choose to refer to D by the name: event intensity matrix 1.

N evolves as follows (loosely stated): When a CTMC (with generator Q) makes a transition

from state i to state j at time t, N(t) is incremented w.p dij/qij . Further, during time intervals

at which the CTMC is in state i, N(t) is incremented by a Poisson process with state dependent

rate: dii. Thus the non-diagonal elements of D specify the proportion of transitions that are

to be counted and the diagonal elements, allow to increase N by a Poisson process that is

modulated by the state of the CTMC.

We assume that N has stationary increments, which occurs when the initial distribution of

the underlying CTMC, with the generator Q, is η. The following results are summarized in

Asmussen (2003):

E [N(t)] = ηD1 t (6.9)

Var(N(t)) = {ηD1− 2(ηD1)2 − 2ηDQ−D1}t + 2ηDQ−(eQt − I)Q−D1 (6.10)

Where Q− = (Q − 1η)−1 and I is the identity matrix. We may express Var(N(t)) without

the matrix exponential as:

Var(N(t)) = V̄N t + B̄N + O(t3r+2e−bt)

for some integer r and b > 0 (cf. Asmussen (2003)). Here the asymptotic variance rate, V̄N , and

the y-intercept of the linear asymptote, B̄N , are given by:

V̄N = ηD1− 2(ηD1)2 − 2ηDQ−D1 (6.11)

B̄N = 2(ηD1)2 − 2ηDQ−Q−D1 (6.12)
1Note that in other texts, the term ”arrival” is generally used to refer to events because MAPs are often used

to model arrival processes. Here we use ”event” to avoid confusion.
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Clearly M and D are MAPs. With the exception of the numerical results of section 6.5, all

of the MAPs that we use have the birth-death generator matrix Λ as in (6.3). This implies that

the event intensity matrix is all that is required to specify a MAP. The event intensity matrices

for D and M are:

DD =




0 0 0

µ1
. . . 0

µ2
. . . . . .
. . . . . . 0

0 µK 0




(6.13)

DM =




0 λ0 0

µ1
. . . λ1

µ2
. . . . . .
. . . . . . λK−1

0 µK 0




(6.14)

It is easily verified that E [D(t)] = λ∗t and E [M(t)] = 2λ∗t.

Fully Counting MAPs and Markov Modulated Poisson Processes: We define Fully
Counting MAPs as MAPs for which the event intensity matrix consists of all the off diagonal

elements of the generator Q, i.e. D = Q − diag(Q), where diag(Q) is a diagonal matrix with

the same diagonal as Q. In a fully counting MAP, all the events are state transitions of the

underlying CTMC and every state transition of the underlying CTMC is an event, so that N(t)

is the number of all the transitions of the underlying stationary CTMC with generator Q, over

the period [0, t]. Note that M is a fully counting MAP but D is not.

When the event intensity matrix D of a MAP is a diagonal matrix then the MAP is a Markov

Modulated Poisson Process (MMPP). All the events of a MMPP are generated by a doubly

stochastic Poisson process whose rate is a function of the state of the underlying CTMC. A

comprehensive reference about MMPPs is Fischer and Meier-Hellstern (1992).

Fully counting MAPs and MMPPs are in a sense the extreme cases of MAPs. In a MMPP,

the events do not coincide with state transitions (with probability 1). In contrast, in a fully

counting MAP the events are precisely all the transitions of the CTMC. An early reference that

analyzes both fully counting MAPs and MMPPs is Rudemo (1973).

Birth-Death MMPPs: Let Ñ be a MMPP, with generator Q having stationary distribution

η. Denote the i’th diagonal element of D by r(i) or ri. This is the rate of events given that the

CTMC is in state i. In example 9.6.2 of Whitt (2002), Whitt shows:

V̄Ñ =
K∑

i=0

riηi + V̄R (6.15)

Here the asymptotic variance rate of the MMPP Ñ , V̄Ñ , is decomposed into two parts, where

the first part is the average of the Poisson rate and the second part, V̄R, is the asymptotic
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variance rate of the integrated rate process, R(t) =
∫ t
0 r(Q(s))ds. The Internet supplement

of Whitt (2002) shows how V̄R may be found from Poisson’s equation for the CTMC (Theorem

2.3.4 of the Internet supplement ). In general this requires solving a system of linear equations

(numerically), but when Q is birth-death, the following result holds (cf. Whitt (1992), formula

(6)):

V̄R = 2
K−1∑

i=0

1
ηiλi

[
i∑

j=0

(rj −
K∑

l=0

rlηl)ηj ]2 (6.16)

We summarize (6.15) and (6.16) of Whitt as a proposition. It is one of the ingredients that yield

the main result of this chapter:

Proposition 6.1. Let Ñ be a MMPP with a birth-death generator matrix Q having birth rates

λi, i = 0, . . . , K − 1 and stationary distribution ηi, i = 0, . . . ,K. Denote the diagonal elements

of the event intensity matrix of Ñ by ri, i = 0, . . . , K. Then the asymptotic variance of Ñ is:

V̄Ñ =
K∑

l=0

rlηl + 2
K−1∑

i=0

1
ηiλi

[
i∑

j=0

(rj −
K∑

l=0

rlηl)ηj ]2.

6.3 Asymptotic Variance Rate of Birth-Death Queues

We now consider a birth and death queue with generator Λ, stationary distribution π and flow

rate λ∗, as in (6.3–6.5). We introduce the following notations, for i = 0, . . . , K − 1:

di := λiπi.

Di :=
∑i

j=0 dj (Note that DK−1 = λ∗).

Pi :=
∑i

j=0 πj .

Mi := Di−1 − λ∗Pi (where we let D−1 := 0).

vi := 2(Mi + M2
i

di
).

Note that by the detailed balance equations, di = µi+1πi+1. Thus Di−1 =
∑i

j=1 µjπj , and

hence Mi measures the difference between the actual rate of outputs observed on the states

{0, 1, . . . , i} and the rate of outputs that would have been observed if the output rate on these

states was uniformly equal to the flow rate, λ∗, independent of the state. Our main result is:

Theorem 6.1. Let Q be a stationary CTMC with a birth-death structure as defined in (6.3–6.5).

(i)

V̄D = λ∗ +
K−1∑

i=0

vi

(ii) If the birth and death rates of Q satisfy λ0 ≥ . . . ≥ λK−1 and µ1 ≤ . . . ≤ µK , then vi < 0

for i = 0, . . . , K − 1 and as a result V̄D
λ∗ < 1.
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Example 6.1. We may verify Theorem 6.1 for the M/M/1/1 queue (This example is also

analyzed in Chandramohan et al. (1985)). This is a 2 state CTMC and it is the only M/M/1/K

queue that has a renewal output process (cf. Disney and Kiessler (1987)). The distribution

of the inter-output times is the convolution of an exponential rate λ and an exponential rate µ

distribution. Thus the expectation is m = 1
λ + 1

µ , the variance is σ2 = 1
λ2 + 1

µ2 and since D is a

renewal processes,

V̄D =
σ2

m3
=

λµ(λ2 + µ2)
(λ + µ)3

Now, P0 = π0 = µ
λ+µ , λ∗ = d0 = λµ

λ+µ , M0 = − λµ2

(λ+µ)2
and v0 = −2 λ2µ2

(λ+µ)3
(notice it is negative).

And we obtain λ∗ + v0 = σ2

m3 .

To prove Theorem 6.1 we use the following result, which is also of independent interest.

Proposition 6.2. Let Q be a generator of a finite state irreducible CTMC. For any 0 ≤ α ≤ 1

let Nα = {Nα(t), t ≥ 0} be a stationary MAP with generator Q and event intensity matrix

Dα = αQ− diag(Q). Then E [Nα(t)] and Var(Nα(t)) are independent of α.

Note that when α = 1 we have a fully counting MAP and when α = 0 we have a MMPP.

Proof. From equations (6.9) and (6.10) we see that E [Nα(t)] and Var(Nα(t)) only depend on

Dα1 and ηDα.

First observe that Dα1 is independent of α: Denote the elements of Q by qij . Q is a

generator matrix so qii = −∑
j 6=i qij , thus i’th element of Dα1 is:

α
∑

j 6=i

qij − (1− α)qii =
∑

j 6=i

qij

Next observe that ηDα is independent of α: Since η is the stationary distribution we have

ηQ = 0. Thus ηDα = αηQ− ηdiag(Q) = −ηdiag(Q).

We are now ready to prove Theorem 6.1:

Proof of (i): Let V̄M̃ be the asymptotic variance rate of the MAP (also MMPP) M̃ =

{M̃(t), t ≥ 0} having the following event intensity matrix:

DM̃ =




λ0 0
µ1 + λ1

µ2 + λ2

. . .
µK−1 + λK−1

0 µK




(6.17)

Denote the diagonal elements of DM̃ by ri, i = 0, . . . ,K. We now have:

4V̄D = V̄M = V̄M̃ =
K∑

l=0

rlπl + 2
K−1∑

i=0

1
πiλi

[
i∑

j=0

(rj −
K∑

l=0

rlπl)πj ]2 (6.18)

The first equality is from Lemma 6.1. The second equality is from Proposition 6.2 by taking

α = 1 for the fully counting MAP, M and α = 0 for the MMPP, M̃ (see (6.14) and (6.17)).
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The third equality is from Proposition 6.1 since M̃ is a Birth and Death MMPP. Now note that∑K
l=0 πlrl = 2λ∗ and

i∑

j=0

(rj −
K∑

l=0

rlπl)πj =
i∑

j=0

λjπj +
i∑

j=1

µjπj − 2λ∗
i∑

j=0

πi = di + 2(Di−1 − λ∗Pi) (6.19)

The first equality follows from direct substitution of rj and the second follows from the detailed

balance equations µiπi = λi−1πi−1 and simplification. Now using the definition of Mi and

substituting (6.19) in (6.18) we get:

4V̄D = 2λ∗ + 2
K−1∑

i=0

d2
i + 4diMi + 4M2

i

di

Noticing that
∑K−1

i=0 di = λ∗, result (i) follows.

Proof of (ii): We use the following two simple inequalities:

(a) For a, b, c, d > 0
a

b
<

c

d
⇔ a

b
<

a + c

b + d
⇔ a + c

b + d
<

c

d

(b) For a, b, c, d,∆ > 0
a

b
≤ c

d
and a < b ⇒ a

∆ + b
<

c

∆ + d

From λ0 ≥ λ1 ≥ · · · ≥ λK−1 we get:

d0

π0
≥ d1

π1
≥ · · · ≥ dK−1

πK−1

and therefore using (a):

D0

P0
≥ D1

P1
≥ · · · ≥ DK−1

PK−1
> DK−1 = λ∗

From µ1 ≤ µ2 ≤ · · · ≤ µK we get:

d0

π1
≤ d1

π2
≤ · · · ≤ dK−1

πK

and therefore using (b):
D0

P1 − π0
≤ D1

P2 − π0
≤ · · · ≤ DK−1

PK − π0

and furthermore, since D0 < D1 < · · · < DK−1 we also have:

0 <
D0

P1
<

D1

P2
< · · · < DK−1

PK
= λ∗.

Hence, for all i = 0, . . . , K − 1,

di + Di−1 − λ∗Pi > 0 > Di−1 − λ∗Pi,

which implies:

Mi < 0 and di > |Mi|
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from which it follows that:

vi = 2(Mi +
M2

i

di
) < 0

(to clarify: di + Mi > 0 > Mi ⇒ di > −Mi > 0 ⇒ di|Mi| > M2
i ⇒ −Mi = |Mi| >

M2
i

di
⇒ 0 >

Mi + M2
i

di
). ¤

Note that the condition on the birth and death rates in Part (ii) implies that the sequence
λi

µi+1
, i = 0, . . . , K − 1 is non-increasing and as a result π is unimodal (cf. Keilson (1979)).

This observation makes it tempting to attempt to generalize the theorem in this direction. The

following example shows that this is not possible:

Example 6.2. Let K = 2, λ0 = 1
3 , µ1 = 1

3 , λ1 = 1 and µ2 = 3
2 . The stationary distribution

is (π0 π1 π2) = (3
8

3
8

1
4). It is unimodal as expected because λi

µi+1
is non-increasing but

v0 = 3
16 , v1 = −1

6 and V̄D
λ∗ = 1 + 1

24 .

6.4 Traffic Processes of M/M/1/K

We now apply Theorem 6.1 to the case where the birth and death rates are constant, λ, µ > 0.

Denote ρ = λ
µ . The stationary distribution and the flow rate are:

πi =

{
1

K+1 ρ = 1
ρi 1−ρ

1−ρK+1 ρ 6= 1 i = 0, . . . , K (6.20)

λ∗ =

{
λ K

K+1 ρ = 1
λ 1−ρK

1−ρK+1 ρ 6= 1

Corollary 6.1. For the M/M/1/K queue:

V̄D =

{
λ 2K2+K

3K2+6K+3
ρ = 1

λ (1+ρK+1)(1−(1+2K)ρK(1−ρ)−ρ2K+1)
(1−ρK+1)3

ρ 6= 1
(6.21)

V̄D
λ∗

=

{
2K+1
3K+3 ρ = 1
(1+ρK+1)(1−(1+2K)ρK(1−ρ)−ρ2K+1)

(1−ρK)(1−ρK+1)2
ρ 6= 1

Proof. Using straight forward (but lengthy) calculations we obtain:

Mi =

{ −λ K−i
(K+1)2

ρ = 1

−λρi (1−ρ)(1−ρK−i)
(1−ρK+1)2

ρ 6= 1
i = 0, . . . ,K − 1

vi =

{
−λ2 (i+1)(K−i)

(K+1)3
ρ = 1

−λ2ρK (1−ρi+1)(1−ρ)(1−ρK−i)
(1−ρK+1)3

ρ 6= 1
i = 0, . . . , K − 1

The result follows from Theorem 6.1 after summation of finite geometric series and simplification.

The following properties of V̄D and V̄D
λ∗ should be noted:

• For fixed K, V̄D and V̄D
λ∗ are continuous in λ and µ for all λ, µ > 0.
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• For fixed λ, µ we have:

lim
K→∞

V̄D =





λ λ < µ
2
3λ λ = µ
µ λ > µ

• For fixed K and fixed C > 0, V̄D and V̄D
λ∗ are symmetric about the point λ = µ on the

interval {(λ, µ) | λ + µ = C, λ, µ > 0} (see also Figure 6.2).

The following corollary formalizes the BRAVO effect for M/M/1/K:

Corollary 6.2. Consider the M/M/1/K queue with λ + µ = C for some C > 0. Then when

λ = µ: V̄D is locally minimized and V̄D
λ∗ is globally minimized.

Proof. Take derivatives and limits of the expressions of Corollary 6.1.

Asymptotic Correlation Between Outputs and Overflows

It is well known and easy to observe that the overflow process, L, is a renewal process. The

overflow rate is of course λ − λ∗. Berger and Whitt, Berger and Whitt (1992) in their equation

(6) derive the SCV for the inter-overflow times. Multiplying these we obtain the asymptotic

variance rate of the overflows 2:

V̄L =

{
λ2K2+4K+3

3K2+6K+3
ρ = 1

λ (ρK−ρ3K+2)(1+ρ)−4(K+1)(1−ρ)ρ2K+1

(1−ρK+1)3
ρ 6= 1

(6.22)

In general, the covariance, asymptotic covariance rate, correlation and limiting correlation

of pairs of traffic processes may be numerically calculated by modeling the queueing system as

a Marked Markovian Arrival Process (MMAP) (cf. He and Neuts (1998)) and using formulas

similar to (6.10) that appear in that reference. For the simple case of the M/M/1/1 queue, an

explicit expression was obtained for the limiting correlation coefficient between the outputs

and the overflows in Chandramohan et al. (1985). We now extend this result:

Corollary 6.3. For the M/M/1/K queue:

lim
t→∞Corr(E(t), L(t)) = lim

t→∞Corr(D(t), L(t)) =





R̄ρ,K ρ < 1

− 1− 1
K

4
√

1+ 5
2K

+ 5
2K2 + 3

4K3

ρ = 1

−R̄ρ,K ρ > 1

where:

R̄ρ,K =
ρ

K
2 K(1− ρ)(1 + 3ρ1+K)− ρ(1− ρK)(3 + ρK+1)√

(1 + ρK+1)(1− (2K + 1)(1− ρ)ρK − ρ2K+1))((1 + ρ)(1− ρ2K+2)− 4(K + 1)(1− ρ)ρK+1))

Proof. In a similar manner to the proof of Lemma 6.1, define the asymptotic covariance rates

CovD,L and CovE,L. We are assured that the covariance functions of these traffic process are

O(t) since Var(D(t)), Var(E(t)) and Var(L(t)) are O(t).
2An alternative derivation of (6.22) is by conditioning L(t) on the occupation time of state K during [0, t],

and using the conditional variance formula. This calculation requires evaluation of the asymptotic variance rate
of the occupation time using formula (6.16).
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Take the variance of equation (6.6), divide by t, take the limit t →∞ and rearrange to arrive

at:

CovE,L =
λ− V̄E − V̄L

2
In a similar manner (and using arguments similar to the proof of Lemma 6.1), obtain:

CovD,L =
λ− V̄D − V̄L

2

Thus from Lemma 6.1 and from substitution of (6.21, 6.22)

CovE,L = CovD,L =

{
−λ K2−K

6K2+12K+6
ρ = 1

−λ (1−ρK)(3+ρK+1)ρK+1−K(1−ρ)(1+3ρK+1)ρK

(1−ρK+1)3
ρ 6= 1

(6.23)

The correlation coefficient is obtained directly from (6.21, 6.22, 6.23) and simplification.

1
2

1 1 1
2

2
Ρ
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-0.6

-0.4

-0.2

0.2

limt®¥Corr HDHtL,LHtLL

K=10
K=40

K=100

Figure 6.3: M/M/1/K: The limiting correlation between entrances/outputs and overflows as a
function of ρ.

Figure 6.3 displays the limiting correlation coefficient for various buffer sizes. Note also the

following properties:

• The limiting correlation is continuous in ρ for all ρ > 0.

• For fixed K, as ρ →∞, the limiting correlation increases to 0.

• For fixed ρ we have:

lim
K→∞

lim
t→∞Corr(D(t), L(t)) =





0 ρ < 1
−1

4 ρ = 1
− 1√

1+ρ
ρ > 1

• For finite K, let ρ̂ := arg max0<ρ<1 R̄ρ,K . Then ρ̂ converges to 1 as K → ∞, and it is

numerically observed that the maximum value converges to limK→∞ R̄ρ̂,K ≈ 0.139772.

• Similarly, let ρ̆ := arg minρ>1−R̄ρ,K . Then ρ̆ converges to 1 as K →∞, and the minimum

value converges to limK→∞−R̄ρ̆,K = − 1√
2
.
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• Summarizing, informally, we see that the limiting correlation attains 3 different values at

the vicinity of ρ = 1 for large K:

lim
t→∞Corr(D(t), L(t)) ≈





0.139772 ρ = 1−

−1
4 ρ = 1

− 1√
2

ρ = 1+

The y-intercept of the Linear Asymptote of Var(D(t))

We now analyze the y-intercept, B̄D according to formula (6.12) (take Q = Λ, η = π and

D = DD). Figure 6.4 presents B̄D as a function of λ for K = 10 and K = 20. Interestingly, B̄D
appears to be maximized when ρ = 1 and the value increases with K. Note that when ρ 6= 1

our calculations indicate that B̄D decreases to 0 as K →∞.

0.0 0.5 1.0 1.5 2.0
Λ

5

10

15

20
BD

K=10

K=20

Figure 6.4: M/M/1/K: B̄D as a function λ when µ = 1.

The values of B̄D in Figure 6.4 were evaluated numerically (each point on the curve requires

inversion of (Λ − 1π) to obtain Λ−). In the balanced case the stationary distribution of the

queue lengths (6.20) is discrete uniform, and we can obtain explicit expressions for the elements

of Λ− and in turn have an explicit expression for B̄D. The following proposition derives this

expression and shows that B̄D for ρ = 1 increases quadratically with K.

Proposition 6.3. For the M/M/1/K queue with ρ = 1 and K ≥ 2:

B̄D =
7K4 + 28K3 + 37K2 + 18K

180K2 + 360K + 180
Proof. For γ > 0 and K ≥ 2, define the K ×K matrix:

Aγ
K =




1 + γ 1− γ 1

1− γ 1 + 2γ
. . .

. . . 1 + 2γ
. . .

. . . . . . . . .
. . . 1 + 2γ

. . .
. . . 1 + 2γ 1− γ

1 1− γ 1 + γ




(6.24)

By Lemma 6.2, its inverse, (Aγ
K)−1, is also a symmetric matrix with elements given by:

ãi,j =
i2 − i + (K + 1− j)2 − (K + 1− j)

2Kγ
− K3 −K − 6γ

6K2γ
i ≤ j (6.25)
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Now observe that Λ− = −(K+1)(Aλ(K+1)
K+1 )−1 and find the elements of Λ−Λ− by multiplication.

These are rather complicated expressions, we omit the details. We now have:

B̄D = 2
(

λ
K

K + 1

)2

− 2
1

K + 1
1′DΛ−Λ−D1

= 2
(

λ
K

K + 1

)2

− 2
λ2

K + 1
(1, . . . , 1, 0)Λ−Λ−(0, 1, . . . , 1)′ (6.26)

The bilinear form in the second term is a summation of all entries of the matrix Λ−Λ−

except for the first column and last row. The resulting expression is:

(1, . . . , 1, 0)Λ−Λ−(0, 1, . . . , 1)′ = −7K4 + 28K3 − (360λ2 − 37)K2 + 18K
360λ2(K + 1)

Plugging this in (6.26) and simplifying we obtain the result.

Lemma 6.2. The elements of the inverse of the matrix (6.24) are as in (6.25).

Proof. Examine the matrix multiplication Rγ
KRγ

K
−1. Denote the entries of the resulting matrix

by ĩi,j . Since both matrices are symmetric it is enough to verify that ĩi,j are elements of the

identity matrix for i ≤ j. We split our calculation into five cases and utilize the identity∑K
l=1 r̃l,j = 1

K
3:

i = j = 1 :

ĩ1,1 = (1 + γ)r̃1,1 + (1− γ)r̃2,1 +
K∑

l=3

r̃l,1

= γ(r̃1,1 − r̃1,2) +
1
K

= 1

i = j = 2, . . . , K − 1 :

ĩi,i =
i−2∑

l=1

r̃l,i + (1− γ)r̃i−1,i + (1 + 2γ)r̃i,i + (1− γ)r̃i+1,i +
K∑

l=i+2

r̃l,i

= −γ(r̃i−1,i − 2r̃i,i + r̃i,i+1) +
1
K

= 1

i = j = K :

ĩK,K =
K−2∑

l=1

r̃l,K + (1− γ)r̃K−1,K + (1 + γ)r̃K,K

= −γ(r̃K−1,K − r̃K,K) +
1
K

= 1

i = 1 and j = 2, . . . ,K :

ĩ1,j = (1 + γ)r̃1,j + (1− γ)r̃2,j + 1
K∑

l=3

r̃l,j

= γ(r̃1,j − r̃2,j) +
1
K

= 0

i = 2, . . . , K − 1

and j = i + 1, . . . ,K :
3The evaluation of this identity as well as several other steps requires some tedious algebraic calculations

involving finite sums.
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ĩi,j =
i−2∑

l=1

r̃l,j + (1− γ)r̃i−1,j + (1 + 2γ)r̃i,j + (1− γ)r̃i+1,j +
K∑

l=i+2

r̃l,j

= −γ(r̃i−1,j − 2r̃i,j + r̃i+1,j) +
1
K

= 0
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Figure 6.5: Matrix plot of the inverse matrix. K = 40. The blue pixels imply negative values
and the brown pixels imply positive values.

The non-constructiveness of the above proof requires some comment: By inspecting ex-

amples (see Figure 6.5), we noticed that the differences between adjacent elements of Rγ
K
−1

increase linearly by 1
Kγ as the indexes get farther from the top right corner or bottom left cor-

ner (see Figure 6.5). More specifically:

r̃i,j = r̃1,K + (
K−j∑

l=1

l +
i−1∑

l=1

l)
1

Kγ
i ≤ j (6.27)

In addition we observe that sum of all elements of Rγ
K
−1 is 1 (this may also be observed by

multiplying (Λ−1π)(Λ−1π)−1 from the left with π and from the right with 1 and remembering

that π is uniform). We are thus able to sum (6.27) on all elements, equate to 1 and solve for r̃1,K

and obtain formula (6.25) which is quadratic in the distances of the indexes i, j from the top

right corner of the matrix. Note also that Rγ
K is a simple case of a Toeplitz-plus-Hankel matrix.

A formula of the generating function of such a matrix is given in Heining and Rost (1988).

Note also that the other results of this section for the case ρ = 1 may also be obtained by

using Lemma 6.2 instead of using Theorem 6.1. 4

4A third method to obtain these results (only for the case ρ = 1) is by conditioning on the occupation time
and using the conditional variance formula.
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Var(D(t)) in the Short Range

We now present numerical examples and results of the variance function for finite t. While our

main finding of this chapter is that balancing reduces Var(D(t)) in the long range (BRAVO),

there is no guarantee that it has the same effect in the short range. In fact, Figure 6.4 hints that

balanced systems may have a higher variance function then unbalanced systems in the short

range since the y-intercept of their linear asymptote is higher.

0 200 400 600 800 t

200

400

600

800
VarHDHtLL

BD

Ρ=1

Ρ=0.8

Linear Asymptote V D=
0.6425

Figure 6.6: M/M/1/40: V ar(D(t)) for µ = 1 and two different arrival rates. Heavy curve is for
λ = 1 (balanced). Light curve is for λ = 0.8 (unbalanced). Dashed line is linear asymptote of
balanced case.

This is illustrated in Figure 6.6. Here we compare the variance function, Var(D(t)), of a

balanced system to that of a system with ρ = 0.8. We plot the variance function (heavy curve)

and its linear asymptote (dashed line) for the balanced system, and the variance function for

the unbalanced system (light curve). Both are calculated for K = 40, using formula (6.10). It

is observed that for the balanced system, the slope of the variance function is steeper than the

asymptotic variance rate for small t and nears the asymptotic variance rate of approximately 2
3

as time progresses. On the contrary the slope of the variance function of an unbalanced system

almost equals the asymptotic variance (approximately 0.8, with negligible intercept) from the

outset. As a result, the unbalanced system has a slightly lower variance function for values of

t smaller than approximately 350.

To further understand the short-term behavior we performed extensive calculations in which

we compared the variance of the output process of balanced M/M/1/K queues,D1 = {D1(t), t ≥
0}, to that of unbalanced queues, with arrival rates λ and service rates µ = 2 − λ, given by
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Dλ = {Dλ(t), t ≥ 0}. We define:

T̄λ := inf{t > 0 | Var(D1(t)) ≤ Var(Dλ(t))}

Stated informally, T̄λ is a measure of the time it takes the BRAVO effect to "kick-in" when

comparing a balanced system to an unbalanced one. We evaluated T̄λ only for λ for which

V̄D1 < V̄Dλ
. It is infinite otherwise. The range of these λ’s varies with K and as K → ∞ the

range converges to (2
3 , 4

3). Figure 6.7 shows T̄λ as a function of λ for K = 10, 20, 30. We

observe the following:

• 0 < T̄λ < ∞ for all λ 6= 1 that satisfy V̄D1 < V̄Dλ
. The fact that T̄λ 6= 0 shows that indeed

the unbalanced systems have a lower variance in the short range (during the time interval

[0, T̄λ) ).

• For fixed λ 6= 1, T̄λ increases with K. In fact, for λ far enough from 1, a simple approx-

imation for T̄λ may be achieved by calculating the intersection of the linear asymptote

of the balanced system (it is given by Corollary 6.1 and Proposition 6.3) and an approx-

imation of the linear asymptote of an unbalanced system taking the y-intercept to be 0

and the asymptotic variance rate to be λ. According to this approximation, T̄λ increases

quadratically with K.

• For λ = 1− and λ = 1+ we observe T̄λ ≈ K + 1 and the approximation quickly becomes

accurate when K increases. Note that T̄1 is trivially 0 and thus there is a singularity in the

function T̄λ at λ = 1. We do not have any intuitive explanation for the value of K + 1 at

the moment.

6.5 More on BRAVO

For the M/M/1/K queue, our intuition for BRAVO is as follows: Since the asymptotic variance

rate of the transitionsM and the outputs D are the same up to a constant we can gain intuition

by considering the transitions process. Now it can be seen that the rate of transitions incurred

on states {1, . . . , K − 1} is λ + µ while the rates of transitions on the edge states, 0 and K are

λ and µ respectively. Observing the steady state distribution, (6.20), we see that when λ = µ

the system spends very little time on the edge states and thus the "modulation" between rates

λ + µ and λ or µ is minimal. On the contrary when λ 6= µ the system often switches between

an edge state and a non-edge state and thus there is substantial "modulation" in the transition

rates and as a result the variance of the transition process is greater.

This intuition does not immediately carry over to more complex systems but the BRAVO

effect does. We now show some examples.

M/M/c/K

The M/M/c/K queue with 1 ≤ c ≤ K is an example a of a birth-death queue with monotone

rates (the birth rates are constant and the death rates are increasing). While Theorem 6.1 is
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applicable to this system, the calculation of the normalization constant of the stationary distri-

bution does not simplify and thus we are not able to obtain simple a formula for V̄D except for

the case c = 1 (Section 6.4). Nevertheless, the computation of V̄D using the formula of 6.1 is

simpler and more efficient than using the matrix formula (6.11).

Figure 6.8 shows that the BRAVO effect appears in the M/M/c/K queue: in this case

"balancing" implies setting λ = cµ. The thick curve is for the Erlang loss system (c = K)

with K = 40 to which we compare other systems. It is apparent that as the number of servers

decreases, the asymptotic variance rate normalized by the number of servers increases. Alter-

natively, keeping the number of servers equal to the buffer size and decreasing the number of

servers causes a decrease in the asymptotic variance rate normalized by the number of servers.

We do not yet have an intuitive explanation for BRAVO in the M/M/c/K.

Non Exponential Distributions

We now consider some examples of GI/G/1/K using phase-type distributions (cf. Breuer and

Baum (2005)). We let the inter-arrival and/or service time distributions be generated by se-

quences of i.i.d Erlang random variables, {E1, E2, . . .}, and i.i.d hyper-exponential random

variables, {H1, H2, . . .}:

E1 ∼ Erlang(2, 2)

H1 ∼
{

exp(1
2) w.p 1/3

exp(2) w.p 2/3

Note that: E [E1] = E [H1] = 1, the SCV of E1 is 1
2 and the SCV of H1 is 2. We denote the

queueing systems with the four possible combinations of inter-arrival and service distributions

by: E/E/1/K, H/H/1/K, E/H/1/K and H/E/1/K. In all our examples we set µ = 1 and scale

the corresponding sequences of inter-arrival or service times by 1
λ .

These are simple examples of PH/PH/1/K queues and are represented by a CTMC with

2 + 4K states (in this example, both E1 and H1 are PH distributions with 2 phases). Now

using formula (6.11) for various values of λ we obtain Figure 6.9. The solid curves are for the

E/E/1/K and H/H/1/K cases. The dashed curves are for the E/H/1/K and H/E/1/K cases.

When λ À µ we expect the asymptotic variance rate to be determined by the service dis-

tribution. This is because the server is almost always busy and thus we almost have a renewal

output process with asymptotic variance µ c2
S (where c2

S is the SCV of the service distribution).

Similarly, when λ ¿ µ, we expect the asymptotic variance rate to be determined by the inter-

arrival distribution. This is because the overflow rate is very small and thus A(t) ≈ Q(t)+D(t).

Now, since Q(t) is bounded, V̄D ≈ V̄A = λ c2
A (where c2

A is the SCV of the inter-arrival distribu-

tion).

Now consider the case where λ ≈ µ: In the E/E/1/K and H/H/1/K systems (same SCV

for inter-arrival and service distributions) we clearly observe the BRAVO effect: these curves

have a pronounced local minimum at the vicinity of ρ = 1.

In the E/H/1/K and H/E/1/K systems, we observe a "smoothed step" in V̄D at the vicinity

of ρ = 1 between the values, 2 and 1
2 (approximately for finite K). This is due to the fact that
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for λ ¿ µ we have V̄D ≈ λ c2
A and for λ À µ we have V̄D ≈ µc2

S and c2
A 6= c2

S and is not directly

due to the BRAVO effect. Nevertheless, we believe that traces of the BRAVO effect appear in

the local minima (marked by ’∗’ in the figure) at λ ≈ 0.9 for the E/H/1/K case and λ ≈ 1.1 for

the H/E/1/K case.

A further observation is that when c2
A = c2

S , the BRAVO effect appears to have the same

"magnitude" as that of the M/M/1/K case: a reduction of the asymptotic variance rate by a

factor of 2
3 for large K. This observation is demonstrated in Figure 6.10 where we summarize

results of several PH/PH/1/K systems with service and inter-arrival distributions having SCV:
1
2 , 1, 6

5 , 3
2 , 2. These are calculated using Erlang, exponential and hyper-exponential distribu-

tions as before.

Discussion

The results presented here were motivated by the practical question of calculating the asymp-

totic variance rate of the output of finite birth and death queues. We found that this variance

rate is optimized when the input rate and service rate are balanced, BRAVO. In deriving these

results we discovered some unexpected phenomena, for which we do not yet have sufficient

explanations.

Firstly, there is the "2
3 phenomenon", which we proved for M/M/1/K: in summary, when

ρ = 1 and K → ∞ the asymptotic variance rates of the outputs and of the overflows are the

same and equal 2
3λ and this is possibly true for any choice of distribution of service and inter-

arrival times as long as c2
A = c2

S . We note that the value of 2
3 for the asymptotic variance rate

of the overflow process has been well known, as in the formula (6.22) which is due to Berger

and Whitt. See also Theorem 5.7.4 of Whitt (2002), as well as Williams (1992). A well known

fact is that the asymptotic variance of integrated Brownian motion with σ2 = 2 is 2
3 (cf. Parzen

(1962)). We do not see an immediate connection here but suspect there may be one.

Further surprises which our analytic and numeric results show took the form of singular-

ities that occur in the M/M/1/K queue at the point ρ = 1 when K → ∞: (a) The y-intercept

of the linear asymptote of the variance function is maximized and approaches a delta function.

(b) The limiting correlation coefficient between the outputs and the overflows exhibits a sharp

change of sign. (c) The graph of T̄λ has a singular point, dropping from the values of ≈ K + 1

to 0. It is plausible that all these are closely related, and may hold for general inter-arrival and

service distributions. The details are yet to be discovered.
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CHAPTER 7

DIFFUSION SCALE ANALYSIS OF
OUTPUTS

In this final chapter we present a method for finding diffusion limits of output processes of

queueing networks with infinite virtual queues. Such diffusion limits are useful for to obtaining

expressions for the asymptotic variance rate of outputs. Most of the analysis is for the example

push-pull network discussed in Chapters 2, 4 and 5. In addition we present results for infinite

supply re-entrant lines. Some of the contents of this chapter was published in Nazarathy and

Weiss (2008c), along with the results of Chapter 4.

In Section 7.1 we repeat the definition of the push-pull model once again. This is here for

convenience. We now make the additional assumption, (A3) that the processing times have a

second moment. In Section 7.2 we present a diffusion limit theorem for the push-pull network.

We continue in Section 7.3 where we discuss the covariance structure of the push-pull output

processes and compare them to the KSRS network. In Section 7.4 we present diffusion limits

for the output process of infinite supply re-entrant lines. In Section 7.5 we discuss the fact the

diffusion limits presented are actually insensitive to the exact policy used.

7.1 Push-Pull Model, Again in Brief

We have already defined the push-pull network in Chapter 2 and again in Chapter 4. For con-

venience we briefly repeat the definition as in Chapter 4 with the addition of a third assumption

regarding second moments of the processing times.

The push-pull network consists of two servers, numbered 1, 2 and two types of jobs numbered

1, 2 each of which is processed by both servers. Type 1 is processed by server 1 and then by

server 2, while type 2 is first processed by server 2 and then by server 1. We call the first step a

push of each type a push activity and the second step a pull activity. We denote by Qi(t), i = 2, 4

the number of jobs in the two queues at time t (including the job in process), and by Di(t), i =

1, 2, 3, 4 the number of jobs that have completed activity i in the time interval [0, t]. When

Q4(t) > 0, server 1 can either pull, by serving a type 2 job from Q4(t) or push, by serving a



type 1 job from the infinite supply. When Q4(t) = 0 server 1 can still always push jobs of type

1. Hence, server 1 never needs to idle. Similarly for server 2. The long term average processing

time for activity i is 1/µi, i = 1, 2, 3, 4. Let θi, i = 1, 2, 3, 4 be the long term fraction of time spent

in activity i and let νi be the long term average rate of the departure process Di, i = 1, 2, 3, 4.

Then as explained previously we get:

ν1 = ν2 =
µ1µ2(µ3 − µ4)
µ1µ3 − µ2µ4

, ν3 = ν4 =
µ3µ4(µ1 − µ2)
µ1µ3 − µ2µ4

.

We consider preemptive resume head of the line policies for the inherently stable case and

inherently unstable case:

Inherently stable network: When µ1 < µ2 and µ3 < µ4, service of each type of jobs alone,

by its second server, is a stable single server queue. In this case the policy which we use is

preemptive resume head of the line priority for pull activities 4 and 2 over push activities

1 and 3. We refer to this as Case 1, and to the policy as pull priority policy.

Inherently unstable network: When µ1 > µ2 and µ3 > µ4, service of each type of jobs

alone, by both servers results in an unstable single server queue. A policy that works

here is that while Q2(t) is below some threshold level server 1 will push work to server 2,

and server 1 will only pull from Q4(t) when Q2(t) is above the threshold, with a similar

rule for server 2. We use a linear threshold to determine pull or push preemptive head

of the line priority. We define a family of such policies, each determined by a pair of

constants κ1, κ2 which satisfy κ1 > µ3

µ1
, κ2 > µ1

µ3
:

Server 1: Priority to pull activity 4 over push activity 1 if 0 < Q4(t) < κ1Q2(t).

Server 2: Priority to pull activity 2 over push activity 3 if 0 < Q2(t) < κ2Q4(t).

We refer to this as Case 2, and to the policy as linear threshold policy, see Figure 4.2.

We assume that the processing durations of the jobs in activity i = 1, 2, 3, 4 are drawn from

a sequence of positive random variables: ξi = {ξj
i , j = 1, 2, . . .}. The assumptions that we

make regarding the processing durations are the same as in Chapter 4 with the addition of

assumption (A3) which requires existence of second moments, with squared coefficients of

variation c2
i :

(A1) lim
n→∞

∑n
j=1 ξj

i

n
=

1
µi

, a.s.

for some µi ∈ (0,∞), i = 1, 2, 3, 4.

(A2)





(a) ξi, i = 1, 2, 3, 4
are mutually independent i.i.d.

(b) P (ξ1
i ≥ x) > 0 for all x > 0, i = 1, 3.

∃ki
0 > 0, qi(·) ≥ 0 with

∫∞
0 qi(x)dx > 0 :

P (ξ1
i + . . . + ξ

ki
0

i ∈ dx) ≥ qi(x)dx, i = 1, 3.
(b′) Compact sets are petite.

(A3) µ2
i Var(ξ1

i ) = c2
i ,

for some c2
i ∈ [0,∞), i = 1, 2, 3, 4.
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We associate counting processes with each activity i:

Si(t) = sup{n :
n∑

j=1

ξj
i ≤ t}, t ≥ 0.

We denote by Ti(t), i = 1, 2, 3, 4, the total time that the server allocates to the processing of

activity i during the interval [0, t]. We require that Ti(0) = 0 and that Ti(·) be nondecreasing.

Under our policies of full utilization, the servers never idle, thus:

T1(t) + T4(t) = t, T2(t) + T3(t) = t. (7.1)

Note that Ti(·) are Lipschitz, and are therefore absolutely continuous. Thus their derivative

exists almost everywhere with respect to Lebesgue measure on [0,∞). The number of jobs that

have completed processing of activity i by time t is Di(t) = Si(Ti(t)). Let Qi(0), i = 2, 4 be the

initial queue lengths. The number of jobs at time t is:

Qi(t) = Qi(0) + Di−1(t)−Di(t), i = 2, 4. (7.2)

We further require that Qi(·) ≥ 0 for i = 2, 4.

In Chapter 4 we studied the network under fluid scaling by considering the six dimen-

sional network process Y (t) = (Q(t), T (t)) parameterized by n = 1, 2, ... as follows: For each

n set the initial queue lengths as Qn(0), and let Y n(t) be the network process starting from

this initial condition, where all the Y n share the same sequences of random processing times

ξi, i = 1, 2, 3, 4. Denote by Y n(t, ω) the realization of the n’th network process for some ω in the

sample space. We defined fluid scalings as:

Ȳ n(t, ω) =
Y n(nt, ω)

n
.

A function Ȳ (t) = (Q̄(t), T̄ (t)) is said to be a fluid limit of our network if there exists a sequence

of integers r →∞ and a sample path ω such that:

Ȳ r(·, ω) → Ȳ (·), u.o.c.

Under the above conditions (without requiring assumption (A3)) we have shown in Chap-

ter 4:

(R1) T̄n(t) → T̄ (t) = θt and D̄n(t) → D̄(t) = νt u.o.c as n →∞.

(R2) Qi(t), i = 1, 2, 3, 4 has a stationary limiting distribution.

Result (R1) was obtained in Corollary 4.1 and result (R2) is an immediate consequence of the

positive Harris recurrence shown in Theorem 4.2. We shall now use the results (R1) and (R2) to

obtain a diffusion limit.
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7.2 A Diffusion Limit for the Push-Pull Network

We assume (A1), (A2) and (A3) and consider the behavior of the push-pull network under

diffusion scaling. We find that the queues are 0 on the diffusion scale, and the output processes

Di(t) converge under diffusion scaling to Brownian motions. We calculate the parameters of

these, including the asymptotic variance of the outputs and the covariances between the output

streams.

Define diffusion scalings for n = 1, 2, . . .. First denote

S̄(t) = lim
n→∞ S̄n(t) = lim

n→∞
S(nt)

n
= µt,

where the limit exists a.s. u.o.c. by Assumption (A1). Further use the fluid limit processes of

Section 4.3, Corollary 4.1. The diffusion scalings are:

Ŝn
i (t) = Si(nt)−S̄i(nt)√

n
, T̂n

i (t) = Ti(nt)−T̄i(nt)√
n

,

D̂n
i (t) = Di(nt)−D̄i(nt)√

n
, Q̂n

i (t) = Qi(nt)√
n

.
(7.3)

Note that in this analysis we use a fixed Q(0), which does not change with n.

Define the 10 dimensional diffusion scaled process:

X̂n(t) = (D̂n(t), T̂n(t), Q̂n(t))

The following theorem describes the diffusion limit for our model.

Theorem 7.1. Consider the push-pull network, under Assumptions (A1–A3), for Case 1 under

pull priority policy, and for Case 2 under linear threshold policy. Then as n →∞, X̂n ⇒ X̂,

where X̂(t) is a 10 dimensional driftless Brownian motion. Furthermore,

D̂n
1 (t)− D̂n

2 (t) = Q̂n
2 (t) ⇒ 0,

D̂n
4 (t)− D̂n

3 (t) = Q̂n
4 (t) ⇒ 0,

(7.4)

T̂n
1 (t) + T̂n

4 (t) = T̂n
3 (t) + T̂n

2 (t) = 0, (7.5)

and the variances and covariances of the limiting Brownian motions are given by:

Var(D̂2(1)) =
µ1µ2

(µ1µ3 − µ2µ4)3

(
µ1µ2µ3µ4(c2

3+c2
4)(µ1−µ2)+(µ2

1µ
2
3c

2
2+µ2

2µ
2
4c

2
1)(µ3−µ4)

)
, (7.6)

Cov(D̂2(1), D̂4(1)) = − µ1µ2µ3µ4

(µ1µ3 − µ2µ4)3

(
(µ1µ3c

2
4+µ2µ4c

2
3)(µ1−µ2)+(µ1µ3c

2
2+µ2µ4c

2
1)(µ3−µ4)

)
,

(7.7)

with a symmetric expression for Var(D̂4(1)). Similar expressions for variances and covari-

ances of T̂2(·), T̂4(·) may be read off from (7.12).

Proof. The equalities (7.4) and (7.5) follow immediately from (7.2) and (7.1). The convergence

to 0 in (7.4) follows from result (R2), since Qi(t) has a limiting stationary distribution, therefore
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Qi(nt) converges to this limiting distribution as n →∞, and dividing by
√

n implies converges

to 0 in probability and therefore also weakly.

The rest of the proof and the calculations are straightforward:

D̂n
i (t) = Di(nt)−D̄i(nt)√

n

= Si(nT̄ n
i (t))−S̄i(nT̄ n

i (t))√
n

+ S̄i(nT̄ n
i (t))√
n

− D̄i(nt)√
n

= Ŝn
i (T̄n

i (t)) + µi
Ti(nt)−T̄i(nt)√

n
+ µi

T̄i(nt)√
n
− D̄i(nt)√

n

= Ŝn
i (T̄n

i (t)) + µiT̂
n
i (t) + θiµi

√
nt− θiµi

√
nt,

where all we did is to add and subtract quantities, use the definitions (7.3), and use S̄i(t) = µit

(by Assumption (A1)), and T̄i(t) = θit, D̄i(t) = νit = µiθit by result (R1).

Define P̂n
i (t) = Ŝn

i (T̄n
i (t)), i = 1, 2, 3, 4, then summarizing the above and also using similar

calculations (for (7.9) and (7.10)) we obtain:

D̂n
i (t) = P̂n

i (t) + µiT̂
n
i (t), i = 1, 2, 3, 4, (7.8)

Q̂n
i (t) = D̂n

i−1(t)− D̂n
i (t), i = 2, 4, (7.9)

T̂n
2 (t) = −T̂n

3 (t), T̂n
4 (t) = −T̂n

1 (t). (7.10)

Now using (7.8)–(7.10): 


D̂n
2 (t)

D̂n
4 (t)

T̂n
2 (t)

T̂n
4 (t)


 = A P̂n(t) + B

[
Q̂n

2 (t)
Q̂n

4 (t)

]
, (7.11)

where

A =
1

µ1µ3 − µ2µ4




−µ2µ4 µ1µ3 µ1µ2 −µ1µ2

µ3µ4 −µ3µ4 −µ2µ4 µ1µ3

−µ4 µ4 µ1 −µ1

µ3 −µ3 −µ2 µ2


 ,

and

B =
1

µ1µ3 − µ2µ4




µ2µ4 −µ1µ2

−µ3µ4 µ2µ4

µ4 −µ1

−µ3 µ2


 .

By the functional central limit theorem for renewal processes and the continuous mapping theo-

rem (cf. Glynn (1990)) we have P̂n(t) ⇒ P̂ (t) where P̂ (t) is a 4 dimensional driftless Brownian

motion with a diagonal covariance matrix Λ, having entries

Var(P̂i(1)) = µic
2
i θi, i = 1, 2, 3, 4.

Incorporating the above with the weak convergence of Q̂n to 0, we have that (D̂n
2 (t), D̂n

4 (t), T̂n
2 (t), T̂n

4 (t))

converges to a driftless Brownian motion process with covariance matrix:

Γ = AΛA′. (7.12)
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Figure 7.1: The correlation between outputs of a symmetric push-pull network.

7.3 Negative Covariance of Outputs of the Push-Pull Network

It is evident from (7.7) that Cov(D̂2(t), D̂4(t)) < 0. Also, when all activity processing times

have the same squared coefficient of variation c2, then both the variance and the covariance in

(7.6,7.7) are linear in c2.

In Figure 7.1 we illustrate the negative correlation between the output processes of our

network. We plot as a function of λ:

ρλ =
Cov(D̂2(1), D̂4(1))√

Var(D̂2(1))Var(D̂4(1))
, (7.13)

for symmetric push-pull networks with parameters c2
i = c2, i = 1, 2, 3, 4, µ2 = µ4 = 1, µ1 =

µ3 = λ.

Our analysis applies to all λ 6= 1. When λ = 1 we have a completely balanced network

(as defined in Section 2.5) and with our policies, under diffusion scaling the queues do not

converge to 0, so the analysis in this chapter does not apply.

Note that for 1/2 < λ < 2, i.e when the ratio of processing times for each type of job on the

two servers is not too far from 1, we get −1 < ρλ < −0.8, so the negative correlation is very

high. Most surprisingly, as λ → 1 the correlation approaches −1, and we are close to complete

resource pooling Dai and Lin (2006).

When λ is very small or very large the correlation approaches zero. This is intuitively clear,

since each server is now spending almost all of its time on just one type of job, and so the

fluctuations in D2 depend mostly on the processing times of jobs of type 1, and the fluctuations

of D4 will depend mostly on the processing times of jobs of type 2, and hence they will be

almost independent.

Comparing to the KSRS Network

The Kumar-Seidman Rybko-Stolyar multi-class queueing network (see Chapter 1) differs from

our push-pull network in that instead of infinite supply of jobs there are two stochastic arrival

streams of jobs of type 1 and of type 2, with long term average arrival rates α1, α3. In that case
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there are 4 queues Qi(t) of jobs waiting for activities i = 1, 2, 3, 4 in the network, and the offered

loads for servers 1 and 2 are ρ1 = α1/µ1 + α3/µ4 and ρ2 = α3/µ3 + α1/µ2 respectively.

We have already compared the queue level behaviour of KSRS and push-pull in Chapter 4.

We now compare the behavior of the output processes, Di(t), i = 1, 2, 3, 4 in the KSRS network

and in the push-pull network, under diffusion scaling.

In the KSRS network with ρi < 1, i = 1, 2 the diffusion scaled queue lengths will be 0.

Therefore on a diffusion scale, jobs of type 1 have arrivals, departures from queue 1, and de-

partures from queue 2, which are all identical Brownian motions. Similarly for type 2. In

particular, the diffusion scaled flow of jobs of type 1 and of jobs of type 2 will be independent.

This fully describes the diffusion scale behavior, for fixed ρi < 1.

Under balanced heavy traffic the behavior of the output processes of the KSRS network

seems to be much more complex. The four queue length processes will be reflected Brownian

processes, and will affect the diffusion scaled output processes. To the best of our knowledge

the behavior of the output processes in that case has not been investigated. We note that even

the output process of a single server queue, under balanced heavy traffic, poses some as yet

unanswered questions (cf. Harrison and Williams (1992) and Chapter 5).

In contrast to that, in the push-pull network, operated with our policies, under full utiliza-

tion, the diffusion scaled queue lengths are 0. As a result we can analyze the output processes

of the two types of jobs. What we find is that the output processes of jobs of types 1 and 2 that

leave the network converge under diffusion scaling to two standard Brownian motions, but

these two Brownian motions are highly negatively correlated.

7.4 A Diffusion Limit for Re-Entrant Line Outputs

We now consider the general infinite supply re-entrant line that was surveyed in Section 2.4.

We apply the same type of analysis of Section 7.2 to obtain a diffusion limit for the output

process of this queueing network.

Our model consists of K consecutive steps on I servers where the first step has an IVQ and

the other steps have standard buffers. Generally we have that I < K, thus at least some of

the servers are "revisited" by jobs. The set of steps performed on server i is denoted by Ci. All

processing times are assumed to be independent and we further assume that the processing

times of each step are identically distributed with mean mk, k = 1, . . . ,K and rates µk = m−1
k .

The steps of the first server (with the IVQ) are C1. We denote the flow rate to be:

λ∗ =
1∑

k∈C1
mk

,

and further denote,

ρi = λ
∑

k∈Ci

mk, i = 2, . . . , I

and assume that ρi < 1, i = 2, . . . , K. We also require the technical assumption that the pro-

cessing times of the first step (IVQ) are unbounded. Under these assumptions, Guo and Zhang

(2007) have shown that the LBFS policy maintains the associated general state space Markov
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process, positive Harris recurrent 1. We further assume that processing times of server 1 steps

have a finite second moment and denote their variance by σ2
k, k ∈ C1.

We are interested in the output counting process from the last buffer, denoted by D(t). We

use Q+
k (t), k ∈ C1 to denote the number of jobs in the queues that are downstream to buffer k,

i.e:

Q+
k (t) =

K∑

j=k+1

Qk(t), k ∈ C1,

where as usual, Qk(t) is the queue level of buffer k. Note that Q+
K(t) = 0. We shall denote by

Dk(t), k ∈ C1 the output counting process from buffer k and we thus have:

Dk(t) = Q+
k (t) + D(t), k ∈ C1. (7.14)

We further denote by Tk(t), k ∈ C1 the amount of time that server 1 spends on buffer k during

the time [0,t] and thus: ∑

k∈C1

Tk(t) = t. (7.15)

As in previous sections and chapters, we use the renewal primitives Sk(t) and thus Dk(t) =

Tk(Sk(t)). We also define fluid and diffusion scalings of all of the quantities in the same manner

that was defined in equation (7.3). Note that the long run proportion of time which server 1

spends on step k ∈ C1 is λmk, i.e.

lim
n→∞ T̄n

k (t) = λmkt, k ∈ C1

Here is our result regarding the asymptotic variance of the output process which we obtain

from its diffusion scaling:

Theorem 7.2. Consider an infinite re-entrant line operating under the LBFS policy with ρi <

1, i = 2, . . . , I. Then the diffusion scaled output process,

D̂n(t) =
D(nt)− λnt√

n
,

converges weakly to a drift less Brownian motion, D̂(t) with variance parameter:

Var(D̂(1)) =

∑
k∈C1

σ2
k

(
∑

k∈C1
mk)3

(7.16)

Proof. Using the exact same calculations as in the proof of Theorem 7.1 we have:

D̂n
k (t) = Ŝn

k (T̄n(t)) + µkT̂
n
k (t) , k ∈ C1, (7.17)

And further (by applying the definition of the diffusion scalings):

∑

k∈C1

T̂n
k (t) = 0. (7.18)

1Actually in Guo and Zhang (2007) it is also required that the processing time of the first step be spread out,
but this assumption may be relaxed to only requiring unboundedness – personal communication, Weiss, Zhang,
2008.
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Summing over the equations of (7.17) and along with (7.18), we obtain:

∑

k∈C1

D̂n
k (t)
µk

−
∑

k∈C1

P̂n
k (t)
µk

= 0, (7.19)

where as in the proof of Theorem 7.1, P̂n
k (t) = Ŝn

k (T̄n
k (t)), k ∈ C1. Further, from the dynamics

of the network and using the definitions of the fluid scalings:

D̂n
k (t) = Q̂+

n

k(t) + D̂n(t), k ∈ C1. (7.20)

Now substituting the equations (7.20) in (7.19) and solving for D̂n(t) we obtain:

D̂n(t) = λ
∑

k∈C1

mkP̂
n
k (t) +

∑

k∈C1

bkQ̂
n
k(t), (7.21)

where bk, k = 1, . . . , K are some constants (expressions of mk). Now as in Theorem 7.1, we have

that P̂n
k (t), k ∈ C1 converge to independent drift less Brownian motions with,

Var(P̂k(1)) = λ
σ2

k

m2
k

.

In addition since the network is positive Harris recurrent we have that Q̂n
k(t) ⇒ 0. The linear

transformation of this |C1| dimensional, random vector into the 1 dimensional output process

yields the result.

Note that if C1 = {1, . . . , K} (the system is re-entrant through a single server) then the

output process is actually a renewal process (given that the system started empty) with inter-

output times having mean
∑

k∈C1
mk and variance

∑
k∈C1

σ2
k. In this case, the asymptotic vari-

ance of the above theorem immediately follows. Our theorem shows that even when the output

is not renewal (as is the case when there is more then one server) then the asymptotic variance

rate of the output still only depends on the first server and is equal to that of the renewal output

case.

7.5 Insensitivity to Policy

The expression for the asymptotic variance rate of the push-pull, (7.6) has appeared before in

Chapter 5, (5.6) for the case of operations 1 and 3 being exponential. Our new result is much

stronger not only because of the general processing times but also because it is for both the pull

priority policy, case 1 and the linear threshold policy, case 2 and this is in contrast to the result

of Chapter 5 which is only for the pull priority policy, case 1. In-fact, our current result holds

for any policy that operates at the solved flow rate ν2, ν4 and maintains a stable system. By

following the proof of Theorem 7.1 it can be verified that all that is required from the policy is

that results (R1) and (R2) are maintained. In particular, the calculations for Case 1 and Case 2

are the same.

The same holds for the re-entrant line results of Section 7.4. While the results were stated

for the LBFS policy for which there exist positive Harris recurrence results, our analysis holds

for any policy that maintains the system stable.
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We thus reach the surprising conclusion that the diffusion scale output processes D̂(t) do

not depend on the policy, so long as it is fully utilizing and stabilizing.

Note that instead of (R2) we may use a seemingly weaker condition: Q̂n(t) ⇒ 0. Unfortu-

nately, we have been unable to show this weak convergence without obtaining positive Harris

recurrence. For example, it would have been nice to skip the minorization proofs of Section 4.5

and thus stop at a weaker result of positive recurrence (without Harris). But to the best of our

knowledge, we cannot use such a result to obtain the desired weak convergence of the scaled

process 2.

2This is based on personal communication with Serguei Foss, 2008.
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APPENDIX A

THE PRONETSIM SIMULATION
PACKAGE

In this short chapter we briefly describe a software package which we have developed and

used for most of the simulation examples presented in this thesis. We call it PRONETSIM,

which stands for Processing Network Simulator. The current version, described here is called

V0.5 and is still preliminary1. The source, executable and example files of the current and

future versions are available at the web-page:

http://www.stat.haifa.ac.il/~yonin/PRONETSIM/pronetsim.html

In its current form, PRONETSIM is non user-friendly and typically requires performing some

minor code alteration if one has a specific simulation task in mind. This implies the user is

required to edit the C++ code in some development environment and re-compile. Nevertheless,

we hope that this "lack of packaging" will not deter interested researchers from considering to

use this package because we believe that its requirements specification is broad enough to cover

a rich array of queueing network research questions and its design is quite professional from a

software engineering point of view.

The software is written in ANSI/ISO C++ (cf. Stroustrup (2000)) and is currently compiled

using Microsoft Visual C++ (for MS-Windows operating systems). Compilation for other ma-

chines should be straight forward but has not been attempted. The design of PRONETSIM

is a UML driven object oriented design and the implementation attempts to be as efficient as

possible.

The end goal of PRONETSIM is to simulate processing networks of quite a general form.

This implies a model that generalizes the stochastic processing networks suggested in Harri-

son (2000, 2002, 2003). The main generalizations are the inclusion of infinite virtual queues and

finite buffers with overflows. Currently (in the preliminary version V0.5), only MCQN+IVQ

are fully supported (and have been tested) along with the ability to have finite buffers with

1We intend to continue to develop this package and bring it to the maturity level, similar to another software
package that we developed, the JSSP: http://www.stat.haifa.ac.il/~yonin/thesis/jobshopsim/shopsim.

html.
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overflows. The more general stochastic processing network model, which has been taken into

account in the design, but not fully implemented and tested, is not restricted to a one to one

matching between activities and classes as in the MCQN and is useful for implementing discre-

tionary routing and other more general settings. In addition, the current implementation does

not handle preemption with resume, only preemption with a re-start of the job. This distinction

is irrelevant for exponential processing times.

In contrast to the quite general model that PRONETSIM is designed to handle, the state

representation of PRONETSIM is quite slick and does not maintain a representation of individ-

ual jobs but just counts of the number of jobs in each class2. As a consequence, the software

may not be used for the following: Simulation of some scheduling policies such as FIFO and

PS, output analysis of sojourn time distributions, efficient simulation of many-server systems,

simulation of fluid queues and simulation of policies that are dependent on actual workloads.

In spite all of these weaknesses, PRONETSIM has been very useful for obtaining most of the

simulation results presented in this thesis as well as some more results presented in Kopzon

et al. (2008).

The software is run from a command line as follows:

pronetsim file_name

Here file_name stands for a name of the input file (may include a path) which specifies which

simulation to perform along with some auxiliary parameters. As an output, PRONETSIM cre-

ates an output file whose name is controlled by parameters of the input file. The output file is

a textual file that contains a single nested Mathematica style list (cf. Wolfram (1999)).

The continuation of this chapter is structured as follows: Section A.1 defines the simulation

model. Section A.2 describes the input file. Section A.3 describes the structure of the list in the

output file. Additional information, is at the web-page mentioned above.

A.1 Model Description

The PRONET simulator is a discrete event simulator that is designed to simulate controlled

processing networks of discrete material flow and continuous time. The basic "physical" en-

tities in the simulated world are buffers, jobs and resources. The actions that are performed are

called activities and they basically move jobs out of some buffers and into others. Activities

require resources to operate.

Buffers

There are 4 possible buffer types:

Source Buffers – These are IVQs. They have an infinite amount of jobs in them. The job state

of each such buffer is represented by a non-positive integer. Whenever a job is removed,

the job state is decremented.

2This can also be changed in future versions but it would require some alterations to the core of the software
design.
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Sink Buffers – These are the duals of the IVQs. Jobs are only added to these buffers and

their job state is represented by a non-negative integer that is increased. They are used to

model the outside of the network (they must be used for open-networks).

Standard Buffers – These are "plain old queues". They do not have a size limit and jobs are

taken from them and put in them upon completion of activities.

Finite Buffers – These are queues of finite capacity. When an activity attempts to put a job

in such a queue and it is full, the job moves to an alternative overflow buffer. Overflows

are allowed to recurse: the alternative buffer may also be a finite buffer that happens to

be full and another overflow occurs, and so forth.

Activities

Activities are the entities that "occur" while simulated time is progressing. They are the entities

that drive the simulation. The following is associated with each activity:

Effected Buffers – The activity associates a positive or negative integer with each buffer in

a subset of the buffers list (source buffers are only associated with negative integers and

sink buffers are only associated with positive integers). When the activity is complete, the

integer is added to the state of each buffer in the subset. Typically an activity will have

−1 and +1 associated with buffers and this implies that upon completion of the activity

a job moves from one buffer to the other.

Utilized Resources – The activity indicates which resource are needed for it’s operation.

There is currently no processor sharing allowed so when an activity is in operation it

"grabs" it’s associated resources and other activities that need those resources may not

operate during that time.

Processing Duration – A sequence of real positive values is associated with the activity. This

is typically achieved by associating a mean processing time along with a specification of

the distribution (e.g. Exponential, Deterministic or data from a file). Note that the simu-

lation allows for concurrent event completions. This typically occurs when deterministic

processing times are used.

Note that when an activity begins it freezes jobs in its input buffers so that if an additional

activity was to begin, it will not be able to work on those frozen jobs. This is as described in

Dai and Lin (2005).

Resources

Resources don’t really have an active role in the simulation, they rather act as "semaphores" for

the activates - two activities that share a resource may not operate simultaneously. Sometimes

an activity may be preempted and in doing so, the resources that the activity uses are released.

127



Policies

Scheduling policies or rules are the controls of the simulated network. The code for this rule

specifies which activities to schedule, based on the network state or some other decision rules.

Ultimately (in future versions of this software), the interface for the scheduling policies will

be well defined so that they can be coded as plug-ins (i.e. almost as input to the simulation).

Currently, the policies are implemented in the Control Policies module and if the user wishes

to add an additional policy, that module should be changed. In a preemptive system, a policy

may decide to preempt activities in addition to scheduling activities. In this case, an important

detail is to code when the policy "wakes up" during the discrete event simulation. Typically,

this is at times during which one or more activities finish, but alternatively it can be at other

times which are specifically coded.

A.2 Input File

The input file is organized like a windows type INI file. This file format is typically used by

applications running on Microsoft windows to specify parameters to application programs3.

Several example input files are at the web-site. The file format is composed of lines of the form:

attribute = value

In each such line the user specifies the values that certain attributes should take. The ini file is

thus simply a collection of lines with each line being an attribute specification. To make things

slightly more organized, there are also lines that contain section headers of the form:

[section name]

These section names precede groups of lines and thus group attributes into categorizes. Table

A.1 lists the sections.

Section Name Description

runs Specifies how many runs to perform, and the duration of each run.
model Defines the processing network to be simulated: The resources, activ-

ities, buffers and their inter-connections.
processing times Defines the mean processing times for each of the activities and speci-

fies their distributions. Also defines how to obtain seeds for the random
variable generation (for non-deterministic processing times)

policy Defines the scheduling policy to be used, along with parameters for
the policy if any.

logging Specifies which information to record during a run and what to output.

Table A.1: Sections of PRONETSIM input file.

Tables A.2 – A.6 define all of the attributes that may be specified, grouped into sections.

Some attributes are required and others are optional. If an optional attribute has a default

value, it gets this value if it does not appear in the input file. Options that are to be inputed as

lists should be specified as Mathematica style lists and nested lists (i.e, use ’{’ and ’}’).
3PRONETSIM is not restricted to Microsoft systems, INI files are pure ASCII files.
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Attribute Name Description

num runs Contains a positive integer value that specifies how many runs
to perform. Default value is 1.

time horizon Contains a positive real value that specifies the time horizon
for each run. As an alternative, may contain a list of length
num runs which specifies the duration for each run.

initial conditions Contains a list containing two lists of non-negative integer values.
The first list specifies initial conditions for the standard buffers.
The second list specifies initial conditions for the finite buffers.
As an alternative, may contain a list of such initial conditions
with the length of num runs to specify initial conditions for each
run. Default value is 0 for initial conditions if not specified.

Table A.2: Attributes of ”runs” section.

A.3 The Output File Format

The output file contains a Mathematica style list in which each entry represents a run. Each run

is a list that is organized as follows:

{run_descriptor, run_stats, log}

run_descriptor specifies information regarding the run. This is useful if there are many

runs that are output into some sort of database. In the current version, this field is not made

fully generic and must be handled by changing the code.

run_stats is reserved to specify information such as the time it took to perform the sim-

ulation, exceptions, memory usage, etc. It currently only records the number of second the

simulation took.

log contains the simulated output of the run and we now describe it in detail. It is a Math-

ematica style list that is composed of sublists. The structure is as follows:

{

{"Realization",rlist},

{"Histogram",histList},

{"Means",meanList},

{"Samples",sampleList}

}

The strings "Realization" etc. are outputed for readability and may be ignored if process-

ing the output in Mathematica or another application program. rlist is a list that contains a

full dump of the realization (or an empty list if the realization is not to be dumped). histList

is a list that contains a histogram if specified. meanList is a list with two sublists. The first is

the means of the standard buffers, the second is the means of the finite buffers. sampleList is

a list that contains samples of the queue levels as specified by the partial samples attribute.

There is always one sample which is a sample at the end of the simulation run.
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Attribute Name Description

predefined model If not specified, a pre defined model is not assumed. If specified,
may take one of the following values:

MODEL_SINGLE_SERVER_QUEUE,
MODEL_SINGLE_SERVER_FINITE_QUEUE,
MODEL_3_BUFFER_RLINE,
MODEL_3_BUFFER_INFINITE_RLINE,
MODEL_5_BUFFER_RLINE,
MODEL_KSRS_NETWORK,
MODEL_PUSH_PULL_NETWORK,
MODEL_SIMPLE_ROUTING,
MODEL_SINGLE_SERVER_WITH_IVQ,
MODEL_DECOUPLED_PUSH_PULL_NETWORK,
MODEL_GUO_5_CLASS_INFINITE_RLINE.

The details regarding these models are in the source files
PredefinedModels.h and PredefinedModels.cpp.
In version V0.5 the user must use a predefined model (i.e. To
add a new model, the source code must be modified).

num sources
num sinks
num standard buffers
num finite buffers
num resources
num activities
activities of resource
effects of activities
finite buffer sizes
overflow destinations

These fields are still not supported in V0.5. They are intended
to be used to specify a non-predefined model.

Table A.3: Attributes of ”model” section.
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Attribute Name Description

distributions A list of distributions, 1 per activity, that may currently take
one of these values:

DETERMINSITIC_PROCESSING_TIME,
EXPONENTIAL_PROCESSING_TIME,
ERLANG_PROCESSING_TIME,
UNIFORM_PROCESSING_TIME,
HYPER_EXPONENTIAL_2_PROCESSING_TIME,
INPUT_FILE_PROCESSING_TIME.

distribution parameters A list of lists, 1 per activity. The entry in each list is a list
that specifies the distribution parameters other than the mean.
For deterministic or exponential distributions, leave an empty
list ({}). For Erlang distributions specify the number of phases
({k}). For uniform distributions specify the width around the
mean. The hyper exponential 2 distributions is a mixture of two
exponentials so specify for it the mean of the first and second
exponentials. If INPUT_FILE_PROCESSING_TIME is specified then
the parameter is a name of a file that contains a Mathematica
style list of processing times. These times are to be scaled by
the mean.

means A list of the means, 1 per activity.
seed If this value is -1, then a time seed is used. It is assured that

a different seed is used between runs. Otherwise, a list of seeds
should be specified, 1 seed per simulation run.

Table A.4: Attributes of ”processing times” section.
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Attribute Name Description

policy Some of the policies that are currently implemented are:

PP_QUEUE_BALANCING_POLICY,
PP_FIXED_THRESHOLD_POLICY,
KSRS_QUEUE_THRESHOLDS_POLICY,
FIXED_PRIORITY_POLICY.

Some of these will only work with certain models (e.g. Push-
Pull or KSRS). The FIXED_PRIORITY_POLICY will work with
any model. It sets an absolute priority ordering on the buffers
(priority doesn’t change based on state).

policy parameters A list of parameters to be passed to the policy. This is policy
dependent.
An important case is the FIXED_PRIORITY_POLICY. In
this case, pass a permutation of the activity indexes
1, . . . ,num activities. The first activity in this permutation
has highest priority and the last has lowest priority.

preemption type Indicates if premption is allowed and the kind of premption.
Possible values are:

NO_PREEMPTION,
PREEMPTION_RESUME,
PREEMPTION_RESTART.

Table A.5: Attributes of ”policy” section.

Attribute Name Description

full dump If set to true then every detail of the realization is recorded.
partial samples A list of times during which queue state samples should be

recorded.
histogram If set to true, then a histogram of the queue states is recorded.
running means If set to true, then running means of queue levels (for finite and

standard) buffers are recorded.
output file The name of the output file to use. If not specified the output

is put in the subdirectory RunDB (must exist) under a unique file
name (file name is based on time of first run).

Table A.6: Attributes of ”logging” section.
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אנו שומרים על יציבות הסטיות באמצעות הפעלה של מדיניות . אוגרים וריטואלים אינסופיים

התוצאה המרכזית בהקשר זה מראה שמדיניות זו היא אסימפטוטית . חץ מקסימאליל

  .אופטימאלית כאשר מספר הפריטים אשר עוברים עיבוד גדל ביחד עם מהירות העיבוד

  

י "רשת זו מאופיינית ע. קשר של בקרה דן ברשת דחוף ומשוךההנושא השני ב, כפי שתואר לעיל

לרשת .  הפוכים זרימה על ידי השרתים בכוונימבוצעותאשר שני שרתים ושני סוגים של עבודות 

 ,Kumar-Seidmanרשת זו דומה במבנה לרשת . זמני עיבוד סטוכסטיים בעלי התפלגויות כלליות

Rybko-Stolyar) KSRS .( שלרשת הוא ההבדלKSRS , יש זרמי הגעה סטוכסטיים בעוד שלרשת

כל אחד מהשרתים יכול לעבוד ,  דחוף ומשוךלכן ברשתודחוף ומשוך יש כמות עבודה לא מוגבלת 

ברשת דחוף ומשוך ניתן למצוא מדיניות אשר מנצלות את , KSRSבניגוד לרשת . ללא הפסקה

אנו מראים שתהליך המרקוב המתאים .  גודש בתוריםיוצרותקה ועדיין אינן פסהשרתים ללא ה

 )Dai) 1995 הנוזלים של אנליזה זו עושה שימוש בתוצאות. לרשת זו הוא מתמיד חיובית הריס

  .למקרה של תורים וריטואלים אינסופייםומכלילות אותם 

  

אנו מפתחים , מוות עם מרחב מצבים סופי-בהקשר של תהליך היציאה של תור פשוט מסוג לידה

*נוסחא עבור קצב השונות האיסמפטוטי מהצורה 

i
vλ *כאן . ∑+

λוא קצב היציאה ו  ה- 
i
v 

אנו מראים שאם קצבי הלידה הינם לא עולים .  הם ביטויים המבוססים על קצבי הלידה והמוות

אז הערכים של , )כמצוי בהרבה מערכות תורים (עם גודל התוריורדים לא וקצבי המוות אינם 
i
v 

 Limiting Index of(כן אינדקס הפיזור הגבולי של תהליכי ספירה הינם שליליים ממש ול

Dispersion of Counts (במקרה של תור . הינו קטן ממש מאחדM/M/1/K , הנוסחה אשר אנו

קצב השרות (כאשר המערכת מאוזנת : מציגים מסתכמת לביטוי סגור אשר מראה תופעה מפתיעה

המצב .  הוא מינימאליור הגבולי של תהליך היציאה אינדקס הפיזאז, )וקצב הגעת הלקוחות שווים

 וגם מספר תורים מסוג ,)Erlang Loss System(מערכת הפסד ארלנג , M/M/c/Kדומה עבור תור 

PH/PH/1/K . כאשר האסימפטוטיבכל המקרים הללו ישנה ירידה מודגשת של קצב השונות 

  .הפרמטרים של המערכת מאוזנים

  

אנו מתעניינים בקצב השונות האיסמטוטי וגם , שת דחוף ומשוךבחזרה לתהליכי היציאה של ר

בהקשר זה אנו . י קרוב דיפוזיה"דרך אחת לחשב זאת היא ע.  בין תהליכי היציאהבקוואריאנס

 כאשר לוקחים גבולות דיפוזיה ואנו מחשבים את הפרמטרים של מתאפסיםמראים שהתורים 

דיפוזיה מראה ששני תהליכי היציאה הינם בעלי קרוב ה.  תהליכי היציאהלתהליך בראוני גבולי ש

שקצב השונות מסקנה נוספת הנובעת מהחישוב היא  העובדה .  שלילית גבוההקורלציה

  . ניצולת מלאה ותורים יציביםשהמדיניות מאפשרתהאיסמפטוטי אינו מושפע מהמדיניות כל עוד 

  

 

 

 



 

  על בקרה של רשתות תורים 
  וקצב השונות האסימפטוטי של יציאות

  יוני נצרתי

  תקציר

  

בעבודה זו אנו מטפלים במספר נושאים הקשורים לבקרה של רשתות תורים ואנליזה של קצב 

 אנו תחילה דנים, בהקשר של בקרת רשתות תורים. השונות האסימפטוטי של תהליכי יציאה

בבעיה של בקרה אופטימאלית של רשת מרובת מחלקות על פני אופק זמן סופי ביחס לעלויות 

 Nazarathy and Weissפורסמו ב מציגים אשר אנושיטת הבקרה והתוצאות . החזקה באוגרים

(2008b) .וריטואלים לאחר מכן אנו מנתחים את היציבות של רשת לדוגמא בעלת אוגרים 

ניתן ). Push-Pull( אשר אנו מכנים רשת דחוף ומשוך )Infinite Virtual Queues(ים יאינסופ

לבקר רשת זו באופן המאפשר לשרתים לעבוד ללא הפסקה תוך כדי שמירה על גודל חסום 

של רשת זו בהנחת   בוצע ניתוחKopzon et al. (2008) ב .סטוכסטית של כמות העבודה באוגרים

 התוצאות .ים את התוצאות לזמני עיבוד כלליםכאן אנו מרחיב. זמני עיבוד חסרי זיכרון

של ) Harris(להוכחת התמדה חיובית הריס " יציבות באמצעות נוזלים"מתבססות על מסגרת 

 Nazarathy and Weissפורסמו בתוצאות אלו . תהליכי מרקוב המתארים רשתות תורים

(2008c).  

  

ומשוך הובילה אותנו לחקור את התבוננות בהתנהגות לדוגמא של תהליכי היציאה של רשת דחוף 

מדד ראשון מעניין בהקשר זה הוא קצב . של תהליך היציאה של רשת זו" רמת האקראיות"

. קצב גידול הלינארי של פונקצית השונות של תהליך ספירה על פני זמן: השונות האסימפטוטי

ם מרחב מצבים מוות ע-הראו התנהגות מעניינת בתורים פשוטים מסוג לידה, חישובים של מדד זה

. בהקשר זה אנו מציגים נוסחא סגורה לקצב השונות האסימפטוטי של תהליך היציאה. סופי

אנו ,  הדיון בתורים פשוטיםלאחר. Nazarathy and Weiss (2008a) פורסמו בתוצאות אלו 

חוזרים לדון ברשת דחוף ומשוך ומציגים ביטויים עבור קצב השונות האסיפמטוטי באמצעות 

  .דיפוזיה העושים שימוש בתוצאת היציבות אשר הוזכרה קודםקירובי 

  

שיטת הבקרה אשר אנו מציגים עבור רשת תורים מרובת מחלקות על פני אופק זמן סופי משלבת 

 Separated Continuous Linear(תוכניות לינאריות מופרדות רציפות : מספר עקרונות

Programs( ,ת לחץ מקסימאלי ומדיניו,  אינסופייםוריטואלים אוגרים)Maximum Pressure 

Policies .(האנו מקרבים את רשת התורים באמצעות רשת נוזלים ומנסחים בעיית אופטימיזצי 

פתרון הנוזלים .  מופרדת רציפהתי תוכנית ליניארי"בעיה זו ניתנת לפתרון ע. עבור הנוזלים

לאחר מכן אנו . ם קבועמחלק את אופק הזמן למקטעים בעלי קצב זרימת נוזלי, האופטימאלי

בהקשר זה אנו . משתמשים במדיניות אשר מאפשרת לרשת התורים לעקוב אחר פתרון הנוזלים

 ממדלים את הסטיות בין רשת התורים ורשת הנוזלים באמצעות מספר רשתות תורים בעלי



 האישה המתוקה ,סבתה סופיהלזכרה של עבודה זו ברצוני להקדיש 

הן באמצעות האהבה הטהורה אשר סיפקה לי , שזרעה בי זרעים של חוזק
של אמי לאה המסור עד ימייה האחרונים והן בדרך עקיפה דרך גידולה 

, זוג ההורים הכי נהדרים שאפשר לדמיין,  משהבאופן מסוים גם אביו

  . שאפילו קשה לדמייןלפעמים כה נהדרים
  

הצליחה בדרך , 20 המאה ה שואת היהודים של את  באומץסבתה שרדה
אשר שתי בנות מופלאות וביחד גידלו , נס לפגוש את סבא נחום האהוב

 ויישארכולם אנשים איכותיים וטובים אשר , הביאו שבעה נכדים לעולם
תא שבעה עד היום נולדו לסב, בנוסף. כל עוד הוא פועםקרובים לליבי 

ילדות , שתיים מהם הן אמילי וקיילי,  לא פגשה אמנם את רובם,נינים

כמשהו אבסולוטי , הזהב אשר הגדירו בשבילי מחדש את המושג אהבה
 אשת הברזל והפרחים שאני ,תודות לאימםמכך והרבה , וללא התניות

  . כרמל,אוהב כל כך
  

 אשר נולדה ,נסיכת הנסיכות שלי, סבתה לעולם לא פגשה את אמילי
וגם לא את , דוקטורטבתחילת תקופת ה, מספר חודשים לאחר מותה

סבתא גם לא הייתה . כוכב הזהב המתוקה עלי האדמות, קיילי בת השנה

כנראה   בעודה בחייםלאור מה שהכירהו, מאמינה שאסיים את הדוקטורט
מאמילי  לא הייתי עושה זאת ללא הרוגע והנחת אשר קיבלתי ,שצדקה

רחבת   מטריית העזרה עושה זאת ללאיוגם לא היית מכרמל ווקיילי
  . נעמה וענתי אשר קיבלתי מהורי טובי הלב ומאחי נדב ואחיותיההיקף

  

צריך לתת ,  החיים זה דבר קצר:מוצי הזהש לאחר כל הפוצי ,אז ילללה
  .גז עד ההקדשה הבאה
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