Queueing Syst (2009) 62: 75-111
DOI 10.1007/s11134-009-9121-1

A Push—Pull network with infinite supply of work

Anat Kopzon - Yoni Nazarathy - Gideon Weiss

Received: 31 January 2007 / Revised: 28 July 2008 / Published online: 20 May 2009
© Springer Science+Business Media, LLC 2009

Abstract We consider a two-node multiclass queueing network with two types of
jobs moving through two servers in opposite directions, and there is infinite supply of
work of both types. We assume exponential processing times and preemptive resume
service. We identify a family of policies which keep both servers busy at all times and
keep the queues between the servers positive recurrent. We analyze two specific poli-
cies in detail, obtaining steady state distributions. We perform extensive calculations
of expected queue lengths under these policies. We compare this network with the
Kumar—Seidman—Rybko-Stolyar network, in which there are two random streams of
arriving jobs rather than infinite supply of work.

Keywords Queueing - Manufacturing - Markovian multiclass queueing networks -
Infinite supply of work - Infinite virtual queues - Threshold policies - Maximum
pressure policies - Kumar—Seidman—Rybko—Stolyar network

Mathematics Subject Classification (2000) 60K25 - 68M20 - 90B15

1 Introduction

This paper is concerned with stochastic processing networks with infinite supply of
work, where we focus on the analysis of a specific example of such networks. A sto-
chastic processing network, introduced by Harrison [14—17], is a network that uses
input items and processing resources to produce various streams of output items. In-
finite supply of work, as discussed in [1, 2, 26, 32], is provided by infinite virtual

Research supported in part by Israel Science Foundation Grants 249/02 and 454/05 and by European
Network of Excellence Euro-NGI.

A. Kopzon - Y. Nazarathy - G. Weiss ()
Department of Statistics, The University of Haifa, Mount Carmel 31905, Israel
e-mail: gweiss @stat.haifa.ac.il

@ Springer

mailto:gweiss@stat.haifa.ac.il

76 Queueing Syst (2009) 62: 75-111

(a) (b)

o [T (7) | s Elo)™

Ao} ML o mo]-.
v 1OF I

Fig. 1 Systems with infinite supply of work versus exogenous arrivals

queues (IVQ) in which input items for processing are stored and are available at any
time in unlimited numbers. To be specific, we envision the IVQs to be part of the
network, and processing of items out of these IVQs consumes some of the network’s
resources. We assume here that each resource of the network has, among the queues
which it is processing, at least one IVQ. In that case none of the resources ever needs
to idle. In the operation of the network we assume that each of the IVQs has a nominal
processing rate at which it introduces items into the network, and each of the output
streams has an output rate at which items are produced. These determine the rates at
which each input activity, intermediate activity, and output activity is performed, and
the offered load of each resource. The network is rate stable if each of the standard
queues (i.e., not IVQs) in which items are stored in intermediate stages has equal
input and output rates, so that there is no linear accumulation of material in these
queues. A network operates in balanced heavy traffic if it is rate stable and if all the
resources are fully utilized. In other words, the input and output rates are such that
the offered load to all the resources is equal to p = 1.

When inputs to the network are exogenous and subject to stochastic variability,
a rate stable network in balanced heavy traffic is always congested. As the offered
load approaches 1, items accumulate at a rate of © (/7). In this case the network
may behave as a semi-martingale reflected Brownian motion on the diffusion scale
[18, 31].

In stochastic processing networks with infinite supply of work, the situation is
radically different: because inputs are not exogenous but are produced by processing
of IVQs within the network, we have much more control to cope with stochastic
fluctuations and with congestion. Hence we conjecture that such networks can be
operated under balanced heavy traffic, with full utilization of all the resources, and
yet show no congestion at all: Under appropriate conditions, there exists a wide range
of policies that achieve 0 idling in the network and keep all the queues which are not
IVQs positive recurrent. Our purpose in this paper is to present a detailed analysis of
a simple but nontrivial example of such a network.

The concept of infinite supply of work is quite natural in many practical situations,
and in particular it is very relevant to manufacturing systems. Two simple examples

@ Springer

Queueing Syst (2009) 62: 75-111 77

illustrate the effect of infinite supply of work. First, compare a single server queue
and a single machine. Consider a single server queue with service rate u and with
a stochastic arrival stream which is independent of the service times and has rate «
(see Fig. 1(a)). Then the output from the server will be at rate min(e, 1), leading to
three modes of behavior: When o < p output is at rate «, the queue of customers
is positive recurrent (we use the term loosely here and in the following paragraphs,
since we have not specified an exact model), and the server idles a fraction 1 — % of
the time. When « > p, output is at rate u, the server never idles, and the queue grows
linearly at a rate @ — . When o = u, the system is rate stable, output is at rate u, the
server idles an expected fraction (9(\%) of the time, and the expected queue length

grows at a rate ® (4/1). Compare this to a single machine (see Fig. 1(b)) which can
process raw parts at the same rate p. Raw parts will not arrive as a random stream
independent of the processing. In fact, the usual practice is to monitor the machine
and make sure that it never runs out of raw parts. Infinite virtual queue is an apt name
for this, since as far as the machine is concerned, it is serving an infinite queue that is
never exhausted, but in reality the queue only contains a few items and is replenished
before it runs out. Hence the machine will produce an output stream of finished parts
at a rate of p, and there will be no idling and no congestion.

The second example is also quite familiar. Consider two machines and parts which
are processed first by machine 1 at rate 1£1, and next by machine 2 at rate u. An in-
finite supply of raw parts will keep the first machine busy all the time and produce
a stochastic input at rate @ into the second machine. To fully utilize the second
machine, we now assume that @y > p1 and add another IVQ of parts which need
processing only on machine 2 at rate u3 (see Fig. 1(c)). The network will now pro-
duce two output streams of parts, stream 1, of parts that are processed by both ma-
chines, and stream 2, which is processed only by machine 2. This network will fully
utilize both machines with no idling and produce output of stream 1 at rate @ and
of stream 2 at rate u3(1 — %) if we use the following type of control: We keep the
two IVQs replenished, and whenever the queue of parts of stream 1 that wait for
machine 2 is exhausted, machine 2 will switch to stream 2 and will continue process-
ing it for a duration which is a stopping time with finite expectation. The queue of
jobs of stream 1 between the two machines will in that case be positive recurrent. In
fact machine 2 will behave like a server with vacations (see [23]). The correspond-
ing queueing network (see Fig. 1(d)) with two random arrival streams of rates o, o
will, under a similar vacation policy, produce outputs at rates min(cg, t1, 12) and
min(ay, max(0, u3(1 — %))), and be subject to idling and congestion.

A notable property of this second example is that the suggested policy achieves
full utilization, no idling, and no congestion, without using the actual processing rates
of the two machines. We conjecture that the same can be done for general multiclass
queueing networks and for more general processing networks: If each resource has an
infinite supply of work, then, under appropriate conditions, there exist policies which
fully utilize all the resources and which keep all the standard queues positive recur-
rent, and these policies can be implemented without knowing the exact processing
rates of the various activities.

@ Springer

78 Queueing Syst (2009) 62: 75-111

(a) (b)

m my 2

dokijel- —iot-iol
O TR O S VT 1) [

) ny m

Fig. 2 The Push—Pull network (a) and the Kumar—Seidman—Rybko—Stolyar network (b)

Our model

Following this preface, we now introduce the Push—Pull network which we study
in this paper. It was first introduced in our paper [21]. The network is described in
Fig. 2(a). It can model a production system with two machines and two products.
There are two servers and two types of jobs. Jobs of type 1 are processed first by
server 1 and then by server 2, jobs of type 2 are processed in the opposite order, first
by server 2 and then by server 1. There is an infinite supply of work for both servers,
server 1 has an infinite supply of jobs of type 1 waiting for initial processing, and
server 2 has an infinite supply of jobs of type 2 waiting for initial processing. Jobs
which complete initial processing move to the other server and queue up for their
second processing step. For time ¢ > 0, Q;(¢) denotes the number of jobs of type
i which have completed their first step of processing at server i and have not yet
completed their processing at server 7 =3 — i for i = 1, 2. At any time ¢ server i can
choose to process a new job of type i out of the IVQ (always available) and send it
to the queue of server 7; we call that a push operation. Alternatively, if Q7 () > 0,
it can choose to work on a job of type 1 and send it out of the network; we call that
a pull operation. We let A; denote the processing rate of jobs of type i by the push
operation at server i, and we let u; denote the processing rate of jobs of type i by
the pull operation at server 7. In Fig. 2(a) we let n;, i = 1, 2, be the values of Q;(t),
the queue length (including job in service) at time ¢, and we let co denote the infinite
supply of jobs available for initial processing. In Fig. 2(b) we show the corresponding
queueing network with exogenous arrivals, the so-called Kumar—Seidman—Rybko—
Stolyar (KSRS) queueing network, to be discussed in Sect. 7.

Because the Push—Pull network always has work available for both servers, both
servers can work all the time, thus achieving full utilization. Such full utilization
corresponds to a traffic intensity of 1. Consider some policy in which both servers are
working all the time and assume that this policy is rate stable, i.e., input rates equal
output rates at all the queues. Denote by 6; the long-run average fraction of time that
server i is working on jobs of type i in a push operation. Since servers are working
all the time, 1 — 6; is the long-run average fraction of time that server i is working on
jobs of type 7 in a pull operation. If the network is to be rate stable, then we have the
following equations for the production rates v; of jobs of types i =1, 2:

v =01A1 =1 —0)uy,

vy = bhAr = (1 — 012,

@ Springer

Queueing Syst (2009) 62: 75-111 79

which are solved by

o Mi(pi—AD)
TR —AA’

_ Miki(pui—Ap)
T pip2—A1A2

There are several cases to distinguish here. If ©; > X;, i = 1, 2, then the stream
of jobs of type i which arrive at server 7 has maximum input rate A;, and the server
can process these jobs at the faster rate w;; in this case we say that the network is
inherently stable. If A; > w;,i =1, 2, then the stream of jobs of type i through server
1 has maximum processing rate u;, and jobs may arrive at a faster rate of up to A;; in
this case we say that the network is inherently unstable. The case where A; = u; will
be referred to as the null case.

In the additional cases of A; > u;, u; > A; server 7 requires longer average
processing time than server i for both types. Therefore server 7 is a bottleneck, and
server i will have slack capacity. Formula (1) in that case yields negative rates and is
meaningless. We will not discuss these unbalanced cases any further in this paper.

Our aim in this paper is to find policies for this multiclass queueing network so
that the network will complete jobs of types i = 1, 2 at the rates v; and, at the same
time, will keep the queues of jobs between the servers Q;(¢) stable. This is easy to
do in the inherently stable case where priority to pull operations is a stable policy. It
is less easy to do in the inherently unstable case, and our main results in this paper
are policies which achieve this. In the null case we believe that congestion cannot be
avoided.

Throughout this paper we will make two simplifying assumptions: We will as-
sume that all processing times are independent and exponentially distributed. In ad-
dition, we will assume that preemptions are allowed. Under these two assumptions,
the network is memoryless (Markovian), and its state at time ¢ is given by the values
ni=0;t),i=1,2.

These assumptions can be relaxed, at the cost of getting less explicit results.
The behavior of the Push—Pull network in the inherently stable case, under non-
preemptive pull priority, is analyzed in [21], where explicit stationary distributions
are obtained. In our recent paper [27] we consider the Push—Pull network with gen-
eral processing time distributions, with or without preemptions, and find policies un-
der which our results here continue to hold: the network is working at full utilization
with positive Harris recurrent queues.

The rest of the paper is structured as follows. In Sects. 2—5 we study various posi-
tive recurrent policies: In the preliminary Sect. 2 we discuss the Markovian structure
of the problem and the behavior of the network under preemptive priority to pull op-
erations. In the inherently stable case this policy is stable. In the inherently unstable
case this policy is unstable. This motivates threshold policies which we discuss intu-
itively. In Sects. 3-5 we study the inherently unstable Push—Pull network under vari-
ous threshold policies. Fixed threshold policies are described in Sect. 3, and a queue
balancing diagonal policy is described in Sect. 4. For these policies, we are able to
derive the stationary distribution of the Markov jump process explicitly. In Sect. 5 we

@ Springer

80 Queueing Syst (2009) 62: 75-111

define a general class of threshold policies and show that they are stable by proving
positive recurrence of the Markov jump process using the Foster—Lyapunov criterion.
It also follows from this analysis that the Markov process is exponentially ergodic
and that the steady-state tail probabilities decay geometrically.

In Sect. 6 we discuss choosing the parameters of the policies so as to minimize the
expected queue lengths. We find that it is easy to choose the parameters of the fixed
threshold policy so as to minimize the expected number of jobs in the network, that
the queue length are similar to those under the diagonal policy, and that the minimum
is quite flat.

In Sect. 7 we contrast our Push—Pull network with the famous KSRS network
to which it is similar. We study two types of policies which were suggested for the
KSRS network: The affine switching curve polity of Henderson, Meyn, and Tadic
[20] and the max pressure policy of Dai and Lin [7]. By comparing the performance
of KSRS under these two types of policies to that of the Push—Pull network under
fixed threshold and under an adapted max pressure policy, we gain important insights.

A topic which we do not consider in this paper is the behavior of the output
processes, D1(t) and D;(t), the numbers of jobs of type 1 and type 2 which leave
the network in the time interval (0, ¢]. These are studied in our recent paper [27], in
which we consider Push—Pull networks with general independent processing times.
We use fluid scale analysis and diffusion scale analysis, and we show that for any
fully utilizing stable policies, the diffusion scaled output processes converge to a
Brownian motion that is independent of the policy, with negative correlation between
Di(t) and D (t).

2 Preliminary examination of the network

The state of the network at time ¢ is given by the values ny,ny of Q1(¢), Q2(t).
Figure 3 describes the states and the possible transition rates. These depend on the
choice of push or pull operation at each server and are as follows:

n; — n; + 1 atrate A; if server i chooses push operation, 2)

n; — n; — 1 atrate w; if server 7 chooses pull operation, n; > 0. 3)

Hence: whenever ny > 0, server 1 can choose to serve the queue Q> and move
“down” at rate w,, or choose to perform push operation on a new job and move
“right” at rate A1. Similarly, whenever n; > 0, server 2 can choose to serve the queue
Q1 and move “left” at rate 1, or choose to perform push operation on a new job and
move “up” at rate A». When ny = 0, server 1 must choose push operation and move
“right” at rate A1, and when n| = 0, server 2 must choose push operation and move
“up” at rate Ap.

We consider now the behavior of this network under the policy of preemp-
tive priority to pull operations over push operations. Once the policy is specified,
(Q1(1), O2(r)) is a continuous-time discrete-state Markov process (Markov jump
process). Furthermore, all the states in {(n1,n2) : n1 > 0,n2 > 0} will be visited at
most once, and the network will move to a state in {(n,0) : n; > 0} U{(0,ny) : ny >
0} U {(0, 0)} and stay in that set thereafter.

@ Springer

Queueing Syst (2009) 62: 75-111 81

Fig. 3 State of the Push—Pull 11y

network and possible transition - Choices of Server 1
rates sl Choices of Server 2
%

o
{
&
=
>

%
A Aol
Z
/1| Hy A.| n
Fig. 4 Transition rates for pull m
priority policy
L] |
M| |1
M| (1

Hi : Hi : H
A A A m

Figure 4 describes the transition rates for pull priority. The behavior of (Q1(¢),
Q2(t)) under pull priority policy is summarized by:

Theorem 1 Under pull priority policy, the network will stay in states with Q1(t) > 0,
0> (t) > 0 only for a finite time (almost surely).

Thereafter, if the network is inherently stable, it will alternate randomly between
periods of Q1(t) > 0 and Q>(t) > 0. In a period in which Q;(t) > 0 it will behave
like an M/M/1 queue with arrival rates A; and service rates ;. The steady-state
probabilities of the network will be

lim P(Q; (1) =n;, Qi(1) =0) = (1 = A2 = 42) <A—> om0 @
f—00 U1 — A1A2 Wi

If the network is inherently unstable, then either Q1 or Q> will diverge:

Qi) N (A _ Ai — Wi .
P[’E’I&(t ’Q'(t)>_(ﬂi 170)}_)»14-)»2—#1—#2’ =k O

In the null case of Mi = ui, i = 1,2, all the states (n1,0) and (0, ny) will be null
recurrent.

@ Springer

82 Queueing Syst (2009) 62: 75-111

Proof Clearly all states with n1 - ny > 0 are visited no more than once.

The steady-state probabilities for the inherently stable case are obtained immedi-
ately from the balance equations (birth and death process).

In the inherently unstable case, the state (0, 0) will be visited only a finite, ran-
dom, geometrically distributed number of times. After each visit to state (0, 0), there
are three possible events: Eq: The state (0, 0) will be visited again, E: the process
will remain forever in (Q(¢) > 0,0), or E;: the process will remain forever in
(0, Q2(¢) > 0). The probability that the process will return to state (0, 0) from state
(1,0) is ‘A‘—]‘, see Durrett [10]. Hence,

Py
P(E) = —1 (1= KEL).
M+ A2 M

Once the process remains forever in states (Q1(¢) > 0, 0), we have Q1(¢)/t —
almost surely, with a similar result for the event E;, and (5) follows.
If A; = ui, i = 1,2, then (0, 0) is null recurrent as it is for the M/M/1 queue. [l

A=l
Q1

It is straightforward to derive moments of the queue lengths in steady state, in
particular, one obtains

ik Mi—/\i_ ©)
Mip2 = AiA2 (i — A

lim B(0; (1) =

We now discuss intuitively how we may stabilize the inherently unstable case. To
do so we will introduce safety stocks: Server i will stop pushing and give priority to
pull only if the queue of type i items at server 7 has reached a threshold (safety stock)
level s;. Figure 5 illustrates the transition rates for such a fixed threshold policy.

To see how the safety stocks work and to decide on the required threshold levels,
we consider the following Markov jump process, based on a simple random walk in
the strip X () = (X1(¢), X2(t)) € {(n1,n2) :n1 =0,£1,£2,...,n0=0,1,...,5}.
Jumps of n; to the right occur with rate A1 out of states (n1, 0), and to the left at rate
1 out of states (n1, s2). Jumps of ny up occur at rate Ap when np =0,...,51 — 1
and jumps of n, down occur at rate wp when ny = 1,...,s>. The vertical coordi-
nate will behave like a finite buffer M/M/1/s, queue, independently of the horizontal

_M
1y

coordinate, with steady-state probabilities . o = lim;—, oo P(X2(t) =0) = PR
~(32)

and lim;_, oo P(X7 (1) = 52) = n.’o(%)”. Hence, in steady state the rate of horizontal
moves to the right will be A17. ¢, and to the left it will be 4 (%)”n.,o. Hence this
Markov chain will drift to the right if %(%)s2 > 1, and it will drift to the left if
/_1(/_2)52 <1
M1t 2 ’

This indicates that the Push—Pull network will be stable if we choose safety stock

threshold levels s; such that %(%)Sﬁ <1,i=1,2. We study this fixed threshold
policy in the next section.

@ Springer

Queueing Syst (2009) 62: 75-111 83

m

) 2
Hy Hy Q
A

) 2 lﬂz
Hi
A

A 2

Hi Hi : Hi Q
A

A 2 I3 2
h th I i : i : I
A
Ll | A |k A

A

Fig. 5 Transition rates for a fixed threshold policy, s; = 1,50 =2

The case of Aj = Wi

When A; = p;, i = 1,2, we saw in Theorem 1 that under pull priority the states
(m, 0), and (0, n) form a null recurrent irreducible set and all other states are transient,
in other words, the network is null recurrent. We note that (1) does not, in this case,
determine v;, 6;, i = 1,2, and in fact we can allocate an arbitrary proportion of the
time of each server to type 1 jobs, with the remaining proportion of the time to type 2
jobs, and keep both servers fully occupied. We conjecture that no stationary policy
can make the network positive recurrent.

3 Fixed threshold policies

In this section we analyze the fixed threshold policy: This means that server 1 will
not start serving the queue Q, unless Q1 has at least s; jobs, with a similar rule for
server 2 (see Fig. 5). We calculate the steady-state probabilities under this policy. The
choice of 51, 52 is such that %(’;—I_")” < 1,i =1, 2. In this section and in Sects. 4, 5,
for easier readability, we shall use m, n rather than n, ny to denote the number of
jobsin Q1, Q>.

@ Springer

84 Queueing Syst (2009) 62: 75-111

Theorem 2 The steady-state distribution of the Markov jump process (Q1(t), Q2(t))
for the Push—Pull network with A; > [1;, under the fixed threshold policy, is given by

o= lim P[(Q1(1), Q2(1)) = (m,)]
(%)n+)»2)ﬂll«2 ((%)nil)

(72) +25 ((2)*-1)

m=s1,0<n=<s,

={p, Lrga(@)r-r)
k) 5 5 m—s
[(2)" 25 ((2) -]

(am ()" = i)+ ietizmi=e (32)').

m>s,0<n<sy,

PSIJZ

with analogous expressions for n > so and 0 < m < s1. The expression for Py, , is

A _ M AMo_ A M2 4]
P _ |: AL+ Mo M—p1 A A+ o Wl A—p2 | Aa—p2 :|
51,82 —
P2 200 =) (%)s1 — % 2(Ay — p2) (%)S2 _ %

®)

All the remaining states are transient.

Proof Observation of Fig. 5 clearly shows that all the states {(m,n) :m < s1,n < s}
and {(m,n) :m > s1,n > sy} are visited at most once and are transient, and that the
set of states {(m,n) :m >s51,0<n <s}U{(m,n):n>s,0 <m < s} is reached
after a finite number of steps.

Take m > s1 and consider the balance equations around the set of states
(m,0), ..., (m,n), where 0 <n < s (see Fig. 6). We get the balance equations

M2Pm,n+1 +)\1Pm—1,0:)\2pm,n +)\1Pm,01 (9)

Fig. 6 Balance equations for
selected sets of states, under
fixed threshold policy

@ Springer

Queueing Syst (2009) 62: 75-111 85

and from this we obtain by induction the recursion relation

2 \" Al 2 \"
Pm,n =\ — Pm,O - - —1 (mel,O - Pm,O)v
12%] Ay — p2 \\ 2

0<n<s. (10)

Since Py, —1,0 =0, we can use (10) to express Py, ,,0 <n < s, in terms of Py, o.
We then express Py, o in terms of Py, 5, and obtain the desired expression for Py, .,
0<n<sy,in (7).

Next we consider m > s1. Observing transitions between Q1(f) = m — 1 and
Q1(t) = m (see Fig. 6), we get the balance equations

w1 Py =2 Pu_10, m>sy. (11)

We substitute this into (10) for n = s, and obtain a recursion for P, ¢ in terms of
Pm—l Os

% + kz)jﬂz ((%)52 B 1)
S S ’
)+ 2 (B - 1)

Iterating (12) and expressing Py, o in terms of Py, ;, we get

[+ 52 ()" - "™

Puno=Pn-1,0 m>si. (12)

Puo= Py, —. (13)
G G -y
Also, by (12) and (13),
A2 \$2 AT A Al A2 \$2 m—s;—1
=) =)+ 227" —1
mel,O_Pm‘():Psl,sz ((I'LZ) Nvl)[,ul Ar—H2 ((#2))] (14)

s+l
[G2)2 + 52 () -

Finally, substituting (13) and (14) into (10), we obtain (7) for m > sy.
To show the convergence, we consider a fixed 0 <n < s and sum P, , over
s1 < m < 0o0. We have this convergence because

s ((2)7-1)

R = <1, (15)
A2 \52 A 2 \S2
()" + 525 ((2)" =1
which holds because, by the definition of 3, (%)S2 > ;%
The expression for Py, s, follows by normalizing the sum to 1. O

Note
An alternative method to prove Theorem 2 is to consider the Markov jump process as
a quasi-birth-and-death process. This was pointed out to us by Moshe Haviv. A simi-

lar model is analyzed using these techniques by Haviv and Zlotnikov [19].

@ Springer

86 Queueing Syst (2009) 62: 75-111

Geometric decay of steady-state probabilities

We note that the steady-state probabilities P, , decay geometrically like R for all
m > sj.

Example

We consider a symmetric Push—Pull network with A1 =Xy = A, w1 = o2 = u, and
let r = u/A < 1. For positive recurrence, we take the fixed thresholds s; = 5o = 2.
We then obtain the steady-state probabilities

1—r
P2,2=—,
(I+rA+2r)
P P 1—r 2r
T a2 2+
Py Py 1—r r2
=T T a2 2+
1—r r 142r\"3
Pn,2:P2,n: , n=>3,
T+ +2r) 247\ 247
1—r 32 (1+2r\"
Pn,lzpl,nz 3 , n>3,
A+rA+2r) Q+r)*\ 247

P P 1—r r2 1+2r\"3 3
= = b n —_— .
O T Ay e+ 2\ 2+

The expected return time to state (2,2) is T(22) = ﬁw Each time the
network returns to this state, it will randomly move to the horizontal or the verti-
cal strip of states: In the horizontal strip Q1(¢) > Q»(t), while in the vertical strip
02(t) = Q1(r). We split the time spent in the state (2, 2) equally between the two

strips. Hence the network spends an expected time 272 7) = %# in each strip

before moving to the other strip. Consider the horizontal strip. Let

1+r

o0
Fr=Pyr+2S Po=— "
2="22% 2 2T 0+ +20)

> 2r
=2 Pi=—
1 X_; " A+

o0 2

2r
Fr=2Y Po=— "
2 z:; T A+ +2n

These probabilities which add up to 1 express the fraction of time that Q,(f) =2, 1,
or 0, respectively, in the strip of states Q1 > 2 (the horizontal strip in Fig. 5). Within

@ Springer

Queueing Syst (2009) 62: 75-111 87

this period, when Q;(¢) = 2, both queues are served at rate u. When Q,(t) =1,
only the queue of jobs of type 2 is served at rate ;. When Q> = 0, both servers are
pushing, and there is no service to either queue.

Hence in the horizontal strip the total average service rates of the two queues are:

1 1+4r 1+r
=y
14+r1+42r 1+2r
1 1+3r 143r

Rate of t ice: (Fr, + F))u = =
ate of Qo(¢) service: (F2 + Fi)p My e T

Rate of Q(¢) service: Fo u=pn

In summary: For this example, each queue undergoes fluctuations in service rate
around the average service rate of v, where for alternating periods of expected dura-

. . 1+4r 143r
tion 272, 2y, the service rates alternate between v o7 T

and v

4 Queue balancing diagonal policy

The fixed threshold policy has the following features:

(i) Atall times Qi(t) > s1, Q2(t) > 5».
(i) The geometric decay of the probabilities P(Q(t) > m) is at rate Rj, which is
faster as s; increases; similarly for Q> ().

These features seem conflicting; we would like 51, s to be small because of (i) and
to be large because of (ii). Further features are:

(iii) The fixed threshold policy causes the difference |Q1(t) — Q2(¢)] to be large.
(iv) As indicated in the example, the fixed threshold policy introduces large fluctua-
Mitpo 1

tions in the service rates, over cycles of expected durations i P
Sl .Sz

We now introduce another stabilizing policy which might counter these possibly
undesirable features. We consider only the symmetric inherently unstable Push—Pull
network with A = A1 = Ay > u = 1 = o and suggest a policy which attempts to
balance the queues Q(r), Q2(t). Our queue balancing diagonal policy serves the
shortest queue, with one server pushing work into it, and the other pulling work out
of it, until the difference between the queues decreases to just one customer. When the
queue lengths differ by 1 or are equal both servers pull. We calculate the steady-state
probabilities under this policy.

Theorem 3 The steady-state distribution of the Markov jump process Q1(t), Q2(t)
for the symmetric, inherently unstable Push—Pull network, under the queue balancing
diagonal policy, is

@ Springer

88 Queueing Syst (2009) 62: 75-111

Fig. 7 Transition rates and n
equation contours for the queue
balancing diagonal policy

m
A
"
_ A 2 m—1 2 n+1 P
_ L ()" a(a) s s (16)
Pm,() A= ()f’-) - Eﬂm,l nA—p , m>n> 0’
()"
A
Pm,Oﬁv m=n >0,

where Po o normalizes the sum to 1.

Proof The transition rates for the queue balancing diagonal policy are displayed in
Fig. 7, which also shows contours across which we obtain balance equations.
From the transitions in and out of Q1(¢), Q2(f) <m — 1 (see square contour in

Fig. 7) and the obvious symmetry P, , = P, ,, we obtain the balance equation
A
Pm,m—l = ; m—1,0, M= 1. a7

Equation (10) is valid here as well for m > 2, 0 <n <m — 1, and we use it for
(m,m — 1). Substituting (17) into (10), we obtain the recursion

Pin,o= Pu-1,0 , m>1. (18)

-1 -1
(G e (679 R)
We iterate (18) to obtain the desired expression for Py, o.

Substituting the expression for P, ¢ and for P, _; ¢ into (10), we then obtain the
desired expression for Py, ,, m > n > 0.

Finally, we use the transitions in and out of the set Q1(¢), Q2(t) < m excluding
(Q1(2), O2(t)) = (m, m) (see large contour in Fig. 7) to obtain that Py, ,, = %Pm’o,
which completes the proof of (16).

@ Springer

Queueing Syst (2009) 62: 75-111 89

We now show the convergence. Denote

i) -1
)"+ ()" -1

Then R(0) = %= > 1, R(1) =1, and it is easily seen that R(m) is strictly decreasing

R(m) =

in m and that hmm_>oo R(m) = 2)\%
It is seen from (16, 17) that Py, m = Pu.m—1R(m — 1) and also that P(m, n) is

increasing in n forn =0, 1, ..., m — 1. We therefore have that
2 m—2
Py < Pum-1==Poo [[RG). 0<n<m—land2<n=m.
s i=0
Hence,

ZZPm,n<PO,O|:1+<%> +2— Z(m+1)HR(z)}<oo -

m=0n=0 i=0
Geometric decay of steady-state probabilities

It is seen from the proof of convergence above that for any fixed n and large m > n,
Py,.n decrease as m increases at a rate which is arbitrarily close to ﬁ The same
also holds for Py, ju—1.

5 Generalized threshold policies

In this section we consider the inherently unstable Push—Pull network and define a
family of policies which we call generalized threshold policies. We use the Foster—
Lyapunov criterion to prove the stability of the network under these policies. We let
the state of the network Q(t) =m, Q2(t) = n be denoted by (m, n). An alternative
method would have been to prove the stability of the fluid model of the system, as
suggested by Dai [6]. We use this simpler approach in a follow up paper to the current
paper, in which processing times are general independent rather than exponential
[27]. The advantage of the explicit Foster—Lyapunov treatment here is that it also
reveals that the process is exponentially ergodic.

Definition 1 Let s; satisfy %(‘1—;)3" <1,i=1,2.Leta>s;,b>sy.Let Ny, m > a,

and M,, n > b, be nondecreasing integer functions such that s, < N, < Sm and

s1<M, < %n Define the actions of a policy when Q1(¢) = m, Q>(t) = n as follows.

In states m < a, n < b use an arbitrary stationary policy.

In states when m =0, n > b and when m > a, 0 <n < N, server 2 will push. In
all the remaining states server 2 will pull.

In states when n =0, m > a and when n > b, 0 <m < M,, server 1 will push. In
all the remaining states server 1 will pull.

Then this policy will be called a generalized threshold policy.

@ Springer

90 Queueing Syst (2009) 62: 75-111

Fig. 8 Directions of transitions
for a generalized threshold

policy

Generalized threshold policies are described schematically in Fig. 8. We will elab-
orate on the notation in this figure in the sequel. Our main result in this section is:

Theorem 4 The Push—Pull network with A; > i, i = 1,2, is stable under gener-
alized threshold policies, in the sense that it has a single irreducible set of positive
recurrent states, and all other states are transient.

We define the following subsets of states:

K={(m,n):0<m<aand0=<n=<b},
K= {(m,n): (m, n) gZK},
Koy = {(m,n): m > sup M, and n > sup Nm},

n>b m>a
Ki={(m,n):m>aand0<n<N,},
Ky={(m,n):n>band0<m < M,},
K3 =K\(KoUK;UK>).

The following lemma identifies the single irreducible set of states.

Lemma 1 There exists a maximal nonempty subset K* C K such that all the states
in

S=K*UK|UK,UKj3

communicate.
All the remaining states consisting of Ko U (K\K™*) are transient.

@ Springer

Queueing Syst (2009) 62: 75-111 91

Proof Note that each of the sets Ky, K3, and K\ K* may be empty. The proof follows
from the following steps:

(a) All states in K can be visited at most once, hence they are transient.

(b) All states in K; communicate, all states in K, communicate.

(c) Every state in K3 can be reached either from K or from K>.

(d) From every state in K3 one can reach either K or K>.

(e) There are states in K which can be reached from K, and there are states in K
which can be reached from K.

(f) From every state in K it is possible to reach both K and K>.

From (b, e, f) it is clear that K* is not empty and that K* U K; U K» communicate.
From (c, d) they also communicate with K3. The proof follows. d

We need to show that § is a positive recurrent set. We note first:

Proposition 1 Let Z(r),r = 1,2, ..., be the discrete-time embedded Markov chain
of states (m,n) € S visited by the Markov jump process Q1(t), Q2(t). Then the
Markov jump process Q1(t), Q2(t) is positive recurrent on S if and only if the
discrete-time Markov chain Z(r) is positive recurrent on S.

Proof This follows because all the transition rates out of states in Q1(¢), Q»(t) are
bounded from below by min(i1, A2, i1, (2) and from above by A1 4+ Ay 4+ w1 + 2. O

We will show that S is indeed a positive recurrent set for the Markov chain Z(r).
We will use the following version of the Foster—Lyapunov criterion, see [3, 11-13].

Theorem 5 (Foster—Lyapunov criterion) Let Z(r) be a discrete-time irreducible
Markov chain on a discrete state space S. Let K be a finite subset of S. Let V (x), g(x)
be two nonnegative functions of x € S, with g bounded. Assume that the following two
conditions hold:

(i) There exists h > 0 such that for all x € S\IC,
E{V(Z(g(x))) = V(0)IZ(0) =x} < —h;
(ii) there exists B such that for all x € IC,
E(V(z(1))1Z(0) =x) < B.
Then the Markov chain is positive recurrent.

Proposition 2 For the Push—Pull network, condition (ii) of the Foster—Lyapunov cri-
terion holds for every finite set K.

Proof This follows because |Q; (t+ 1) — Q; ()| < 1,i = 1,2 (as itis in every queue-
ing network). g

We let K = {(m,n):m < A,n < By where A>a, B>b, 5 ="

a’

@ Springer

92 Queueing Syst (2009) 62: 75-111

Our Lyapunov function V (m,n) is a linear combination of the following three
functions:

Ui(m,n) = max(bm, an),

Uz(m, n) = [bm — anl,

nK_”—l, m>A, 0<n<K, (19)

Us(m,n)=4{6L"™"—1, n>B,0<m<L,
0, otherwise,

where K, L are integers such that s) < K < B, s; <L < A.
We define the Lyapunov function as

Ui(m,n) + cUs(m,n) +dUs(m,n) (m,n) ¢ K,n < 2m,
V(m,n) = Ui(m,n)+eUz(m,n) + fUs(m,n) (m,n)g¢K,m=<%n, (20)
0, (m,n) e K.

Note that V (x, y) is continuous for real x, y outside the rectangle [0, A] x [0, B] for
all values of ¢, d, e, f.
The number of steps function is

2, b>bm—an > —a,

g(m,n) = { 1, otherwise. @D

Proposition 3 There exist A, B,K,L,n,0,c,d,e, f such that for all (m,n) out-
side K,

E{V(Z(g(m.n))) — V(m,n)|Z(0) = (m,n)} < —h <0.

Proof We shall perform the calculations for n < gm (i.e., under the diagonal line
mb = na) and determine A, K, n, ¢, d only. The calculations above the diagonal are
analogous.

We distinguish between N,, bounded and N,, unbounded. When N,, is bounded,
since N, is nondecreasing and integer, there exists A such that for all m > A, the
value of N,, is equal to the upper bound K. When N,, is unbounded, we can choose
the integer K as large as we need, and for any value of K, there will be A such that
N,, > K forallm > A.

For a function f(m,n), we use the notations A,, f(m,n) = f(m,n) — f(m —
L,n), Apf(m,n) = f(m,n) — f(m,n — 1), and AEf(m,n) = E(f(Z(1)) —
f(m,n)|Z(0) = (m,n))

Under the diagonal we have

Ui(m,n) =bm, Uy(m,n) =bm — an,

K—n _ (22)
_ [L 0=n=<K,
Us(m,n) = {0’ otherwise,

@ Springer

Queueing Syst (2009) 62: 75-111 93

with increments
AmUl(mvn)va AmUZ(m5n)=b5 AmU3(m7n):05
AnUl(msn)ZOa AnUZ(m»n)z_aa

(23)
K—n
_)-n"""m—=1, 0<n<K,
AnUs(m,n) = {0, otherwise.
The bounded case
We have N,,, = K, m > A. We will not use U, so we take ¢ = 0.
Form>Aand K <n < Z(m— 1), we get
AEV(m,n)=——"1 (24)
u1+u2
This is always < O.
Form > A and n = K, we get
AEV(mn)=——1 pyra—t2). (25)
U1+ u2 M1+ 12
This is < 0 if
din—1) < “Lp. (26)
w2
Form > Aand 0 <n < K, we get
A
AEV(m,n) = —d—2—pK=n=1(y - 1)(—2 - n>, @7)
A+ 2 2
“2 A2
<-d (n—1)<——?7><0 (28)
A2+ w2 J2%)
if we choose
A2
l<np<—. 29)
w2
Form > A and n =0, we get
Al Mg
AEV(m,n) = b—d —1). 30
(m,n) ORI M+kzn n—1) (30)
This is < 0 if
A
d(n—1) > “Lpy= &=, (31)

pos

Recall that K > 55 and 1 > %(’;—;)”. Hence we can choose a value of 7 so that

1/K
A A
1<<—1> <77<—2, (32)

I w2

@ Springer

94 Queueing Syst (2009) 62: 75-111

and with this value we will have

A
Elpp-k=n o By,
A2 j2%)

We can then choose d so that d(n — 1) is strictly between the two values. With this d
and 7, (26, 29, 31) hold, and AEV (m,n) < —h < 0.

The unbounded case

We have N, > K, m > A. We will use all three functions Uy, U, Us.
Form>Aand N,, <n < g(m — 1), we get

AEV(m,n) = — b1 +0)+ —2ac, (33)
M1+ u2 M1+ pa
which is < 0 if
b
< B2 (34)
1+¢c ura
Form > A and K <n < N, we get
Ao —
AEV(m,n) = — 2 'uzca, 35)
A2+ w2
which is always negative.
Form > A and n = K, we get
AEV(mm) = 22712 fq M2y (36)
A+ p2 A2+ p2
This is < 0 if
%)
cal ——1)>d(n-1). 37
w2

Form > Aand 0 <n < K, we get

Ay — A
AEV(m,n) = —c2 "2y g #2 nK‘”‘l(n—l)(—z—n>, (38)
A2+ w2 A2+ w2 j1%)

Ay — A
<2, g (n—l)(—2—n>, (39)
A2+ o A2+ 2 M2

where the inequality holds if 1 <7 < % A sufficient condition for the whole expres-
sion to be < 0, for any fixed ¢ > 0 and/or d > 0, with a value which is independent
of m,n,is (29).

For m > A and n =0, we get

A A A
! (I14+c¢)b—ca 2 2 nK_l(n—l). (40)

AEV(m,n) = —d
A+ Ao A+ A2 A+ Ao

@ Springer

Queueing Syst (2009) 62: 75-111 95

Thisis <0 if
)
d(n—1) > (A—1(1+c)b—ca)n_(K_l). @1)
2

To choose d(n — 1) so as to satisfy (37, 41), we need to have
A A
ca<—2 — 1) > (—l(l—i—c)b—ca)n_(K_l). 42)
j7%) A2
Together with the condition (34), we need to choose

mb ¢ amb p KD

> = > a2 T 43)
Mm2 a c 2aE—1+77

Taking any value of 1 such that 1 <7 < A2 (condition (29)), we can make K large
enough so that the right-hand side of (43) is less than the left-hand side and also
less than 1. Thus we can choose ¢ so that (42) and (34). We can then choose d so
that conditions (37, 41) hold. We have shown how to choose first n, then K, and a
corresponding value for A, and finally values of ¢ and d, so that conditions (29, 34,
37, 41) all hold. With these choices, we get AEV (m, n) < —h < 0 for the unbounded
case.

We can repeat the calculations for the points above the diagonal. We now need

to modify the resulting values of A and B first to have A = max(A, L), B =
max(B, K), so that K < I§, L < A, and then to have A = max(A, %E),B =

max(é, SA), so that %.

ST

The diagonal region

To complete the proof, we need to analyze the points (m, n) close to the diagonal,
b > bm — an > —a. Assume that a point Z(0) = (m, n) is exactly on the diagonal,
i.e., bm = an. Then, in one step,

K2 a+ ad eb > 0.

]E(V(Z(l)) — V(Z(O)) | Z(0) = (m,n), bm =an) = Y +M2C P

Similarly, if b > bm — an > —a, we may get that E(V (Z(1)) — V(Z(0))) > 0. This
is why we need to look at the difference in two steps, and so we use g(m,n) =2. We
need to calculate E(V(Z(2)) — V(m,n) | Z(0) = (m, n)).

We can assume that if b > bm —an > —a, thenn > K + 2, m > L + 2 (we can
increase A, B to make sure). Hence, in the area of interest, V is a combination of
Uy, Us. It is easy to check that

Ui(m,n) —Uy(m —1,n — 1) > min(a, b), Uim,n) —Ui(m —2,n) >0,
Ui(m,n) —Ui(m,n—2) >0,
Uy(m,n) —Usy(m —1,n —1) > —(a +b), Ux(m,n) — Us(m —2,n) > —2b,

@ Springer

96 Queueing Syst (2009) 62: 75-111

Uy(m,n) —Uy(m,n —2) > —2a.

We now consider a state (m, n) below or on the diagonal such that server 2 is using
pull operation and such that (m — 1, n) is above the diagonal (i.e., b > bm —an > 0).
Then clearly M,, <m — 1, and so in state (m — 1, n) server 1 will pull. Hence, with

probability of at least (M’l‘jr’;é)z , we will move in two steps from (m,n) to (m — 1,

n — 1). A similar argument holds for state m, n above or on the diagonal such that
server 1 is using pull operation and such that (m,n — 1) is below the diagonal.

Hence, in the case that a pull operation moves across the diagonal, we get, in two
steps,

E(V(Z(2) - V(Z(0)) | Z(©0) = (m,n))
o mmw

=Tt)t min(a, b) + 2 max(c,) max(a, b). (44)
K1 K2

We saw that, in the bounded case, ¢ (or ¢) is 0 and that, in the unbounded case, ¢
(or e) can be chosen to be arbitrarily small by taking K (or L) large enough in (43).
Hence, we can choose K, L, c, e so that E(V(Z(2)) — V(Z(0)) | Z(0) = (m,n)) <
—h <0 when b >bm —an > —a.

This completes the proof. g

Exponential ergodicity and geometric tails

It is seen from the of proof of Foster’s criterion that the Lyapunov function V(z)
is uniformly Lipschitz-continuous. Furthermore, the one-step moves of the process
are bounded, and so they possess finite exponential moments. Hence, the process
Q1(1), Q2(2) is actually exponentially ergodic (cf. [25, Proposition A.5.7]).

This implies that the stationary probabilities of Q; > m fall off geometrically fast
in m for any generalized threshold policy (cf. [24, Theorem 16.3.2]).

6 Optimization problems and numerical results

In Sects. 3-5 we have derived policies which keep the queue lengths positive re-
current while achieving full utilization of the servers. These policies are so called
throughput efficient, or throughput optimal, in that they complete jobs at the highest
possible rate. One can then pose the following question:

Problem 1 For a Markovian Push—Pull network with processing rates A;, u; and
holding cost rates h;,i = 1,2, find a policy which will keep both servers busy at
all times and will minimize the long-run average expected holding costs given by

h1Q1(t) +h202(1).

Since this is a Markov decision problem with countable state space and a finite
number of actions and since stable policies exist, this problem has an optimal solu-
tion. Clearly this policy will achieve throughput rates v;, i = 1, 2. We can also pose a
more general problem:

@ Springer

Queueing Syst (2009) 62: 75-111 97

Problem 2 For a Markovian Push—Pull network with processing rates A;, i;, hold-
ing cost rates h;, and utilization p; < 1,7 = 1, 2, find a policy which will achieve
throughput rates p;v; and will minimize the long-run average expected holding costs
givenby 11 Q1(t) +h2 Q2(1).

We may speculate, though we have no way of verifying it, that:

Conjecture 1 Problem 1 is solved by some generalized threshold policy as defined
in Sect. 5. Problem 2 is solved by some generalized threshold policy as defined in
Sect. 5, with the addition of an idling rule: In state (Nl, 0) idle server 2. In state
(0, N») idle server 1.

We cannot say more about the general solution of Problems 1 and 2, but whether
Conjecture 1 is correct or not, we should pose the question:

Problem 3 For a Markovian Push—Pull network with processing rates A;, ;; and
holding cost rates h;,i = 1,2, under full utilization, find among all generalized
threshold policies the optimal a, b, N,,,m > a, M,,n > b, so as to minimize the
long-run average expected holding costs given by i1 Q1(t) 4+ h2 Q2(2).

We do not see a way of answering this problem in general. What we do in this
section is explore some threshold policies numerically. To this purpose, we calculated
the expected queue lengths under fixed threshold policies (as defined in Sect. 3) for
various values of the threshold and for a range of values of the parameters. We also
calculated the expected queue lengths for the queue balancing diagonal policy (as
defined in Sect. 4) for various parameter values. Finally we obtained via simulation
the expected queue lengths under a hybrid policy. We report here the steady-state
expected values of Q1(¢), Q2(t), Q1(t) + Q2(2).

In Table 1 we consider symmetric Push—Pull networks with A = A1 = Ay, u =
1 = u2. The expected queue lengths are then functions of the ratio w/A. In the top
part of Table 1 we use fixed threshold policies and investigate the dependence of
the expected queue length on the values of the fixed thresholds s1, s7. The first line
(line 1) of the table reports the expected queue length for the minimum stable thresh-
olds of s = so = 2. The optimal fixed thresholds s}, s3 and the optimal expected
queue lengths for fixed thresholds (Q; + Q2)* are listed on line 5. In lines 2-4 we
use thresholds lower than the optimal s]k, s§, and in lines 6-8 thresholds which are
higher than the optimal.

Line 9 of the table lists the expected queue lengths under the queue balancing
diagonal policy.

The last line (line 10) of the table lists the expected queue lengths under a hybrid
policy: We use the queue balancing diagonal policy in the square of s x s and fixed
threshold 51 = sp = s outside that square. The values of s are the optimal ones for
this policy. These results for the hybrid policy were estimated through simulation.

Our conclusions from Table 1 are the following:

— As expected, the Push—Pull network becomes more congested as u; A;.

@ Springer

98 Queueing Syst (2009) 62: 75-111

Table 1 Expected queue lengths for symmetric Push—Pull network

/A 0.05 01 02 03 04 05 06 07 075 08 08 09 095
Threshold policy

1 01+0> 4.11 424 458 5.05 5.71 6.67 8.13 10.59 12.57 15.56 20.54 30.53 60.51
s1=85=2

2 01+0> - - - - - - - - - 14.84 19.00 21.28 33.99
s1* - - - - - - - - - 4 4 5 7
X) _ _ - - - - - - — 2 2 3 5

3 01+0> - - - - - 6.67 8.13 10.59 12.57 12.18 15.46 20.00 33.51
sl*—1 - - - - - 2 2 2 2 3 3 4 6
s2¥ — 1 - - - - - 2 2 2 2 3 3 4 6

4 01+0> - - - - - 6.83 8.05 10.15 11.85 12.13 15.13 19.83 33.43
s1* - - - - - 3 3 3 3 4 4 5 7
s2*¥ — 1 - - - - - 2 2 2 2 3 3 4 6

5 (Q1+ 02" 411 424 458 5.05 571 6.58 7.42 896 10.23 11.86 14.54 19.53 33.30
s1* 2 2 2 2 2 3 3 3 3 4 4 5
s2%* 2 2 2 2 2 3 3 3 3 4 4 5

6 01+0> 5.01 5.06 524 556 6.06 7.18 7.87 9.21 10.36 12.16 14.66 19.67 33.40
s1* 2 2 2 2 2 3 3 3 3 4 4 5 7
s2% 41 3 3 3 3 3 4 4 4 4 5 5 6 8

7 01+02 591 584 579 5.87 6.11 7.70 821 9.32 10.31 12.37 14.70 19.74 33.48
sl*+1 3 3 3 3 3 4 4 4 4 5 5 6 8
s2¥ 41 3 3 3 3 3 4 4 4 4 5 5 6 8

8 01+0> 6.01 6.04 6.18 6.45 6.89 7.99 858 9.80 10.88 12.67 15.07 20.01 33.66
sI* 2 2 2 2 2 3 3 3 3 4 4 5 7
s2% +2 4 4 4 4 4 5 5 5 5 6 6 7 9

Queue balancing diagonal policy

9 01+0> 544 5.57 589 6.34 6.99 7.92 9.36 11.81 13.78 16.76 21.73 31.71 61.61

Hybrid policy

10 Q1+ 0> 458 4.68 497 534 573 6.32 725 873 9.84 11.50 14.10 19.07 32.81
§X 2 2 2 3 3 3 3 4 4 4 5 6 8
K 2 2 2 3 3 3 3 4 4 4 5 6 8

— It is possible to locate the best fixed thresholds for each set of parameters. For the
symmetric network, the optimal thresholds are symmetric. The optimal thresholds
are often higher than the minimal thresholds required for stability.

@ Springer

Queueing Syst (2009) 62: 75-111 99

Table 2 Expected queue lengths for different processing speeds

W/ 0.1 0.3 0.5 0.7 0.8 0.9 0.95

K=1

sisy 2 02 2 2 3 3 3 3 4 4 5 5 7 7
01.0Q> 212212 253 253 329 329 448 448 593 593 977 9.77 16.65 16.65
Q1+ 0, 424 5.05 6.58 8.96 11.86 19.53 33.30

K=15

s;,2 2 2 2 2 3 2 4 3 4 3 6 4 9 6
01,0, 208 2.18 237 276 420 242 502 4.14 631 580 1030 9.78 16.23 18.21
01+ 0y 426 5.13 6.62 9.16 12.11 20.08 34.44

K=2
51,82 2 2 2 2 3 2 4 3 5 3 7 4 10 5

01,02 206 224 229 3.00 398 263 474 4.65 6.82 5.70 10.26 10.76 16.56 20.03
01+ 0> 430 5.29 6.62 9.39 12.51 21.02 36.58

K=25

51,82 2 2 3 2 3 2 4 3 5 3 8 4 12 5
01,0, 2.05 230 224 3.18 3.85 285 457 5.15 650 6.48 10.57 11.59 17.12 21.99
01+ 0> 435 5.42 6.70 9.72 12.97 22.16 39.10

K=3

51,82 2 2 3 2 3 2 5 3 6 3 9 4 13 4
01,0, 2.04 236 221 324 377 3.07 544 4.64 725 6.24 11.07 12.28 19.00 22.54
Q1+ 02 440 5.45 6.83 10.08 13.49 23.35 41.54

— The objective of minimal expected queue length is quite flat around the optimal
thresholds.

— The fixed threshold policy with optimal threshold performs better than the queue
balancing diagonal policy. The difference increases as the network becomes more
congested.

— The hybrid policy performs slightly better than the fixed threshold policy. The
optimal thresholds for the hybrid policy are similar to, but slightly higher than, for
the fixed threshold policy.

In Table 2 we consider Push—Pull networks with K = /1 = Az/A1, that is, the
ratio of w;/A; is equal for both types of jobs, but the jobs of type 2 are processed (by
both servers) at a rate which is K times faster than for type 1. Note that in this case,
01 =60, =1/2, while vy = Kvy (see (1)), and the balanced network will spend equal
times working on the two different types, and complete K times more of the jobs that
require less work. We report the expected steady-state number of jobs in the network
for various values of u;/A; and various values of K, under fixed thresholds, where
we choose the optimal levels of the fixed thresholds in each case.

@ Springer

100 Queueing Syst (2009) 62: 75-111

Table 3 Expected queue lengths for asymmetric Push—Pull network

11 /A1 =0.50
w2/ 005 010 020 030 040 050 0.60 070 0.75 080 085 090 0095

s 7 6 4 3 3 3 3 4 5 7 9 14 28
01 6.05 5.10 3.23 243 2.69 329 484 753 941 11.86 16.82 26.02 54.23
0> 10.00 7.68 6.24 538 4.01 329 275 3.04 360 492 6.08 922 17.81

01+0> 1605 12.78 948 7.81 6.70 6.58 7.59 10.57 13.02 16.78 22.90 35.24 72.04

51 8 6 5 4 3 3 2 2 2 1 1 1 1
52 2 2 2 2 2 3 3 5 6 8 11 17 36
01 7.05 5.12 430 3.63 321 329 3.64 388 472 395 551 8.58 16.81
0> 340 3.67 2.89 2.80 290 3.29 343 457 503 755 907 12.62 24.77

01+0> 1044 879 720 642 6.11 658 7.07 845 9.76 11.50 14.58 21.20 41.59

We know that for the M/M/1 queue, increasing the processing speed does not
change the queue length which is a function of A/u only. The main conclusion from
Table 2 is that the Push—Pull network behaves similarly: The difference in queue
lengths between K =1, 1.5, 2.0, 2.5, 3.0 is quite small. Note however that the opti-
mal thresholds for the two queues are quite different, that is, the slower queue needs
a higher threshold.

In Table 3 we consider a different type of asymmetry: We look at Push—Pull net-
works with % + Al—l =14 Ai, i.e., the total amount of work per job (push and pull
operation) is the same for both types of jobs, but it is divided differently between
the servers. To parameterize this situation we take % =0.5 and let ‘A‘—ZZ vary over a
range of values from 0.05 to 0.95. In each of these we have calculated the steady-state
expected number of jobs for two different threshold policies: In the top line we use
equal thresholds for both queues, and we choose the optimal values of s1 = s = 5. In
the bottom line we use different thresholds, and we give the values of the thresholds
s1, s2 and the queue lengths, where s1, s> are chosen optimally.

It can be seen from this table that asymmetry in the division of work between push
and pull in the two queues causes congestion: for /A1 = 0.5, when wy /A, is very
small or very large, the queue length become much larger than for the symmetric case
of wa/Az = 0.5. The optimal thresholds are also more different. We note also that
choosing equal thresholds causes significantly more congestion than optimal choice
of thresholds and accentuates the difference between the queue lengths at the two
queues.

7 Comparison with the Kumar-Seidman—Rybko-Stolyar network

The Kumar—Seidman—-Rybko—Stolyar (KSRS) network is depicted in Fig. 2(b). It
differs from our Push—Pull network in that, instead of infinite supply of work, it has
exogenous arrivals of jobs of type i at rate «;, i = 1, 2. It has four queues, jobs of
type i arrive at server i and queue up for their first processing step, and then move on

@ Springer

Queueing Syst (2009) 62: 75-111 101

to queue up at server ¢ for their second processing step. We let Q; 1(¢) be the queue
length of jobs of type i at server i, and Q; 2(f) be the queue length of jobs of type
i at server 1. The offered load to server i is p; = ‘;—: + % The actions available for
server i at time ¢ are to push if Q; 1(¢) > 0 and to pull if Q7 2(¢) > 0. If both queues
are empty, the server has to idle.

In this section we compare the behavior of our Push—Pull network to that of the
KSRS network under heavy traffic. We observe first that the Push—Pull network can
be regarded as a special case of the KSRS network when p; > 1, i = 1, 2: If this is
the case and if Q; 2, i =1, 2, are rate stable, then the queues Q; 1,i =1, 2, will, after
some initial transient period, never be empty. Hence they will act exactly like IVQs.
We could, on the other hand, give priority to Q; 1,i = 1,2, and if o; < A;, i = 1,2,
then this first-buffer-first-served (FBFS) priority policy will keep these two queues
stable, and Q; 2, i = 1,2, will then grow linearly in time. A third option, keeping
the four queues balanced is achieved by the max pressure policy, as we shall see in
Sect. 7.2.

The KSRS network has been studied extensively (cf. [4, 25]) because of the fol-
lowing property: Assume that the processing times are exponential and that the arrival
streams are Poisson, so that, under any stationary policy, (Q1,1(t), Q1.2(t), Q2.1(1),
Q2.2(t)) form a Markov jump process. Assume also that p; < 1, i =1, 2. If in addi-
tion p, = % + % <1 (py is the workload of a so-called virtual server), then under
any stationary work conserving policy (i.e., servers do not idle if they have any work
to do) the resulting Markov jump process is positive recurrent. This result can even be
generalized to i.i.d. inter-arrival and service times and positive Harris recurrence [9].
However, if p, > 1, then this is not the case. In fact, under pull priority (last-buffer-
first-served, LBFS) % + QZ—;(’) — py — 1 almost surely as ¢ — oco. This was first
discovered by Kumar and Seic{Lman in their seminal 1990 paper [22], in which they
considered deterministic arrival and service times, and later by Rybko and Stolyar
[28], who considered exponential interarrival and service times.

Assume that p1, pp < 1. If u; > X;, i = 1,2 (referred to as the inherently stable
case in this paper), then p;, po < 1 implies also that p, < 1. Hence the pull priority
policy is stable, and so is any other non-idling policy. If however u; < X; (referred
to as the inherently unstable case in this paper), we can find a constant y such that if
y <pi <1,i=1,2,then p, > 1, and the KSRS network will be unstable under pull
priority policy, analogous to our observation for the Push—Pull network (see Sect. 2).

The reason for the instability is that under pull priority, if Q1 > is empty, then for
as long as 022 > 0 server 1 will not send any jobs to (1,2, and so server 2 will only
work on Q7 1 and will only be busy for a fraction ‘;—; < py of the time. In other words,
server 2 will be starved, and similarly server 1 will be starved when Q> > is empty
and Q12 > 0. Under pull priority, after some transient period, only one of the queues
01,2, 022 will be served at any given time. This motivates the concept of a virtual
server.

It is easy to find policies which will avoid starvation of this sort: The minimal
correction will be to serve Q; 1 whenever Q;> = 0, and this seems to be enough
to guarantee stability (we are not aware of a reference in the literature for such a
result, but we believe it is true). How to control the KSRS system so as to minimize
queue lengths is however a difficult question, which is far from being resolved in the
literature.

@ Springer

102 Queueing Syst (2009) 62: 75-111

The question of control becomes more acute as p; or p, increase, because in that
case some of the queues in the network become congested. In particular, if «; 7 v;
and oy " vy, then both p1, po 7 1, and the system will approach balanced heavy
traffic with some congestion. This is indeed in contrast to the Push—Pull network,
which we can operate at full utilization (servers busy all the time, p; = p» = 1) and
yet maintain stable queues.

We will now compare the performance of the KSRS network in balanced heavy
traffic with that of the Push—Pull network. We will consider two policies for the KSRS
network: The affine switching curve policy of Henderson, Meyn, and Tadic [20] (see
also [5, 25]) and the max pressure policy of Dai and Lin [7, 8] (see also [29, 30]).

For ease of presentation and avoiding inessential complications, we follow [20]
and consider only symmetric networks with &« = a1 = a2, A = A1 = A3, U = U1
= wp. This implies v = vy = vy, = ﬁ—“ﬂ, and traffic intensity of both servers is
p = p1 = p2 = $. To simplify the comparison we will denote the queues of the Push—
Pull network by Q12 = 01, Q22 = Q2. The queues Q1.1, 02,1 of the KSRS network
correspond to the infinite virtual queues of the Push—Pull network.

7.1 The KSRS network with affine switching curve policy

In this section we consider the performance of KSRS under the affine switching curve
policy suggested by Henderson, Meyn, and Tadic [20]. We performed extensive sim-
ulation studies with versions of this policy and obtained some interesting results,
which provide new insights into [20].

As we have already noted, the approach of Henderson, Meyn, and Tadic [20] in
analyzing the KSRS network is rather different from our approach in analyzing the
push—pull system. Our motivation here is to clarify the points of similarity and dif-
ference, as these may not be obvious from a first reading of [20].

Mainly, in the current paper we perform an exact analysis of the jump Markov
process, while in [20] the analysis uses fluid and diffusion scaling, and optimality
statements refer only to these scaled processes.

Our most significant point in our comparison here is to indicate that for the KSRS
network under balanced heavy traffic, in the inherently stable case LBFS with no
idling seems optimal, and in the inherently unstable case FBFS is optimal when
p — 1 aslong as p < 1. This is somewhat in contrast to some of the results reported
in [20]. When p > 1, then in the inherently stable case the behavior of the KSRS
becomes identical to that of the Push—Pull network under pull priority. In contrast to
that, in the inherently unstable case, for p > 1, the LBFS policy causes all four queues
to diverge, while FBFS policy will cause the queues Q; > to diverge. It is here that
our more delicate policy for the Push—Pull network succeeds in keeping the queues
Q; 2 stable positive recurrent (exponentially ergodic). The following is our detailed
analysis, including simulation results.

The affine switching curve policy is based on the total workload W;(¢) and the
immediate workload w; (¢) of each of the servers i = 1, 2 defined by

0i1() Or1(1) + Qi 2(1)
+ ,
A 2

Wi(t) =

@ Springer

Queueing Syst (2009) 62: 75-111 103

0i1(1) n Qz’,Z(f).
A u

w; (1) =

The policy is defined by two affine switching curves and two thresholds and is as
follows:

— Idle server i if W; (1) < s*[Wi(t) — Wil
— When not idling, server i serves Q; 1 if Q7 2(t) =0 or if w;(¢) < wy,

where the constants sl.*, Wi, w;, I = 1,2, depend on the parameters of the network.
s; is derived from an appropriate linear program (cf. Example 5.3.1.6 in [25]), while
W;, w; are adjusted by simulation.

Example 1: inherently stable, . = %, u=1

For the inherently stable case (A <), the policy of [20] is to use s,.* = ﬁ In [20],

this example of 1 = %, w =1 is only discussed in general terms, and there is no use

of simulation to indicate Whic_h Valyes of_Wi, w; to choose.
The following choices of W = W = W», and w = w1 = w; are of special interest:

— The choice W; = 0 introduces the most idling.

— When W; = oo, the policy is non-idling.

— If we choose w; = 0, the policy is to use pull priority at each server (when not
idling), which is LBFS.

— If we choose w; = oo, the policy is to use push priority at each server (when not
idling), which is FBFS.

We simulated the KSRS network for these values and observed the following mean
number of jobs in the network:!

W=0 W=
0 15.59 15.39
oo 47.66 36.60

S S

We draw the following conclusions for this example:

— LBFS is preferable to FBFS.
— Under FBFS, non-idling is preferable to idling.
— There is very little effect to idling when priority is according to LBFS.

The seemingly surprising observation that idling has little effect under LBFS has
the following explanation: Under LBFS, the queues Q1.2, 022 will have very few
jobs, and most of the jobs in the system will be in the two queues Q1 1, Q2.1. Assume
that Q1 2(1) = Q22(t) =0; then 57 = A/ < Wa(¢)/ W1 (t) < u/A = 1/s5, so that in
heavy traffic, under LBFS, the workload process will automatically stay away from
the idling area. This is demonstrated in Fig. 9, in which we plotted the sample path
of the workload for one simulation run of the non-idling LBFS policy (w = 0 and

IEach cell was obtained from 60 runs of 5 x 107 time units using exponential processing times with a
preemptive policy.

@ Springer

104 Queueing Syst (2009) 62: 75-111

Wa(0)

0 50 100 150 200

Fig. 9 Sample path of the workload in KSRS, under non-idling LBFS policy, A = % u=1,and p=0.9

W = 00). The path starts at time = 0 with Q4(¢) = 200 and the other queues empty.
It is clearly seen that the sample path drifts upward into the non-idling region, and it
stays there for the remaining time without resorting to idling.

We conjecture more generally that, for the KSRS network in heavy traffic, in the
inherently stable case, LBFS with no idling minimizes the expected number of jobs
in the network.

For the Push—Pull network, our policy is pull priority, and the expected steady-
state queue lengths for this numerical example are (from (6))

2uM

E(Q1,2 + Q22| Push—Pull, Pull Priority) = — 0 = 0.75.
ne—A

By comparing sample paths it is easy to see that
E(Q1,2 + 02,21 KSRS, LBFS) < E(Q1,2 + Q22| Push-Pull Pull Priority).

Of course, as p — 1, the expected queue lengths in Q1 1, Q2,1 will increase like
p/(1—p).

Example 2: inherently unstable, A =1, u = % and A=1,u=0.8

For the inherently unstable case where A; > w;, i = 1,2, the policy of [20] is to use
s;k =0, W; =0. The symmetric value of w = w» is determined by simulation.

Henderson, Meyn, and Tadic have simulated this example of the KSRS net-
work with p = 0.9 for a grid of w;, wy values. They used the simulation to de-
termine the optimal values which minimize the expected steady-state number of
jobs in the network. Their estimated optimal choice was w; = 35, wy = 30, and
E(>_ Q) = 17.6. They point out that clearly the actual optimal choice should be sym-
metric, w = w| = wy.

@ Springer

Queueing Syst (2009) 62: 75-111 105

wA=1/3

1Ql

20 0.0
v v

Fig. 10 Simulated expected number of jobs in the KSRS network withA =1, u =1/3and A =1, u =0.8
for p = 0.9 (bottom surfaces) and p = 0.95 (top surfaces) over a grid of y € [0, 1] and V € [0, 30]

We have repeated the simulation of KSRS for these parameters and performed a
slightly wider search for optimal performance. The safety stocks w; in [20] are in
terms of the immediate work load of machine i, w;(¢), which weighs jobs in Q; |
and Q; 2 according to their expected processing times. We define generalized imme-
diate workloads V;(t) =y Q;1(t) + (1 —y)Qi2(@), 0 <y <1,i =1,2. We then
use symmetric safety stocks of V = V; = V,. Our policy for y and V is defined as
follows:

— Forservers i = 1, 2, service is non-idling, server i will give priority to push opera-
tion (serve Q; 1) if the generalized immediate work load of server 7 is low, that is,
ifyQr1(t)+ (1 —y)Qi2() <V.Otherwise server i will use pull priority (serve
012).

Here y = 0 means that we only look at the workload in the pull queues, Q; 2,1 =1, 2.
This is equivalent to the fixed threshold policy which we use for the Push—Pull net-
work. In particular, y =0, V = 0 is the minimal anti-starvation policy: Give priority
to pull (Q;,2) and work on Q; 1 only if either Q; » =0 or Q7 2 = 0. Our simulation
indicates that this is stable for p < 1 but creates long queues. On the other hand, as
we let V increase, for any 0 < y < 1, the policy will more often give priority to push
over pull, and hence as we let V — oo, we will actually be using the policy of push
priority or FBFS, which is stable.

Our simulation results for p = 0.9,0.95 for systems with parameters A = 1,
w=1/3and A =1, u = 0.8 over a grid of y, V are given in Fig. 10.?

We note some interesting properties:

— For the case A = 1, u = 1/3, the values y = 0.75, V = 8 correspond to the policy
in [20] with w = 32. The queue lengths which we obtained in our simulation
were 15.3, which is close to the 17.6 reported in [20]. We note that we have

2The grid used for the simulations uses a step size of 0.2 for y and steps ranging from 1 to 3 for V. Each

point on the grid used between 20 to 100 runs of duration 5 x 10° time units, depending on the observed
standard error.

@ Springer

106 Queueing Syst (2009) 62: 75-111

Fig. 11 A closer look at the
curve of Fig. 10 for A =1,
n=1/3,and p =0.9

used memoryless exponential inter-arrival and processing times and preemptive
priorities in our simulation, while [20] employs a two-parameter discrete-time
model for all events. Hence the results are not in complete agreement but are
close enough.

— For small values of V (including V = 0), the policy is stable for all y, but the
queue lengths are large.

— AsV increases, for each fixed y, a minimum is reached, followed by gradual
increase towards an asymptotic value which is the value for FBFS. Hence, con-
trary to the picture presented in [20], the expected queue lengths are not convex
functions of V, though they are quasi-convex.

— For given y, we consider the minimum of the queue lengths over all V. Regarded
as a function of y, it is increasing in y. The best values are obtained not for
y = ﬁ as in [20] but for y = 0. This can be observed in Fig. 11, which is a
rescaled and rotated view of one of the surfaces in Fig. 10. The evaluation of the
“best” y and V becomes much harder as p increases.

— In all four surface plots, the minimum is very flat. The difference between the
minimum value and the value for FBFS is small. Hence, for these two instances
of the KSRS network, the policy proposed in [20] as well as our threshold policy
do not present a significant improvement over the simple FBFS rule.

KSRS under preemptive FBFS policy

The behavior of KSRS under preemptive FBFS is easy to derive. Assume Poisson
arrivals and exponential services. Then Q; 1, i =1, 2, behave like two independent
M/M/1 queues with arrival rates «; and service rates A;. Furthermore, the departures
of Q71 which are the arrivals of Q7 form a Poisson process, and they are inde-
pendent of the arrivals of Q; 1. Hence, server i has two independent Poisson arrival
streams of rates «;, o7, which are served according to preemptive priority to Q; |
over Qi 2. A further property is that past departures from Q; ; are independent of
the present state of Q; 1 (by reversibility). Hence the joint stationary distribution of
Qi1(t), Qi2(t) (the jobs of type i in the system) is of product form. In fact these
results are valid for general i.i.d. service distributions in Q; ».

@ Springer

Queueing Syst (2009) 62: 75-111 107

Fig. 12 Mean number of jobs 1Ql
in the KSRS network, under 80
FBFS policy, as a function of p,
fora=1,pu=1/3and A =1,
n=0.8

\ \ \ Lop
0.80 0.85 0.90 0.95 1.00

By these arguments it is straightforward to see that the expected stationary number
of jobs in the symmetric KSRS network under preemptive FBES is

E(Q;.1) = ﬁ

E(zzgu)z 2 L+ +20-0%
A== p)(4) + -k

(45)

Weplot E(Q1,1 + Q12+ 02,1+ Q2,2) as afunction of p forA =1, u =1/3 and
for . =1, u =0.8 in Fig. 12.

An interesting observation from Fig. 12 is that there is not much difference in the
mean number of jobs in the network between A =1, u=1/3and A =1, x4 =0.8. In
fact it is seen from (45) that the expected number of jobs for p ~ 1 is

2
E(Z Qi,j) 12/0 - 1+ (un/2) .
—p L+ p/a

Returning to the Push—Pull network, we see that in the inherently unstable case
its behavior is fundamentally different from the behavior of KSRS under FBFS or
under the policy of Henderson, Meyn, and Tadic [20]: Clearly the Push—Pull network
cannot be operated under FBES (i.e., push priority), because it would never serve the
pull operations. Our threshold policies strive to give priority to push only as much as

is needed to ensure stability. The expected number of jobs in the queues under the
optimal fixed threshold policy is (this was calculated in Sect. 6)

For A = 1, u = 1/3: The best fixed thresholdis y =0, V =1, and E(Q1.2 + 02.2)
~5.25.

For A = 1, u = 0.8: The best fixed threshold is y =0, V = 3, and E(Qi2+ 022)
~ 11.86.

Note in particular, that for the Push—Pull network, which is running at full utiliza-
tion, there is a great difference in performance between A =1, u =1/3 and L =1,
u = 0.8. As we saw, the difference in KSRS under FBFS is slight.

@ Springer

108 Queueing Syst (2009) 62: 75-111

7.2 The Push—Pull and KSRS networks under max pressure policies

In [7] Dai and Lin introduce a max pressure policy for the control of multi-class
processing networks. In particular, for multiclass queueing networks, Dai and Lin
show that if the traffic load of the network is p < 1, then under max pressure policy
the fluid model of the network is weakly stable. This implies that the stochastic net-
work process is rate stable, i.e., input and output rates of all the queues are the same,
and there is no linear accumulation of jobs in the network. Furthermore, if the traffic
load of the network is p < 1, then under max pressure policy the fluid model of the
network is stable. This implies that if the arrival processes and service processes of
the network are independent renewal processes and if the arrival processes obey a
minorization condition, then the stochastic network under max pressure policy can
be described by a positive Harris recurrent Markov process (cf. [6]).

In [26] we have proposed an adaptation of the max pressure policy of Dai and Lin
to multiclass queueing networks (MCQN) with infinite virtual queues (IVQs). Here
the classes are K = Ko U Ko, Where k € Ky are standard queues, Qy(t) > 0, while
k € Ko are IVQs with infinite supply of work. Each class k € K has a nominal flow
rate of orx, and we represent the state of these IVQs by Ry (f) = axt — Dy (t), where
Dy () counts the departures from k in (0,). The adaptation of the max pressure
policy is to use Ry (¢) as a surrogate for the queue length (which is infinite) in all
the IVQs. Most of the results of Dai and Lin also hold for this adapted max pressure
policy.

In this section we compare the performance of the KSRS network under max
pressure policy and of the Push—Pull network under the adapted max pressure policy.

The max pressure policy attempts at any time to achieve the fastest reduction in the
sum of squares of the queue lengths in a processing network, and as a result it strives
to equalize or balance the number of jobs in the different queues. The policies which
we developed for the Push—Pull network in Sects. 3—5 managed to use the infinite
supply of work to achieve no idling and yet keep the two standard queues Q12, 022
stable. In the adaptation of the max pressure policy to the Push—Pull network, this is
no longer the case, and in fact the two standard queues become congested.

For the KSRS network with independent exponential processing times and inde-
pendent Poisson arrivals, under max pressure policy, the queue lengths form a Markov
jump process. It is positive recurrent if p = p; = pp < 1, null recurrent if p = 1, and
transient diverging to oo if p > 1.

This max pressure policy applied to the KSRS network is as follows:

Server 1: Pull if 112 Q22(t) > A1(Q1,1(t) — Q1,2(1)), else Push,
Server 2: Pullif 111 Q1,2(1) > 22(Q2,1(t) — Q2,2(1)), else Push.

To apply the adapted max pressure policy to the Push—Pull network, we need to
specify the nominal flow rates for the virtual infinite queues Q1 1, Q2,1. We will use
a; = pv;, so that p will be the traffic intensity for both servers. Again, the system
will be described by a Markov jump process, which is positive recurrent if p = p; =
02 < 1, null recurrent if p = 1, and transient and diverging to co if p > 1.

@ Springer

Queueing Syst (2009) 62: 75-111 109

053 1305
-30g 5000 10000130 5000 10000
1200
130~ -5 =12
On ()
0 W 0 ‘
Q2 (1)
-1305 5000 o000~ 2% 5000 10600

Fig. 13 Queue lengths in the KSRS network under max pressure policy

The max pressure policy adapted for the Push—Pull network is

Server 1: Pull if 11202 2(t) > Ay (a1t — D1,1(t) — Q1,2(1)), else Push,
Server 2: Pull if 411 Q1,2(t) > Az (a2t — D21 (1) — Q22(1)), else Push.

We simulated the KSRS network and the Push—Pull network under these policies.
We used the parameters A = 1, u = 0.8 and chose « so that p = p; = p> took values
0.9,0.99, 1.0, 1.2. The first two correspond to stable networks under heavy and very
heavy traffic. The third is the case of full utilization—this is at best null recurrent.
The fourth corresponds to an overloaded network. Figures 13 and 14 present traces
of single simulation runs processing a large total number of jobs over a time horizon
of 10,000 time units.

In Fig. 13 we show the four simulation runs of the KSRS network for the
four traffic intensities. The horizontal axis is the time running from 0 to 10,000.
The vertical axis measures number of jobs, and we plotted on it four traces of
0121), Q12) + Q1,1(1), —022(t), —02,2(t) — 02,1(2), so that the four layers in
the graph correspond to the number of jobs in the four queues and the layers imme-
diately above and below the x-axis correspond to the pull queues.

In Fig. 14 we show the four simulation runs of the Push—Pull network for
the four traffic intensities. The axes are the same, and we plotted two traces of
Q1,2(t), —Q2.2(t), so the two layers in the graph correspond to the number of jobs in
the two queues.

All these runs started with empty queues at time 0. We used a single sequence
of exponential inter-arrival and processing times of some 20,000 jobs to generate all
these runs (speeding up the arrivals by a constant factor for increasing p).

@ Springer

110 Queueing Syst (2009) 62: 75-111

p=0.9 =099

0 5000 10000 0% 5000 10000

500

(=}

5000 10000 %% 5000 10000

~40'5

Fig. 14 Queue length in the Push—Pull network under the adapted max pressure policy

From the theory we would expect the queue level for p < 1 to stabilize at some
steady-state level, and this is what we observe for p = 0.9. The trace for p = 0.99
does not seem to have enough time to stabilize, and indeed it is very similar to the
trace for p = 1. For p = 1, the network is at best null recurrent, and so we do not
expect the traces to stabilize: they will continue to have longer and longer excursion
with very high queue lengths. The overloaded cases clearly show linear growth of the
queues.

As a general indication, here are the mean queue lengths from this simulation for
p=0.9:

KSRS Push-Pull

011+021 1845 -
012+ 022 625 45

We conclude from these simulations that under the adapted max pressure policy
the Push—Pull network behaves very similarly to the KSRS network under max pres-
sure. In particular, since we are not making special use of the infinite supply of work,
the two pull queues become congested in heavy traffic.

Acknowledgement We are grateful to an anonymous referee for pointing out that our Lyapunov func-
tion in Sect. 5 is uniformly Lipschitz continuous, and hence the Markov process is exponentially ergodic.

References

1. Adan, I1.B.F, Weiss, G.: A two node Jackson network with infinite supply of work. Probab. Eng. Inf.
Sci. 19, 191-212 (2005)

2. Adan, LJ.B.F, Weiss, G.: Analysis of a simple Markovian re-entrant line with infinite supply of work
under the LBFS policy. Queueing Syst. Theory Appl. 54, 169-183 (2006)

@ Springer

Queueing Syst (2009) 62: 75-111 111

10.
11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.
22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

. Bremaud, P.: Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. Springer, New

York (1999)

. Chen, H., Yao, D.D.: Fundamentals of Queueing Networks, Performance, Asymptotics and Optimiza-

tion. Springer, Berlin (2003)

. Chen, M., Pandit, C., Meyn, S.: In search of sensitivity in network optimization. Queueing Syst.

Theory Appl. 44, 313-363 (2003)

. Dai, J.G.: On positive Harris recurrence of multi-class queueing networks: a unified approach via fluid

limit models. Ann. Appl. Prob. 5, 49-77 (1995)

. Dai, J.G., Lin, W.: Maximum pressure policies in stochastic processing networks. Oper. Res. 53, 197—

218 (2005)

. Dai, J.G., Lin, W.: Asymptotic optimality of maximum pressure policies in stochastic processing

networks. Ann. Appl. Probab. 18, 2239-2299 (2008)

. Dai, J.G., Vande Vate, J.H.: Global stability of two-station queueing networks. In: Glasserman, P.,

Sigman, K., Yao, D. (eds.) Proceedings of Workshop on Stochastic Networks: Stability and Rare
Events, pp. 1-26. Springer, New York (1996)

Durrett, R.: Essentials of Stochastic Processes. Springer, New York (1999)

Glynn, P.: Stochastic Systems. Stanford University Graduate Lecture Notes. Stanford University
Press, Stanford (2000)

Foss, S., Konstantopoulos, T.: An overview of some stochastic stability methods. J. Oper. Res. Soc.
Jpn. 47(4), 275-303 (2004)

Foster, F.G.: On the stochastic matrices associated with certain queueing processes. Ann. Math. Stat.
24, 355-360 (1953)

Harrison, J.M.: Brownian models of queueing networks with heterogeneous customer populations. In:
Fleming, W., Lions, P.L. (eds.) Proceedings of the IMA Workshop on Stochastic Differential Systems.
Springer, Berlin (1988)

Harrison, J.M.: Brownian models of open processing networks: Canonical representation of workload.
Ann. Appl. Probab. 10, 75-103 (2000)

Harrison, J.M.: A broader view of Brownian networks. Ann. Appl. Probab. 13, 1119-1150 (2001)
Harrison, J.M.: Stochastic networks and activity analysis. In: Suhov, Y. (ed.) In memory of Fridrik
Karpelevich. Analytic Methods in Applied Probability. Am. Math. Soc., Providence (2002)
Harrison, J.M., Williams, R.J.: Brownian models of multiclass queueing networks. In: Proceedings of
the 29th IEEE Conference on Decision and Control, vol. 2, pp. 573-574 (1990)

Haviv, M., Zlotnikov, R.: Computational schemes for two exponential servers where the first has a
finite buffer (2007, preprint)

Henderson, S.G., Meyn, S.P., Tadic, V.B.: Performance evaluation and policy selection in multiclass
networks. Discrete Event Dyn. Syst. 13(1-2), 149-189 (2003)

Kopzon, A., Weiss, G.: A push—pull queueing system. Oper. Res. Lett. 30, 351-359 (2002)

Kumar, PR., Seidman, T.I.: Dynamic instabilities and stabilization methods in distributed real time
scheduling of manufacturing systems. IEEE Trans. Automat. Contr. 35, 289-298 (1990)

Levy, Y., Yechiali, U.: Utilization of idle time in an M/G/1 queueing system. Manag. Sci. 22, 202-211
(1975)

Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability. Springer, Berlin (1993)

Meyn, S.P.: Control Techniques for Complex Networks. Cambridge University Press, Cambridge
(2008)

Nazarathy, Y., Weiss, G.: Near optimal control of queueing networks over a finite time horizon. Ann.
Oper. Res. 170, 233-249 (2009)

Nazarathy, Y., Weiss, G.: Positive Harris recurrence and diffusion scale analysis of a Push—-Pull queue-
ing network. Perform. Eval. (2009, to appear). Preliminary version presented at Valuetools 2008
Rybko, A.N., Stolyar, A.L.: Ergodicity of stochastic processes describing the operation of open queue-
ing networks. Probl. Inf. Transm. 28, 199-220 (1992)

Tassiulas, L.: Adaptive back-pressure congestion control based on local information. IEEE Trans.
Automat. Contr. 40, 236-250 (1995)

Tassiulas, L., Bhattacharya, P.B.: Allocation of interdependent resources for maximal throughput.
Stoch. Models 16, 2748 (2000)

Taylor, L.M., Williams, R.J.: Existence and uniqueness of semimartingale reflecting Brownian mo-
tions in an orthant. Probab. Theory Rel. Fields 96, 283-317 (1993)

Weiss, G.: Jackson networks with unlimited supply of work. J. Appl. Probab. 42, 879-882 (2005)

@ Springer

	A Push-Pull network with infinite supply of work
	Abstract
	Introduction
	Our model

	Preliminary examination of the network
	The case of lambdai = µi

	Fixed threshold policies
	Note
	Geometric decay of steady-state probabilities
	Example

	Queue balancing diagonal policy
	Geometric decay of steady-state probabilities

	Generalized threshold policies
	The bounded case
	The unbounded case
	The diagonal region
	Exponential ergodicity and geometric tails

	Optimization problems and numerical results
	Comparison with the Kumar-Seidman-Rybko-Stolyar network
	The KSRS network with affine switching curve policy
	Example 1: inherently stable, lambda=13,µ=1
	Example 2: inherently unstable, lambda=1, µ=13 and lambda=1, µ= 0.8
	KSRS under preemptive FBFS policy

	The Push-Pull and KSRS networks under max pressure policies

	Acknowledgement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

