
Positive Harris Recurrence and Diffusion Scale Analysis
of a Push Pull Queueing Network

Yoni Nazarathy ∗
yonin@stat.haifa.ac.il

Gideon Weiss ∗
gweiss@stat.haifa.ac.il

Department of Statistics
The University of Haifa

Mount Carmel 31905, Israel

ABSTRACT
We consider a push pull queueing system with two servers
and two types of jobs which are processed by the two servers
in opposite order, with stochastic generally distributed pro-
cessing times. This push pull system was introduced by Kop-
zon and Weiss, who assumed exponential processing times.
It is similar to the Kumar-Seidman Rybko-Stolyar (KSRS)
multi-class queueing network, with the distinction that in-
stead of random arrivals, there is an infinite supply of jobs
of both types. Thus each server can either process jobs of
one of the types, which it pulls from the other server, or jobs
of the other type which it pushes out of the infinite supply
towards the other server. Unlike the KSRS network, we can
find policies under which our push pull network works at full
utilization, with both servers busy at all times, and without
being congested. We perform an asymptotic analysis of the
push pull network under these policies to quantify its be-
havior: We show that under fluid scaling the fluid model of
the network is stable. We adapt the proofs of Dai, to show
that as a result the queues of jobs waiting for pull operation
are positive Harris recurrent. Finally we obtain the diffu-
sion scale behavior of the network, in which we show that
the queues are zero under diffusion scaling, and calculate
the Brownian approximation of the output processes of the
two types of jobs. The approximation shows that the two
output streams are highly negatively correlated.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Queueing theory

Keywords
Queueing networks, push pull, infinite virtual queues, fluid
models, positive Harris recurrence, diffusion approximations.

∗Research supported in part by Israel Science Foundation
Grant 454/05 and by European Network of Excellence Euro-
NGI.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ValueTools 2008, October 21 – 23, 2008, Athens, GREECE.
Copyright 2008 ICST ISBN # 978-963-9799-31-8.

1

Server 1 Server 2

3

2

4

Type 1

Type 2

Figure 1: The Push Pull Network.

1. INTRODUCTION
We consider the following queueing network: There are

two servers, numbered 1,2 and two types of jobs numbered
1,2 each of which is processed by both servers. Type 1 is pro-
cessed by server 1 (activity 1) and then by server 2 (activity
2), while type 2 is first processed by server 2 (activity 3) and
then by server 1 (activity 4), see Figure 1. Activities 1 and
3 are called push activities, in which a server is processing
a job and pushing it to queue in front of the other server.
Activities 2 and 4 are called pull activities, in which a server
is processing a job which it pulls from its queue between the
servers, and sends it out of the network.

The special feature of this push pull network is that there
is no arrival stream. Instead we assume that each server has
an infinite supply of jobs available for its push operation.
Thus there are two queues in the network: jobs of type 1,
waiting for activity 2, are queued at server 2, and jobs of
type 2, waiting for activity 4, are queued at server 1.

Infinite supply of work expresses an ability to control the
arrivals and is often a reasonable way to model a processing
system. In some situations there may indeed be an infinite
supply of work — in a communication system a transmitter
may have a constant supply of messages generated on the
spot in addition to serving messages in transit from other
transmitters. In manufacturing systems the supply of parts
for processing at an expensive machine may be monitored
and not allowed to run out. We refer to this as an infinite
virtual queue: it acts like an infinite queue while in fact it
only contains a few jobs which are constantly replenished. In
standard queueing networks one can regard the input stream
as the output of a server which is fed by an infinite supply
of work.

We denote by Qi(t), i = 2, 4 the number of jobs in the

two queues at time t (including the job in process), and by
Di(t), i = 1, 2, 3, 4 the number of jobs that have completed
activity i in the time interval [0, t]. When Q4(t) > 0, server 1
can either pull, by serving a type 2 job from Q4(t) or push,
by serving a type 1 job from the infinite supply. When
Q4(t) = 0 server 1 can still always push jobs of type 1.
Hence, server 1 never needs to idle. Similarly for server 2.

What we show in this paper is that it is possible to find
policies which never idle and yet keep the queues Qi(t) sta-
ble. Assume that the long term average processing time for
activity i is 1/µi, i = 1, 2, 3, 4. Let θi, i = 1, 2, 3, 4 be the
long term fraction of time spent in activity i. If the system
never idles then for server 1, θ1 = 1 − θ4, and for server
2, θ3 = 1 − θ2. Furthermore, if Qi(t) are stable then their
input and output rates are equal, so: ν1 = ν2 = θ1µ1 =
θ2µ2, ν3 = ν4 = θ3µ3 = θ4µ4, where νi is the long term
average rate of the departure process Di, i = 1, 2, 3, 4, and
in particular ν2 (ν4) is the rate at which jobs of type 1 (type
2) leave the network. Solving the equations we get:

ν1 = ν2 =
µ1µ2(µ3 − µ4)

µ1µ3 − µ2µ4
, ν3 = ν4 =

µ3µ4(µ1 − µ2)

µ1µ3 − µ2µ4
.

We now specify the policies which we use. We consider pre-
emptive resume head of the line policies. We need to distin-
guish different cases:

Inherently stable network: When µ1 < µ2 and µ3 < µ4,
service of each type of jobs alone, by its second server,
is a stable single server queue. In this case the policy
which we use is preemptive resume head of the line
priority for pull activities 4 and 2 over push activities
1 and 3. We refer to this as Case 1, and to the policy
as pull priority policy.

Inherently unstable network: When µ1 > µ2 and µ3 >
µ4, service of each type of jobs alone, by both servers
results in an unstable single server queue. In this case
priority to pull over push is unstable. A policy that
works here is that while Q2(t) is below some threshold
level server 1 will push work to server 2, and server
1 will only pull from Q4(t) when Q2(t) is above the
threshold, with a similar rule for server 2. We use a
linear threshold to determine pull or push preemptive
head of the line priority. We define a family of such
policies, each determined by a pair of constants κ1, κ2

which satisfy κ1 >
µ3
µ1
, κ2 >

µ1
µ3

:

Server 1: Priority to pull activity 4 over push activ-
ity 1 if 0 < Q4(t) < κ1Q2(t),

Server 2: Priority to pull activity 2 over push activ-
ity 3 if 0 < Q2(t) < κ2Q4(t),

We refer to this as Case 2, and to the policy as linear
threshold policy, see Figure 2.

Unbalanced network: If µ1 > µ2 and µ4 > µ3, then
server 2 has more work to do than server 1, for both
types of jobs, and the network cannot be stable unless
server 1 idles some of the time. Similarly for µ1 < µ2

and µ4 < µ3. We will not consider this case any further
in this paper.

Completely balanced network When µ1 = µ2 and µ3 =
µ4 it is possible to find policies which work with full
utilization of both servers, and which are rate stable,

Q2µ1

µ3

Pull Priority

2 Push, 1 Pull

Q4

µ2
µ4

µ3

µ4

µ2

1 Push, 2 Pull

µ1

µ3

µ1

Q Q2 2 4=κ

Q Q4 1 2=κ

Figure 2: The linear threshold policy for the inher-
ently unstable network (Case 2).

i.e. they satisfy ν1 = ν2 and ν3 = ν4, however these
rates are not uniquely determined. We can choose 0 ≤
θ ≤ 1, and specify θ1 = θ2 = 1 − θ3 = 1 − θ4 = θ,
and use νi = µiθi as nominal rate. As shown in [26],
we can use an adaptation of the maximum pressure
policy of Dai and Lin [7] to serve jobs of types 1 and
2 at these rates, under full utilization. However, the
system will become congested, with expected O(

√
T)

jobs in the system at time T . We conjecture that this
cannot be improved.

The structure of the paper is as follows: In Section 3 we
define our stochastic model and primitive assumptions. In
Section 4 we analyze the fluid limit model of this network
under fluid scaling, and show that the fluid model is stable
in both parametric cases under the corresponding policies.
In Section 5 we assume i.i.d. processing times and formulate
the network and policy as a Markov process. We then follow
the proof method of Dai [6] to show that this Markov process
is positive Harris recurrent, and so Q2(t), Q4(t) possess a
stationary limiting distribution. In Section 6 we consider the
output processes Di(t) under diffusion scaling, and obtain a
Brownian approximation.

To emphasize the novelty of our results we start with
a preliminary discussion in Section 2, in which we outline
known results about the well studied Kumar-Seidman Rybko-
Stolyar (KSRS) network, and contrast them with the very
different behavior of our push pull network.

Bibliographic note: The push pull network was intro-
duced by Kopzon et al. [17, 18] who assumed exponential
processing times. Infinite supply of work and infinite virtual
queues are discussed in [1, 2, 12, 13, 26, 28].

2. PRELIMINARY DISCUSSION:
COMPARING TO THE KSRS NETWORK

The Kumar-Seidman Rybko-Stolyar multi-class queueing
network (c.f. Chapter 8 of [5] or Section 2.9 of [20]) differs
from our push pull network in that instead of infinite supply
of jobs there are two stochastic arrival streams of jobs of
type 1 and of type 2, with long term average arrival rates
α1, α3.

In that case there are 4 queues Qi(t) of jobs waiting for
activities i = 1, 2, 3, 4 in the network, and the offered loads

for servers 1 and 2 are ρ1 = α1/µ1+α3/µ4 and ρ2 = α3/µ3+
α1/µ2 respectively. A necessary condition for stability is
ρi < 1, i = 1, 2.

The same two cases of parameters reappear: If µ1 < µ2

and µ3 < µ4 then ρi < 1, i = 1, 2 is sufficient for stability
of the network under any work conserving (i.e. any non
idling) policy. On the other hand, if µ1 > µ2 and µ3 > µ4

then ρi < 1, i = 1, 2 may not be sufficient for stability. In
particular, there exist γi < 1 such that the last buffer first
served policy, which gives priority to the pull activities 2 and
4, will not be stable for γi < ρi < 1, i = 1, 2.

The discovery of this phenomenon by Kumar and Sei-
dman [19] (deterministic processing times) and by Rybko
and Stolyar [27] (exponential processing times) revolution-
ized research on multi-class queueing networks, and it is now
realized that stability is not a property of the network, but
of the policy in conjunction with the network. In our net-
work, this is exemplified by the need to use the pull priority
(last buffer first served) for the inherently stable Case 1, and
a different policy for the inherently unstable Case 2.

Nevertheless, if ρi < 1, i = 1, 2 then there are some work
conserving (non idling) policies which keep all four queues of
the KSRS network stable. However, as ρi increase towards
1, either for one of the servers or for both together, the
network becomes increasingly congested under any policy.

Of particular interest is the behavior of multi-class queue-
ing networks under balanced heavy traffic conditions (c.f.
[14]). Balanced heavy traffic in the KSRS network occurs
when α1 → ν1, α3 → ν3. When this happens queues at both
servers become congested under any policy.

A diffusion scale analysis of KSRS under balanced heavy
traffic considers a sequence n = 1, 2, . . . of networks, param-
eterized by αni , i = 1, 3 such that

√
n(αni − νi) converges to

some constant as n→∞. In that case one can hope to show
that the diffusion scaled queues,

Q̂ni (t) =
Qni (nt)√

n
, i = 1, 2, 3, 4,

will converge to a 4 dimensional Reflected Brownian Motion.
Recent results of Dai and Lin [7, 8] and Ata and Lin

[3] show that with the use of a maximum pressure policy,

(Q̂n1 (t), . . . , Q̂n4 (t)), converges to a 4 dimensional reflected
Brownian motion which is actually lifted from a 2 dimen-
sional workload process. Henderson, Meyn and Tadic [16]
also considered the KSRS network and obtained stablity.
Their policy uses affine switching curves, and is similar to
our linear threshold policy for the push pull network.

As the scaling indicates, for the KSRS network under bal-
anced heavy traffic, the diffusion approximation relates to
a sequence of networks in which the total number of jobs
in the nth network at any time is expected to be of order
Θ(
√
n).

The behavior of the push pull network, as we will show, is
of an entirely different nature: Both servers are active all the
time, which can be thought of as operating at ρi = 1, i = 1, 2
and jobs leave the network at the rates νi, i = 1, 3. At
the same time, with i.i.d. processing times the network is
positive Harris recurrent. Thus in the push pull network
with ρi = 1 the number of jobs in the queues Q2(t), Q4(t) is
expected to be O(1), and it is 0 under diffusion scaling.

Finally we now compare the behavior of the output pro-
cesses, Di(t), i = 1, 2, 3, 4 in the KSRS network and in the
push pull network, under diffusion scaling. In the KSRS net-

work with ρi < 1, i = 1, 2 the diffusion scaled queue lengths
will be 0. Therefore on a diffusion scale, jobs of type 1
have arrivals, departures from queue 1, and departures from
queue 2, which are all identical Brownian motions. Similarly
for type 2. In particular, the diffusion scaled flow of jobs of
type 1 and of jobs of type 2 will be independent. This fully
describes the diffusion scale behavior, for fixed ρi < 1.

Under balanced heavy traffic the behavior of the output
processes of the KSRS network seems to be much more com-
plex. The four queue length processes will be reflected Brow-
nian processes, and will affect the diffusion scaled output
processes. To the best of our knowledge the behavior of the
output processes in that case has not been investigated. We
note that even the output process of a single server queue,
under balanced heavy traffic, poses some as yet unanswered
questions (c.f. [15] and [25]).

In contrast to that, in the push pull network, operated
with our policies, under full utilization, the diffusion scaled
queue lengths are 0. As a result we can analyze the out-
put processes of the two types of jobs. What we find is
that the output processes of jobs of types 1 and 2 that leave
the network converge under diffusion scaling to two stan-
dard Brownian motions, but these two Brownian motions
are highly negatively correlated.

2.1 Notation
We use Rd+ and Zd+ to denote the sets of all d-dimensional

non-negative real and integer vectors respectively. For a
vector x ∈ Rd1+ × Zd2+ we let |x| denote the `1 norm, given
by sum of absolute values of the components. For a metric
space S, we denote by B(S) the Borel sets of S. The transpose
of a matrix A is A′. We use D d[0,∞) to denote the set of
functions f : [0,∞) 7→ Rd+ that are right continuous with left
limits. For f ∈ D d[0,∞), we let ||f ||t = sup0≤s≤t |f(s)|. We

endow the function space D d[0,∞) with the usual Skorohod
J1-topology. For a sequence of stochastic processes {Xr}
taking values in D d[0,∞), we use Xr ⇒ X to denote that
Xr converges to X in distribution as r → ∞. A sequence
of functions {fr} ⊂ D d[0,∞) is said to converge to f ∈
D d[0,∞) uniformly on compact sets (u.o.c.), if for each t ≥
0, limr→∞ ||fr − f ||t = 0. A function f : S 7→ R on a
metric space S is called lower semi-continuous if the sets
{x ∈ S : f(x) ≤ c}, c ∈ R are closed. In general, when no
ambiguity may arise, we omit index subscripts when we refer
to vectors. For a vector x we use |x| to denote L1 norm. We
use I{·} for indicator function of event {·}.

3. THE STOCHASTIC MODEL
We assume that the processing durations of the jobs in

activity i = 1, 2, 3, 4 are drawn from a sequence of positive
random variables: ξi = {ξji , j = 1, 2, . . .}. The assump-
tions that we make regarding the processing durations are
as follows:

(A1) lim
n→∞

∑n
j=1 ξ

j
i

n
=

1

µi
, a.s.

for some µi ∈ (0,∞), i = 1, 2, 3, 4.

(A2)



(a) ξi, i = 1, 2, 3, 4
are mutually independent i.i.d.

(b) P (ξ1
i ≥ x) > 0 for allx > 0, i = 1, 3.

∃ki0 > 0, qi(·) ≥ 0 with
∫∞

0
qi(x)dx > 0 :

P (ξ1
i + . . .+ ξ

ki
0
i ∈ dx) ≥ qi(x)dx, i = 1, 3.

(b′) Compact sets are petite.

(A3) µ2
iVar(ξ1

i) = c2i ,

for some c2i ∈ [0,∞), i = 1, 2, 3, 4.

Assumptions (A1) require that there exist strong laws of
large numbers for the sequences of processing times and that
the rate of processing of activity i be µi. Assumptions (A2)
are to be used in a Markov process setting. (a) implies re-
newal processing. (b) States that the processing times of
the push operations are unbounded and spread-out. (b’) is
a technical assumption to be made precise in Section 5. It
is used to prove positive Harris recurrence. We show that
under the pull priority policy, (b) implies (b’). Assumptions
(A3) require existence of second moments, with squared co-
efficients of variation c2i . We shall make use of Assumptions
(A1)-(A3) incrementally.

We associate counting processes with each activity i:

Si(t) = sup{n :

n∑
j=1

ξji ≤ t}, t ≥ 0.

We denote by Ti(t), i = 1, 2, 3, 4, the total time that the
server allocates to the processing of activity i during the
interval [0, t]. We require that Ti(0) = 0 and that Ti(·)
be nondecreasing. Under our policies of full utilization, the
servers never idle, thus:

T1(t) + T4(t) = t, T2(t) + T3(t) = t. (1)

Note that Ti(·) are Lipschitz, and are therefore absolutely
continuous. Thus their derivative exists almost everywhere
with respect to Lebesgue measure on [0,∞).

The number of jobs that have completed processing of
activity i by time t is Di(t) = Si(Ti(t)). Let Qi(0), i = 2, 4
be the initial queue lengths. The number of jobs at time t
is:

Qi(t) = Qi(0) +Di−1(t)−Di(t), i = 2, 4. (2)

We further require that Qi(·) ≥ 0 for i = 2, 4.
The policies which we use in the two cases impose ad-

ditional conditions on the dynamics of the queues. In the
inherently stable Case 1, we use pull priority policy. Hence
we will not serve activities 1 or 3 (push activities) unless the
corresponding Q4 or Q2 are empty. This implies that the
allocation processes T (·) need to satisfy:∫ t

0
Q4(s)dT1(s) = 0,∫ t

0
Q2(s)dT3(s) = 0.

In the inherently unstable Case 2, we use a linear thresh-
old policy. The linear threshold for server 1 is the line
Q4(t) = κ1Q2(t). Server 1 will give preemptive priority
to activity 4 only if 0 < Q4(t) < κ1Q2(t), and in that case
it will not allocate time to activity 1. On the other hand,
if Q4(t) ≥ κ1Q2(t) then server 1 will give priority to activ-
ity 1, to prevent starvation at the queue of server 2, and
will not allocate time to activity 4. A symmetric rule is
used by server 2, with the linear threshold given by the line

Q2(t) = κ2Q4(t). Hence, for Case 2:∫ t
0

1{0 < Q4(s) < κ1Q2(s)}dT1(s) = 0,∫ t
0

1{Q2(s) ≤ 1
κ1
Q4(s)}dT4(s) = 0,∫ t

0
1{0 < Q2(s) < κ2Q4(s)}dT3(s) = 0,∫ t

0
1{Q4(s) ≤ 1

κ2
Q2(s)}dT2(s) = 0.

Recall that we require κ1 >
µ3
µ1
, κ2 >

µ1
µ3

.

4. FLUID LIMITS AND FLUID MODELS
In this section we assume (A1), and consider the behavior

of the push pull network under fluid scaling. We use the pull
priority policy in Case 1, and the linear threshold policy in
Case 2.

To study the network under fluid scaling we consider the
six dimensional network process Y (t) = (Q(t), T (t)), and
parameterize it by n = 1, 2, ... as follows: For each n set the
initial queue lengths as Qn(0), and let Y n(t) be the network
process starting from this initial condition, where all the
Y n share the same sequences of random processing times
ξi, i = 1, 2, 3, 4. Denote by Y n(t, ω) the realization of the
n’th network process for some ω in the sample space. We
define fluid scalings as:

Ȳ n(t, ω) =
Y n(nt, ω)

n
.

A function Ȳ (t) = (Q̄(t), T̄ (t)) is said to be a fluid limit of
our network if there exists a sequence of integers r →∞ and
a sample path ω such that:

Ȳ r(·, ω)→ Ȳ (·), u.o.c.

It may now be shown (c.f. Theorem 4.1 of [6] or Appendix A.2
of [7]) that under Assumption (A1), except for a set of ω of
measure zero, fluid limits exist for every ω, and every one of
them satisfies the following fluid equations:

Q̄i(t) = Q̄i(0) + µi−1T̄i−1(t)− µiT̄i(t) , i = 2, 4
Q̄i(t) ≥ 0, i = 2, 4
T̄i(0) = 0, T̄i is non-decreasing, i = 1, 2, 3, 4

(3)

as well as

T̄1(t) + T̄4(t) = t, T̄2(t) + T̄3(t) = t, (4)

and in addition, under pull priority they satisfy:∫ t
0
Q̄4(s)dT̄1(s) = 0,∫ t

0
Q̄2(s)dT̄3(s) = 0,

(5)

and under linear threshold policy they satisfy:∫ t
0

1{0 < Q̄4(s) < κ1Q̄2(s)}dT̄1(s) = 0,∫ t
0

1{Q̄2(s) ≤ 1
κ1
Q̄4(s)}dT̄4(s) = 0,∫ t

0
1{0 < Q̄2(s) < κ2Q̄4(s)}dT̄3(s) = 0,∫ t

0
1{Q̄4(s) ≤ 1

κ2
Q̄2(s)}dT̄2(s) = 0.

(6)

Equations (3)-(6) represent a deterministic continuous fluid
analog of the stochastic model introduced in the previous
section. We shall refer to equations (3)–(5) as the fluid model
of Case 1. Similarly we shall refer to (3),(4) and (6) as the
fluid model of Case 2.

A fluid solution of Case 1 (Case 2) is any pair (Q̄, T̄) that
satisfies the fluid model equations of Case 1 (Case 2). We
say that the fluid model of Case 1 (Case 2) is stable if there
exists a δ > 0 such that for every fluid solution of Case 1
(Case 2), whenever |Q̄(0)| = 1 then Q̄(t) = 0 for any t ≥ δ.

Our main result in this section is:

Theorem 1. Consider the push pull network, assume that
Assumption (A1) holds, and use in Case 1 the pull priority
policy, and in Case 2 the linear threshold policy. Then the
fluid model is stable.

This theorem will be used to show positive Harris Recur-
rence in the next section. It also immediately leads to the
following corollary, which describes the fluid scale behavior
of the push pull network:

Corollary 1. Consider the push pull network with some
fixed initial queue lengths, Q(0), under the assumptions of
Theorem 1. Then almost surely Y (nt)/n will converge as
n → ∞ u.o.c. to a fluid limit Ȳ (t) = (Q̄(t), T̄ (t)) which
satisfies:

T̄i(t) = θit, D̄i(t) = νit, Q̄i(t) = 0, i = 1, 2, 3, 4.

The proof of Theorem 1 is by means of a Lyapounov func-
tion, f . As in [9], we shall make use of the following elemen-
tary Lemma 1. Recall that Ti(t) are Lipschitz with constant
1. It then follows that T̄i, and also Q̄i(t), are Lipschitz, for
every fluid solution. Hence they are absolutely continuous
with derivative defined almost everywhere. We say that t
is a regular point of a fluid solution if the derivatives of Ȳ
exist at t.

Lemma 1. Let f be an absolutely continuous nonnegative
function, and let ḟ denote its derivative whenever it exists.

(i) If f(t) = 0 and ḟ(t) exists, then ḟ(t) = 0.
(ii) Assume that for some ε > 0 at regular points t > 0,

whenever f(t) > 0 then ḟ(t) ≤ −ε. Then f(t) = 0 for all
t ≥ f(0)/ε. Furthermore, f(·) is non increasing and hence
once it reaches 0 it stays there forever.

Proof of Theorem 1. Case 1: Define f(t) = Q̄2(t) +
Q̄4(t). Clearly f(t) ≥ 0 and f(t) = 0 if and only if Q̄(t) = 0.
Also, if |Q̄(0)| = 1 then f(0) is bounded (by B = 1). We
show that f satisfies the conditions of Lemma 1, for some
ε, and hence f(t) = 0 for t > f(0)/ε, and so if |Q̄(0)| = 1,
Q̄(t) = 0 for t ≥ B/ε which proves stability of the fluid
model.

Define ε = min{µ2 − µ1, µ4 − µ3}. The values of µi in

Case 1 ensure that ε > 0. We now bound ḟ(t) by −ε for
all regular time points t at which f(t) > 0 by analyzing all
possible values of Q̄i(t), i = 2, 4:

• Assume Q̄2(t), Q̄4(t) > 0:

By (5), ˙̄T1 = ˙̄T3 = 0 and thus by (4), ˙̄T2 = ˙̄T4 = 1. As

a consequence, ˙̄Qi(t) = −µi for i = 2, 4 and

ḟ = −(µ2 + µ4) ≤ −ε.

• Assume Q̄2(t) > 0, Q̄4(t) = 0:

By (5) ˙̄T3 = 0 and thus by (4), ˙̄T2 = 1. As a conse-
quence,

ḟ = µ1
˙̄T1 − µ2 − µ4

˙̄T4 =

µ1 − µ2 − (µ1 + µ4) ˙̄T4 ≤ −(µ2 − µ1) ≤ −ε.

• Assume Q̄2(t) = 0, Q̄4(t) > 0:

Similarly to the previous argument,

ḟ ≤ −(µ4 − µ3) ≤ −ε.

This completes the proof for Case 1.
Case 2: We use the same technique as in Case 1. Define:

f(t) =

 (1 + β)Q̄2(t)− (κ2 − β)Q̄4(t) if Q̄2(t) ≥ κ2Q̄4(t),
(1 + β)Q̄4(t)− (κ1 − β)Q̄2(t) if Q̄4(t) ≥ κ1Q̄2(t),
β(Q̄2(t) + Q̄4(t)) otherwise.

where

β =
1

2
min{

κ1 − µ3
µ1

1 + µ3
µ1

,
κ2 − µ1

µ3

1 + µ1
µ3

}.

Again, it is easily seen that f(t) ≥ 0 and f(t) = 0 if and
only if Q̄(t) = 0, and if |Q̄(0)| = 1 then f(0) is bounded by
some finite value B.

All we need to do is find an ε to satisfy the conditions of
Lemma 1. We now bound ḟ(t) for all regular time points t
at which f(t) > 0, by analyzing all possible values of Q̄i(t),
i = 2, 4:

• Assume 1
κ2
Q̄2(t) < Q̄4(t) < κ1Q̄2(t):

Then f(t) = β(Q̄2(t) + Q̄4(t)), and in this region both
servers use pull priority. Hence

ḟ = β(µ1Ṫ1 − µ2Ṫ2 + µ3Ṫ3 − µ4Ṫ4)

and by (6) we have that Ṫ1 = Ṫ3 = 0 and thus Ṫ2 =

Ṫ4 = 1. Hence

ḟ = −β(µ2 + µ4).

• Assume 0 < Q̄4(t) ≤ 1
κ2
Q̄2(t):

Then f(t) = (1 + β)Q̄2(t)− (κ2 − β)Q̄4(t) and in this
region both queues are not empty, and server 1 gives
priority to pull while server 2 gives priority to push.
Hence

ḟ = (1 + β)(µ1Ṫ1 − µ2Ṫ2)− (κ2 − β)(µ3Ṫ3 − µ4Ṫ4),

and by (6) we have that Ṫ1 = Ṫ2 = 0 and thus Ṫ3 =

Ṫ4 = 1. Hence

ḟ = −(κ2 − β)(µ3 − µ4).

• Assume 0 < Q̄2(t) ≤ 1
κ1
Q̄4(t):

The analysis is symmetric to the previous case, and
yields:

ḟ = −(κ1 − β)(µ1 − µ2).

• Assume Q̄2(t) > 0, Q̄4(t) = 0:

Again f(t) = (1 +β)Q̄2(t)− (κ2−β)Q̄4(t), and in this
region server 2 gives priority to push. With Q̄4(t) = 0
we cannot say where server 1 will work. Hence

ḟ = (1 + β)(µ1Ṫ1 − µ2Ṫ2)− (κ2 − β)(µ3Ṫ3 − µ4Ṫ4)

and by (6) Ṫ2 = 0 and as a result Ṫ3 = 1. Hence:

ḟ = (1 + β)µ1Ṫ1 − (κ2 − β)(µ3 − µ4Ṫ4)

= (1 + β)µ1Ṫ1 − (κ2 − β)[µ3(Ṫ1 + Ṫ4)− µ4Ṫ4]

= −(κ2 − β)[(µ3 −
1 + β

κ2 − β
µ1)Ṫ1 + (µ3 − µ4)Ṫ4]

≤ −(κ2 − β) min{µ3 −
1 + β

κ2 − β
µ1 , µ3 − µ4}.

• Assume Q̄4(t) > 0, Q̄2(t) = 0: The analysis is sym-
metric to the previous case, and yields:

ḟ ≤ −(κ1 − β) min{µ1 −
1 + β

κ1 − β
µ3 , µ1 − µ2}.

All five bounds above are negative, and we choose −ε as
their maximum. This completes the proof.

Remark: So far in this section we assumed that the nth
system starts with queue lengths Qn(0), and that all the jobs
in the system had no previous processing, so that the Si(t)
are counting processes, with intervals ξi which have long
term rate µi. A more general model assumes that at time
0 the head of the line job in each queue or infinite supply
has received some processing, and let ξi,0 be the residual
processing time of this first job. Then the first interval is
a residual processing time with a different mean from the
other ξji , j > 1. In that case Si(t) are delayed counting
processes. We now associate with the nth system an initial
state consisting of Qni (0), ξni,0, i = 1, 2, 3, 4. All the results
of this section remain valid and unchanged as long as we
assume that ξni,0/n→ 0 a.s. (see [4]).

5. POSITIVE HARRIS RECURRENCE
In this section we add the set of Assumptions (A2) to

Assumption (A1), and use the fluid stability results from the
previous section to show that the push pull network under
our policies can be described by a positive Harris recurrent
Markov chain. To do so we adapt the framework developed
by Dai [6], see also [4].

We begin by defining the network state process. Denote
by Ui(t), Vi(t) the residual processing times of the head of
the line activities which are in process or preempted at the
current time t. Ui(t), i = 2, 4 is for the pull activities and
Vi(t), i = 1, 3 is for the push activities. Now denote the
network state process by,

X(t) = (Q(t), U(t), V (t)).

The state space is S = Z2
+×R2

+×R2
+, and |X(t)| is the sum of

the components ofX(t). Since the evolution ofX(t) between
arrivals and departures is deterministic, X(t) is piecewise
deterministic, and it is not difficult to show that X(t) is a
piecewise deterministic strong Markov process (c.f. [10]):

Proposition 1. Under Assumptions (A1), (A2a), X =
{X(t), t ≥ 0} is a strong Markov process with state space S.

Let P t(x, ·) be the transition probability of X. That is for
x ∈ S, B ∈ B(S),

P t(x,B) ≡ Px{X(t) ∈ B} ≡ P{X(t) ∈ B |X(0) = x}.

A nonzero measure π on (S, B(S)) is invariant for X if π is
σ-finite, and for each t ≥ 0,

π(B) =

∫
S
P t(x,B)π(dx), B ∈ B(S).

Let τA = inf{t ≥ 0 : X(t) ∈ A}. We say that X is
Harris recurrent if there exists some σ-finite measure ν on
(S, B(S)), such that for all A ∈ B(S) with ν(A) > 0 we have
Px(τA <∞) = 1 for all x ∈ S. If X is Harris recurrent then
an essentially (up to a positive scalar multiplier) unique in-
variant measure π exists. When π is finite (in which case
we normalize it to a probability measure) we say that X

is positive Harris recurrent. Positive Harris recurrence is a
common notion of stability since it implies certain ergodicity
properties. For example, given f : S 7→ R+, denote

π(f) =

∫
S
f(x)π(dx)

whenever the integral makes sense. Then if π(|f |) <∞:

lim
t→∞

1

t

∫ t

0

f(X(s))ds = π(f) Px a.s. for each x ∈ S.

To establish positive Harris recurrence of X(t), we need a
further concept: A non-empty set A is said to be petite if
there exists a probability distribution a on (0,∞) and a
nontrivial measure ν on (S,B(S)), such that for all x ∈ A∫ ∞

0

P t(x,B)a(dt) ≥ ν(B), for all B ∈ B(S).

Petiteness of A may be interpreted as the property that all
sets B are ”equally accessible” from any x ∈ A. For more
on Markov processes, positive Harris recurrence and petite
sets, see [22] for an introduction and discrete time results,
and [23, 24] for continuous time results.

We are now in a position to rigorously define Assumption
(A2b’):

(A2b′) A = {x : |x| ≤ σ} is petite for any σ > 0.

Our main result in this paper is:

Theorem 2. Under Assumptions (A1), (A2a) and (A2b’),
the network state process X is Positive Harris Recurrent for
Case 1 under the pull priority policy and for Case 2 under
the linear threshold policy. Furthermore, for Case 1 we may
substitute Assumptions (A2b’) with (A2b).

Proof. The proof uses the framework of Dai [6]. The
main theorem in that paper (Theorem 4.2) states that if the
fluid model of a multi-class queueing network (with exoge-
nous arrival streams) is stable then the associated Markov
process is positive Harris recurrent. However, our model
does not fall in that scope and hence we must adapt the
proof.

The following discussion outlines the adaptation. Dai
shows that positive Harris recurrence of the network state
process follows directly from two statements:

(i) Convergence of a fluid scaled process scaled by its ini-
tial state: There exists δ > 0 such that

lim
|x|→∞

1

|x|Ex|X(δ|x|)| = 0.

(ii) Petiteness of closed bounded sets as in our Assumption
(A2b’).

The arguments of Dai that statements (i) and (ii) imply
positive Harris recurrence are valid also for our push pull
network, and so to prove the theorem we need to show that
(i) and (ii) hold.

The main result of Dai is to show that stability of the
fluid model, as defined in the previous Section 4, implies (i).
The proof that fluid stability implies (i) needs no changes in
our case. Hence, under Assumptions (A1) and (A2a), our
Theorem 1, in which we have proved stability of the fluid
model, implies (i) for the push pull network.

Hence, if we make Assumption (A2b’), the positive Harris
recurrence of the push pull network follows.

The technical Assumption (ii), that all compact sets are
petite is awkward, as it is difficult to check. Thus it is useful
instead of Assumption (A2b’) to find a sufficient condition
which is easier to check. Dai’s paper asserts that for multi-
class queueing networks with an exogenous input stream the
assumption that inter-arrival times have a spread out dis-
tribution with unbounded support implies (ii). His proof
follows directly from the earlier work of Meyn and Down
[21], who proved the same result for generalized Jackson
networks. This needs to be extended to the case of infinite
supply of work. The difference is that with infinite supply
of work the output process from an infinite virtual queue is
in general not independent of the state of the other queues.
Guo and Zhang [13] have adapted Meyn and Down’s ideas to
a reentrant line with infinite supply of work where the pol-
icy is to give lowest priority to the activity with the infinite
supply.

The following Lemma 2 extends these results, and shows
that in Case 1, under pull priority, the Assumption (A2b)
implies (A2b’), and hence positive Harris recurrence

Lemma 2. For the network state process X, operating with
the pull priority policy, under Assumptions (A1) and (A2a),
the Assumption (A2b) implies (A2b’).

We present the proof in the Appendix. We were unable to
provide a similar result for the more complex linear thresh-
old policy.

6. DIFFUSION SCALE ANALYSIS
In this section we add the assumption on existence of sec-

ond moments, (A3), to the Assumptions (A1,A2), and con-
sider the behavior of the push pull network under diffusion
scaling. We find that the queues are 0 on the diffusion scale,
and the output processesDi(t) converge under diffusion scal-
ing to Brownian motions. We calculate the parameters of
these, including the covariances between the output streams.

We now define diffusion scalings for n = 1, 2, First

denote S̄(t) = limn→∞ S̄
n(t) = limn→∞

S(nt)
n

= µt, where
the limit exists a.s. u.o.c. by Assumption (A1). Further
use the fluid limit processes of Section 4, Corollary 1. The
diffusion scalings are:

Ŝni (t) = Si(nt)−S̄i(nt)√
n

, T̂ni (t) = Ti(nt)−T̄i(nt)√
n

,

D̂n
i (t) = Di(nt)−D̄i(nt)√

n
, Q̂ni (t) = Qi(nt)√

n
.

(7)

Note that in this analysis we use a fixedQ(0), which does not
change with n. Define the 10 dimensional diffusion scaled
process:

X̂n(t) = (D̂n(t), T̂n(t), Q̂n(t))

The following theorem describes the diffusion limit for our
model.

Theorem 3. Consider the Push Pull network, under As-
sumptions (A1–A3), for Case 1 under pull priority policy,
and for Case 2 under linear threshold policy. Then as n →
∞, X̂n ⇒ X̂, where X̂(t) is a 10 dimensional driftless
Brownian motion. Furthermore,

D̂n
1 (t)− D̂n

2 (t) = Q̂n2 (t) ⇒ 0,

D̂n
4 (t)− D̂n

3 (t) = Q̂n4 (t) ⇒ 0,
(8)

T̂n1 (t) + T̂n4 (t) = T̂n3 (t) + T̂n2 (t) = 0, (9)

and the variances and covariances of the limiting Brownian
motions are given by:

Var(D̂2(1)) =
µ1µ2

(µ1µ3 − µ2µ4)3
× (10)

[µ1µ2µ3µ4(c23 + c24)(µ1 − µ2) + (µ2
1µ

2
3c

2
2 + µ2

2µ
2
4c

2
1)(µ3 − µ4)],

Cov(D̂2(1), D̂4(1)) = − µ1µ2µ3µ4

(µ1µ3 − µ2µ4)3
× (11)

[(µ1µ3c
2
4 + µ2µ4c

2
3)(µ1 − µ2) + (µ1µ3c

2
2 + µ2µ4c

2
1)(µ3 − µ4)],

with a symmetric expression for Var(D̂4(1)). Similar ex-

pressions for variances and covariances of T̂2(·), T̂4(·) may
be read off from (16).

Proof. The equalities (8) and (9) follow immediately
from (2) and (1). The convergence to 0 in (8) follows from
Theorem 2, since Qi(t) has a limiting stationary distribu-
tion, therefore Qi(nt) converges to this limiting distribution
as n → ∞, and dividing by

√
n implies converges to 0 in

probability and therefore also weakly.
Also, by Corollary 1, T̄n(t) → T̄ (t) = θt and D̄n(t) →

D̄(t) = νt u.o.c as n→∞.
The rest of the proof and the calculations are straightfor-

ward:

D̂n
i (t) = Di(nt)−D̄i(nt)√

n

=
Si(nT̄n

i (t))−S̄i(nT̄n
i (t))√

n
+

S̄i(nT̄n
i (t))√
n

− D̄i(nt)√
n

= Ŝni (T̄ni (t)) + µi
Ti(nt)−T̄i(nt)√

n
+ µi

T̄i(nt)√
n
− D̄i(nt)√

n

= Ŝni (T̄ni (t)) + µiT̂
n
i (t) + θiµi

√
nt− θiµi

√
nt,

where all we did is to add and subtract quantities, use the
definitions (7), and use S̄i(t) = µit (by Assumption (A1)),
and T̄i(t) = θit, D̄i(t) = νit = µiθit (from Corollary 1).

Define P̂ni (t) = Ŝni (T̄ni (t)), i = 1, 2, 3, 4, then summariz-
ing the above and also using similar calculations (for (13)
and (14)) we obtain:

D̂n
i (t) = P̂ni (t) + µiT̂

n
i (t), i = 1, 2, 3, 4, (12)

Q̂ni (t) = D̂n
i−1(t)− D̂n

i (t), i = 2, 4, (13)

T̂n2 (t) = −T̂n3 (t), T̂n4 (t) = −T̂n1 (t). (14)

Now using (12)–(14):
D̂n

2 (t)

D̂n
4 (t)

T̂n2 (t)

T̂n4 (t)

 = A P̂n(t) + B

[
Q̂n2 (t)

Q̂n4 (t)

]
, (15)

where

A =
1

µ1µ3 − µ2µ4


−µ2µ4 µ1µ3 µ1µ2 −µ1µ2

µ3µ4 −µ3µ4 −µ2µ4 µ1µ3

−µ4 µ4 µ1 −µ1

µ3 −µ3 −µ2 µ2

 ,
and

B =
1

µ1µ3 − µ2µ4


µ2µ4 −µ1µ2

−µ3µ4 µ2µ4

µ4 −µ1

−µ3 µ2

 .
By the functional central limit theorem for renewal processes
and the continuous mapping theorem (c.f. [11]) we have

1 2 3 4 5
l

-1.0

-0.8

-0.6

-0.4

-0.2

rl

Printed by Mathematica for Students

Figure 3: The correlation between outputs of a sym-
metric push pull network.

P̂n(t)⇒ P̂ (t) where P̂ (t) is a 4 dimensional driftless Brow-
nian motion with a diagonal covariance matrix Λ, having
entries

Var(P̂i(1)) = µic
2
i θi, i = 1, 2, 3, 4.

Incorporating the above with the weak convergence of Q̂n

to 0, we have that (D̂n
2 (t), D̂n

4 (t), T̂n2 (t), T̂n4 (t)) converges to
a driftless Brownian motion process with covariance matrix:

Γ = AΛA′. (16)

The following two subsections show some surprising facts
about the diffusion scale behavior of the push pull network.

6.1 Insensitivity to the Policy
The proof of Theorem 3 does not depend on the exact

policy which was used. All that is needed is Q̂n2 (t) ⇒ 0
and T̄n(t) → θt u.o.c. In particular, the calculations for
Case 1 and Case 2 are the same. In fact, any policy which
achieves full utilization and which achieves Q̂n(t) ⇒ 0 will
automatically satisfy the convergence in Corollary 1. Hence
the analysis and the results are valid for the push-pull net-
work operating under any full utilization policy which sat-
isfies Q̂n(t)⇒ 0.

We reach the surprising conclusion that the diffusion scale
output processes D̂(t) do not depend on the policy, so long
as it is fully utilizing and stabilizing. In a sense this means
that all these policies are optimal on the diffusion scale.

6.2 Negative Covariance of Outputs
It is evident from (11) that Cov(D̂2(t), D̂4(t)) < 0. Also,

when all activity processing times have the same squared
coefficient of variation c2, then both the variance and the
covariance in (10,11) are linear in c2.

In Figure 3 we illustrate the negative correlation between
the output processes of our network. We plot as a function
of λ:

ρλ =
Cov(D̂2(1), D̂4(1))√

Var(D̂2(1))Var(D̂4(1))
, (17)

for symmetric push pull networks with parameters c2i =
c2, i = 1, 2, 3, 4, µ2 = µ4 = 1, µ1 = µ3 = λ.

Our analysis applies to all λ 6= 1. When λ = 1 we have a
completely balanced network (as defined in Section 1) and
with our policies, under diffusion scaling the queues do not
converge to 0, so the analysis in this paper does not apply.

Note that for 1/2 < λ < 2, i.e when the ratio of processing
times for each type of job on the two servers is not too far
from 1, we get −1 < ρλ < −0.8, so the negative correlation
is very high. Most surprisingly, as λ→ 1 the correlation ap-
proaches −1, and we are close to complete resource pooling
[8].

When λ is very small or very large the correlation ap-
proaches zero. This is intuitively clear, since each server is
now spending almost all of its time on just one type of job,
and so the fluctuations in D2 depend mostly on the process-
ing times of jobs of type 1, and the fluctuations of D4 will
depend mostly on the processing times of jobs of type 2, and
hence they will be almost independent.

7. ACKNOWLEDGMENTS
We would like to thank Serguei Foss for useful discussions

on stability of Markov chains, and fluid and diffusion ap-
proximations of queueing networks.

8. REFERENCES
[1] I. Adan and G. Weiss. A two node Jackson network

with infinite supply of work. Probability in the
Engineering and Informational Sciences,
19(2):191–212, 2005.

[2] I. Adan and G. Weiss. Analysis of a simple Markovian
re-entrant line with infinite supply of work under the
LBFS policy. Queueing Systems, 54(3):169–183, 2006.

[3] B. Ata and W. Lin. Heavy traffic analysis of maximum
pressure policies for stochastic processing networks
with multiple bottlenecks. Preprint.

[4] M. Bramson. Stability of two families of queueing
networks and a discussion of fluid limits. Queueing
Systems, 28(1-3):7–31, 1998.

[5] H. Chen and D. D. Yao. Fundamentals of Queueing
Networks, Performance, Asymptotics and
Optimization. Springer, 2003.

[6] J. G. Dai. On positive Harris recurrence of multiclass
queueing networks: A unified approach via fluid limit
models. The Annals of Applied Probability, 5(1):49–77,
1995.

[7] J. G. Dai and W. Lin. Maximum pressure policies in
stochastic processing networks. Operations Research,
53(2), 2005.

[8] J. G. Dai and W. Lin. Asymptotic optimality of
maximum pressure policies in stochastic processing
networks. Preprint, 2006.

[9] J. G. Dai and G. Weiss. Stability and instability of
fluid models for re-entrant lines. Mathematics of
Operations Research, 21(1):115–134, 1996.

[10] M. H. A. Davis. Piecewise-deterministic Markov
processes: A general class of non-diffusion stochastic
models. Journal of Royal Statistical Society. Series B.,
46(3):353–388, 1984.

[11] P. W. Glynn. Diffusion approximations. In Handbooks
in Operations Research, Vol 2, D.P. Heyman and M.J.
Sobel (eds.), North-Holland, Amsterdam, pages
145–198, 1990.

[12] Y. Guo and H. Zhang. On the stability of a simple
re-entrant line with infinite supply. Preprint, 2006.

[13] Y. Guo and H. Zhang. Positive Harris recurrence of
re-entrant lines with infinite supply. Preprint, 2007.

[14] M. J. Harrison. Brownian models of queueing
networks with heterogeneous customer populations. In
Stochastic Differential Systems, Stochastic Control
Theory and Applications (W. Fleming and P.-L.
Lions, eds.), pages 147–186, 1988.

[15] M. J. Harrison. and R. J. Williams Brownian models
of queueing networks with heterogeneous customer
populations. Ann. Appl. Probab, 2(2):263–193, 1992.

[16] S. G. Henderson, S. P. Meyn, and V. B. Tadic.
Performance evaluation and policy selection in
multiclass networks. Discrete Event Dynamic Systems,
13(1-2):149–189, 2003.

[17] A. Kopzon and G. Weiss. A push pull queueing
system. Operations Research Letters, 30(6):351–359,
2002.

[18] A. Kopzon, Y. Nazarathy and G. Weiss. A push pull
system with infinite supply of work. Preprint, 2008.

[19] P. Kumar and T. Seidman. Dynamic instabilities and
stabilization methods in distributed real-time
scheduling of manufacturing systems. IEEE
Transactions on Automatic Control,
AC-35(3):289–298, 1990.

[20] S. P. Meyn. Control Techniques for Complex
Networks. Cambridge University Press, 2008.

[21] S. P. Meyn and D. Down. Stability of generalized
Jackson networks. The Annals of Applied Probability,
4(1):124–148, 1994.

[22] S. P. Meyn and R. Tweedie. Markov Chains and
Stochastic Stability. Springer-Verlag, 1993.

[23] S. P. Meyn and R. L. Tweedie. Stability of Markovian
processes II: Continuous-time processes and sampled
chains. Advances in Applied Probability,
25(3):487–517, 1993.

[24] S. P. Meyn and R. L. Tweedie. Stability of Markovian
processes III: Foster-Lyapunov criteria for
continuous-time processes. Advances in Applied
Probability, 25(3):518–548, 1993.

[25] Y. Nazarathy and G. Weiss. The asymptotic variance
rate of finite capacity birth-death queues. Queueing
Systems. To Appear., 2008.

[26] Y. Nazarathy and G. Weiss. Near optimal control of
queueing networks over a finite time horizon. Annals
of Operations Research. To Appear., 2008.

[27] A. Rybko and A. Stolyar. On the ergodicity of random
processes that describe the functioning of open
queueing networks. Probl. Pereda. Inf., 28(3):3–26,
1992.

[28] G. Weiss. Jackson networks with unlimited supply of
work. Journal of Applied Probability, 42(3):879–882,
2005.

APPENDIX
A. PROOF OF LEMMA 2

The proof requires some more concepts (c.f. [23]): We
say that X is ψ-irreducible, if there exists a measure ψ on
(S,B(S)) such that, whenever ψ(A) > 0, we have Px{τA <

∞} > 0 for all x ∈ S.
Let a be a probability distribution on R+. Define the

Markov transition function Ka as

Ka(x, ·) =

∫ ∞
0

P t(x, ·) a(dt).

A continuous component of Ka is a non-negative function
T (x,A) which is lower semi-continuous in x, and satisfies

Ka(x,A) ≥ T (x,A), x ∈ S, A ∈ B(S),

We say that X is a T-process if there exists a distribution
a such that Ka possesses a continuous component T , with
T (x, S) > 0 for all x ∈ S. The following proposition (c.f.
Theorem 4.1(i) of [23]), connects ψ-irreducible T-processes
and petiteness of compacts.

Proposition 2. If X is a ψ-irreducible T-process then
every compact set in B(S) is petite.

We say that a state x∗ is reachable if
∫∞

0
P t(x,O)dt > 0

for every open neighborhood O of x∗ and every x ∈ S. It can
be shown (c.f [13]) that if X is a T-process with a reachable
point x∗ then it is also ψ-irreducible with ψ(·) = T (x∗, ·).

Returning to our push pull queueing network with pull
priority, it is easy to see, by Assumption (A2b), that the
state Q(t) = 0, U(t) = 0, V (t) = 0 is reachable.

Thus the main part of the proof is to show that X is a
T-process: We need to construct a lower semi-continuous
function T (·, A) and a transition kernel Ka(·, A), so that
Ka(x,A) ≥ T (x,A), for all (x,A) ∈ (S,B(S)).

Following Meyn and Down [21] the construction is in sev-
eral steps. The crucial step in the construction of T is to
consider the initial state in a bounded rectangle, the set of
states to be reached is an empty system with both servers
engaged in push activity, and to then bound the probability
of reaching this set after a deterministic integer time by a
continuous function.

For an integer ` define R` = {0, . . . , `}2 × [0, `)2 × [0, `)2.
Now take the initial state at time 0 as x0 ∈ R`.

Define Z(t) = (Q2(t), Q4(t), U2(t), U4(t)). Then the net-
work state process is X(t) = (Z(t), V (t)). Let A1, A3 ∈
B(R+). The set to be reached is the set {Z = 0, V ∈
A1×A3}. For an integer time nl we will bound Px0(Z(n`) =
0, V (n`) ∈ A1×A3) from below by a function T ′l (x0, A1, A3),
which is continuous in x0.

Define two events:

D` = {
ki
0∑

j=1

ξji ≤
n`
4
, ξ
ki
0+1
i ≥ 2n` for i = 1, 3},

for large nl it has a positive probability, since we assume
that the distribution of ξ1

1 , ξ
1
3 has infinite support.

EL,` = {ξji ≤ L, j = 1, . . . , `+ ki0 for i = 2, 4},

where L is taken large enough such that,

εL,` = P (EL,`) > 0.

If we require that

n` > 4`+ 2(`− 1)L+ 2
n`
4

+ (k1
0 + k3

0)L, (18)

that is set n` to

n` > 8`+ 4(`− 1)L+ 2(k1
0 + k3

0)L,

then we have that the eventD`∩EL,` implies that at time n`,
Z(n`) = 0 and server 1 (server 3) is engaged in push activity
1 (push activity 3) with the long k1

0 +1st (k3
0 +1st) job from

the infinite supply. To see this, recall that our policy is head
of the line with low priority to push activities. Therefore
prior to the first time that the servers are both working
on the long push activities, at least one of them is working
on pull activities or on the first ki0 push activities. The
expression (18) is an upper bound on the total amount of
work that has to be done, and it will therefore be completed
by time nl. The long push activities will of course not be
complete by time nl.

With the above definitions in hand,

Px0(Z(n`) = 0, V (n`) ∈ A1 ×A3)
≥ Px0(Z(n`) = 0, V (n`) ∈ A1 ×A3, D`, EL,`)
= Px0(V (n`) ∈ A1 ×A3, D`, EL,`)
= εL,`Px0(V (n`) ∈ A1 ×A3, D`|EL,`).

The number of jobs to be processed by activity i = 2, 4 by
time n`, apart from the residuals, is

`i = Qi(0)− I{Qi(0) > 0}+ ki−1
0 .

Now define the truncation ζji = I{ξji ≤ L} ξji for i = 2, 4,
and observe that when D` occurs and conditional on EL,`,

V1(n`) = V1(0) + U4(0) +

k10∑
j=1

ξj1 +

`4∑
j=1

ξj4 + ξ
k10+1
1 − n`

= V1(0) + U4(0) +

k10∑
j=1

ξj1 +

`4∑
j=1

ζj4 + ξ
k10+1
1 − n`,

with a similar expression for V3(n`).
Denote the distribution of ξ1

i by ηi and the ki0 fold convo-

lutions of these distributions by η
∗ki

0
i for i = 1, 3. Also, for

i = 2, 4, use η′i to denote the distribution of
∑`i
j=1 ζ

j
i .

We now have

Px0(V (n`) ∈ A1 ×A3, D`|EL,`) =∫
Is1,s3,t1,t3,r2,r4η

∗k10
1 (ds1)η

∗k30
3 (ds3)η1(dt1)η3(dt3)η′2(dr2)η′4(dr4)

where the integral is on the range (s1, s3, t1, t3, r2, r4) ∈
[0,∞)6, and the integrand is the indicator function

Is1,s3,t1,t3,r2,r4 =
I{V1(0) + U4(0) + s1 + r4 + t1 − n` ∈ A1}·
I{V3(0) + U2(0) + s3 + r2 + t3 − n` ∈ A3}·
I{s1 ≤ n`

4
}I{s3 ≤ n`

4
}I{t1 ≥ 2n`}I{t3 ≥ 2n`}.

(19)

We now use Assumption (A2b) to get,

Px0(V (n`) ∈ A,Gn` |EL,`) ≥∫
Is1,s3,t1,t3,r2,r4q1(s1)ds1q3(s3)ds3η1(dt1)η3(dt3)η′2(dr2)η′4(dr4)

(20)
We define the function T ′`(x0, A) as εL,` multiplied by the
integral in (20). It is evident that T ′` is continuous in each
of the coordinates V1(0), V3(0), U2(0), U4(0) and hence it is
continuous in x0. It is also strictly positive, as required.

For every x0 this T ′`(x0, A1 ×A3) is now defined for A1 ×
A3 ∈ B(R2). We can extend it to a measure on the whole
B(R2), so that T ′`(x0, A) > 0 for every A ∈ B(R2) with pos-
itive Lebesgue measure, and so that T ′`(x0, A) is continuous
in x0 and satisfies

Px0(Z(n`) = 0, V (n`) ∈ A) ≥ T ′`(x0, A).

The remainder of the construction of the continuous com-
ponent T follows exactly the steps of Meyn and Down [21].

Remark: The above proof can be extended to a proof
for petiteness of compacts of the network state process of
a multi-class queueing network with infinite virtual queues
(c.f Section 3 of [26]) operating under a policy that gives
lowest priority to the infinite virtual queues. Writing this
statement and proof does not require any further ideas than
those presented here.

