
Performance Evaluation 67 (2010) 201–217

Contents lists available at ScienceDirect

Performance Evaluation

journal homepage: www.elsevier.com/locate/peva

Positive Harris recurrence and diffusion scale analysis of a push pull
queueing network
Yoni Nazarathy ∗, Gideon Weiss
Department of Statistics, The University of Haifa, Mount Carmel 31905, Israel

a r t i c l e i n f o

Article history:
Received 1 December 2008
Received in revised form 18 August 2009
Accepted 14 September 2009
Available online 13 October 2009

Keywords:
Queueing networks
Push pull
Infinite virtual queues
Fluid models
Positive Harris recurrence
Diffusion limits
Petite bounded sets

a b s t r a c t

We consider a push pull queueing network with two servers and two types of job which
are processed by the two servers in opposite order, with stochastic generally distributed
processing times. This push pull network was introduced by Kopzon and Weiss, who
assumed exponential processing times. It is similar to the Kumar–Seidman Rybko–Stolyar
(KSRS) multi-class queueing network, with the distinction that instead of random arrivals,
there is an infinite supply of jobs of both types. Unlike the KSRS network, we can find
policies underwhich our push pull networkworks at full utilization, with both servers busy
at all times, and without being congested. We perform fluid and diffusion scale analysis of
this network under such policies, to show fluid stability, positive Harris recurrence, and to
obtain a diffusion limit for the network. On the diffusion scale the network is empty, and
the departures of the two types of job are highly negatively correlated Brownian motions.
Using similar methods we also derive a diffusion limit of a re-entrant line with an infinite
supply of work.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

We consider the following queueing network: There are two servers, numbered 1, 2 and two types of job numbered 1,
2. Each type of job is processed by both servers. Type 1 is processed first by server 1 and then by server 2, while type 2 is
processed in the opposite order, first by server 2 and then by server 1, see Fig. 1. We call the first step of each type a push
activity and the second step a pull activity. We denote push activities of type i by (i, 1) and pull activities by (i, 2).
The special feature of this push pull network is that there is no arrival stream. Instead we assume that each server has an

infinite supply of jobs available for its push operation. Thus there are two queues in the network, Q1 and Q2 indexed by the
job type: jobs of type 1, waiting to be pulled by server 2 are in Q1 and jobs of type 2, waiting to be pulled by server 1 are in
Q2.
Our network operates in continuous time t ≥ 0.We denote by Qi(t) the number of jobs in the queue i at time t (including

the job in process), and by Di,j(t) the number of jobs that have completed activity (i, j) during the time interval [0, t]. Thus
Di,2(t) are the numbers of departures from the network of type i up to time t . When Q2(t) > 0, server 1 can either pull,
by serving a type 2 job from Q2 or push, by serving a type 1 job from the infinite supply. When Q2(t) = 0 server 1 can still
always push jobs of type 1 into Q1. Hence, server 1 never needs to idle. Similarly for server 2.
Infinite supply of work expresses an ability to control the arrivals and is often a reasonable way to model a processing

system. In some situations there may indeed be an infinite supply of work — in a communication system a transmitter may
have a constant supply of messages generated on the spot in addition to servingmessages in transit from other transmitters.
In manufacturing systems the supply of parts for processing at an expensive machine may be monitored and not allowed to
run out. We refer to this as an infinite virtual queue (IVQ): it acts like an infinite queue while in fact it only contains a few
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Fig. 1. The push pull network.

jobs which are constantly replenished. In standard queueing networks one can regard the input stream as the output of a
server which is fed by an infinite supply of work. A major point of this paper is that it is possible to find policies for the push pull
network which never idle and yet keep the queues Qi(t) stable. The push pull network was introduced by Kopzon et al. [1,2]
who assumed exponential processing times. Infinite supply of work and infinite virtual queues are discussed in [3–8]. A brief
survey of these results is in Chapter 2 of [9].
Assume that the long term average processing time of a push activity (i, 1), is 1/λi and that of a pull activity (i, 2), is

1/µi. Let θi,j be the long term fraction of time spent by the server working on activity (i, j). If the servers are never idle then
θ1,1 + θ2,2 = 1 and θ2,1 + θ1,2 = 1. Furthermore, if Qi(t) are stable then their input and output rates are equal, so:

ν1 = λ1θ1,1 = µ1(1− θ2,1), ν2 = λ2θ2,1 = µ2(1− θ1,1),

where νi is the long term average rate of the departure process Di,2(t). Solving the equations we get:

ν1 =
λ1µ1(λ2 − µ2)

λ1λ2 − µ1µ2
, ν2 =

λ2µ2(λ1 − µ1)

λ1λ2 − µ1µ2
.

We now specify the policies which we use. We consider the preemptive resume head of the line policies. We need to
distinguish different cases:

Inherently stable network:When λi < µi, i = 1, 2, service of each type of job alone, by its second server, is a stable single
server queue. In this case the policy which we use is the preemptive resume head of the line priority for pull activities
over push activities. We refer to this as Case 1, and to the policy as the pull priority policy.
Inherently unstable network: When λi > µi, i = 1, 2, service of each type of jobs alone, by both servers results in an
unstable single server queue. In this case the priority to pull over push is unstable. A policy that works here is for each
server to pushwhen the queue in the opposite server is below a threshold. Specifically: whileQ1 is below some threshold,
server 1 will push work to server 2, and server 1 will only pull from Q2 when Q1 is above the threshold, with a similar
rule for server 2. We use an affine threshold (switching curve) to determine the pull or push preemptive head of the line
priority. We define a family of such policies, each determined by slope constants κ1, κ2 and shift constants β1, β2, with
κi > 0 and βi ≥ 0, i = 1, 2.
Server 1: At time t , priority to pull over push if 0 < Q2(t) < β1 + κ1Q1(t).
Server 2: At time t , priority to pull over push if 0 < Q1(t) < β2 + κ2Q2(t).
We refer to this as Case 2, and to the policy as an affine threshold policy, see Fig. 2.
Unbalanced network: If λ1 > µ1 andµ2 > λ2, then server 2 has more work to do than server 1, for both types of job, and
the network cannot be stable unless server 1 idles some of the time. Similarly for λ1 < µ1 and µ2 < λ2. We will not
consider this case any further in this paper.
Completely balanced network:When λi = µi, i = 1, 2 it is possible to find policies which work with full utilization of
both servers, and are rate stable, i.e. the input and output rates of each queue are equal, however these rates are not
uniquely determined. We can choose 0 ≤ θ ≤ 1, and specify θ1,1 = θ1,2 = θ , θ2,1 = θ2,2 = 1 − θ and use ν1 = µ1θ
as a nominal rate for type 1 and ν2 = µ2(1− θ) as a nominal rate for type 2. As shown in [7], we can use an adaptation
of the maximum pressure policy of Dai and Lin [10] to serve jobs of types 1 and 2 at these rates, under full utilization.
However, the network will become congested, with expected O(

√
T ) jobs in the network at time T . We conjecture that

this cannot be improved.

The structure of the paper is as follows: We start with a preliminary discussion in Section 2, in which we outline known
results about the well studied Kumar–Seidman Rybko–Stolyar (KSRS) network, and contrast them with the very different
behavior of our push pull network. In Section 3 we define our stochastic model and primitive assumptions. In Section 4 we
analyze the fluid limit model of this network under fluid scaling, and show that the fluid model is stable in both parametric
cases under the corresponding policies. In Section 5 we assume i.i.d. processing times and formulate the network and policy
as a Markov process. We then follow the proof method of Dai [11] to show that this Markov process is positive Harris
recurrent, and soQ1(t),Q2(t) possess a stationary limiting distribution. Section 5.1 contains a technical result: we show that
formulti-class queueing networkswith infinite virtual queues all bounded sets of states are uniformly small. In Section 6we
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Fig. 2. The affine threshold policy for the inherently unstable network (Case 2).

consider the departure processes under diffusion scaling, and obtain a Brownian limit theorem. The limit result immediately
yields asymptotic variance rate parameters for the departure processes and shows that the two departure streams are highly
negatively correlated. For comparison, we also present an alternative (less general) derivation of the asymptotic variance
rate parameters by means of a renewal-reward approach. Our Brownian limit method is also useful for other models: We
exploit this in Section 7 where we present a Brownian approximation result for the departure process of an infinite supply
re-entrant line.

Remark. Some of the results of this paper are based on the earlier conference paper [12].

1.1. Notation

In general, when no ambiguity may arise, we omit index subscripts when we refer to vectors. Further, when we do not
specify explicit values for i in expressions such as (for example) Qi, ρi, we imply that i = 1, 2. Similarly, when we refer to
activities (i, j)we mean that i = 1, 2 and j = 1, 2.
We useRd

+
andZd

+
to denote the sets of all d-dimensional non-negative real and integer vectors respectively. For a vector

x ∈ Rd1+ ×Zd2+ we let |x| denote the `1 norm, given by sum of absolute values of the components.We use I{·} for the indicator
function of event {·}. For a metric space S, we denote by B(S) the Borel sets of S. The transpose of a matrix A is A′. We use
Dd[0,∞) to denote the set of functions f : [0,∞) 7→ Rd

+
that are right continuous with left limits. For f ∈ Dd[0,∞), we

let ‖f ‖t = sup0≤s≤t |f (s)|. We endow the function space Dd[0,∞) with the usual Skorohod J1-topology. For a sequence of
stochastic processes {X r} taking values in Dd[0,∞), we use X r ⇒ X to denote that X r converges to X in distribution as
r →∞. A sequence of functions {fr} ⊂ Dd[0,∞) is said to converge to f ∈ Dd[0,∞) uniformly on compact sets (u.o.c.), if
for each t ≥ 0, limr→∞ ‖fr − f ‖t = 0.

2. Preliminary discussion: Comparing to the KSRS network

The Kumar–Seidman Rybko–Stolyar multi-class queueing network (cf. Chapter 8 of [13] or Section 2.9 of [14]) differs
from our push pull network in that instead of an infinite supply of jobs there are two stochastic arrival streams of jobs of
type 1 and of type 2, with long term average arrival rates α1, α2.
In that case there are 4 queues: Q1,1,Q1,2 of job type 1 and Q2,1,Q2,2 of job type 2. The offered loads for servers 1 and 2

are ρ1 = α1/λ1 + α2/µ2 and ρ2 = α2/λ2 + α1/µ1 respectively. A necessary condition for stability is ρi < 1.
The same two cases of parameters reappear: If λi < µi, i = 1, 2 then ρi < 1 is sufficient for stability of the network

under any work conserving (i.e. any non idling) policy. On the other hand, if λi > µi, i = 1, 2 then ρi < 1 may not be
sufficient for stability. In particular, there exists γi < 1 such that the last buffer first served policy, which gives priority to
the pull activities, will not be stable for γi < ρi < 1.
The discovery of this phenomenon by Kumar and Seidman [15] (deterministic processing times) and by Rybko and

Stolyar [16] (exponential processing times) revolutionized research onmulti-class queueing networks, and it is now realized
that stability is not a property of the network, but of the policy in conjunction with the network. In our network, this is
exemplified by the need to use the pull priority (last buffer first served) for the inherently stable Case 1, and a different
policy for the inherently unstable Case 2.
Nevertheless, if ρi < 1 then there is some work conserving (non idling) policies which keeps all four queues of the KSRS

network stable. However, as ρi increase towards 1, either for one of the servers or for both together, the network becomes
increasingly congested under any policy.
Of particular interest is the behavior of multi-class queueing networks under balanced heavy traffic conditions (c.f. [17]).

Balanced heavy traffic in the KSRS network occurs when α1 → ν1, α2 → ν2. When this happens queues at both servers
become congested under any policy.
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A diffusion scale analysis of KSRS under balanced heavy traffic considers a sequence n = 1, 2, . . . of networks,
parameterized by αni such that

√
n(αni − νi) converges to some constant as n → ∞. In that case one can hope to show

that the diffusion scaled queues, Q̂ n(t) = Q n(nt)/
√
nwill converge to a 4 dimensional reflected Brownian motion.

As the scaling indicates, for the KSRS network under balanced heavy traffic, the diffusion approximation relates to a
sequence of networks in which the total number of jobs in the nth network at any time is expected to be of orderΘ(

√
n).

The behavior of the push pull network, as we will show, is of an entirely different nature: Both servers are active all the
time, which can be thought of as operating at ρi = 1 and jobs leave the network at the rates νi. At the same time, with i.i.d.
processing times the network is positive Harris recurrent. Thus in the push pull network with ρi = 1 the number of jobs in
the queues Q1(t),Q2(t) is expected to be O(1), and it is 0 under diffusion scaling.
Finally, compare the behavior of the departure processes,Di,2(t) of the KSRS network and of the push pull network, under

diffusion scaling. In the KSRS networkwith ρi < 1 the diffusion scaled queue lengthswill be 0. Therefore on a diffusion scale,
jobs of type 1 have arrivals, departures fromqueue 1, and departures fromqueue 2,which are all identical Brownianmotions.
Similarly for type 2. In particular, the diffusion scaled flow of jobs of type 1 and of jobs of type 2 will be independent. This
fully describes the diffusion scale behavior, for fixed ρi < 1.
Under balanced heavy traffic the behavior of the departure processes of the KSRS network seems to be much more

complex. The four queue length processeswill be reflected Brownian processes, andwill affect the diffusion scaled departure
processes. To the best of our knowledge the behavior of the departure processes in that case has not been investigated. We
note that even the departure process of a single server queue, under balanced heavy traffic, poses some as yet unanswered
questions (c.f. [18,19]).
In contrast to that, in the push pull network, operated with our policies, under full utilization, the diffusion scaled queue

lengths are 0. As a result we can analyze the departure processes of the two types of job. What we find is that the departure
processes of jobs of types 1 and 2 that leave the network converge under diffusion scaling to two standard Brownianmotions,
but these two Brownian motions are highly negatively correlated.

3. The stochastic model

We assume that the processing durations of activities (i, j) are drawn from a sequence of positive random variables:
ξi,j = {ξ

`
i,j, ` = 1, 2, . . .}. The assumptions that we make regarding the processing durations are as follows:

(A1) lim
n→∞

n∑̀
=1
ξ `i,1

n
=
1
λi
, lim

n→∞

n∑̀
=1
ξ `i,2

n
=
1
µi
, a.s., for some λi, µi ∈ (0,∞).

(A2)



(a) ξi,j are mutually independent i.i.d. sequences.
(b) P(ξ 1i,1 ≥ x) > 0 for all x > 0,

∃Li0 > 0, qi(·) ≥ 0 with
∫
∞

0
qi(x)dx > 0 : P

 Li0∑
`=1

ξ `i,1 ∈ dx

 ≥ qi(x)dx.
(b′) Compact sets are petite.

(A3) λ2i Var(ξ
1
i,1) = c

2
i,1, µ2i Var(ξ

1
i,2) = c

2
i,2, for some c2i,1, c

2
i,2 ∈ [0,∞).

Assumptions (A1) require that there exist strong laws of large numbers for the sequences of processing times so that the rate
of the push activities is λi and the rate of the pull activities isµi. Assumptions (A2) are to be used in aMarkov process setting
to prove positive Harris recurrence. (a) implies renewal processing. A further technical assumption regarding the processing
times of the push activities is (b): unbounded and spread-out processing times. Alternatively, we may assume (b′), this
assumption is to be made precise in Section 5. We show that under the pull priority policy, (b) implies (b′). Assumptions
(A3) require the existence of second moments, with squared coefficients of variation c2i,j. We shall make use of Assumptions
(A1)–(A3) incrementally.
We associate counting processes with each activity (i, j):

Si,j(t) = sup

{
n :

n∑
`=1

ξ `i,j ≤ t

}
, t ≥ 0.

Wedenote by Ti,j(t) the total time that the server of activity (i, j) allocates to the processing of the activity during the interval
[0, t]. We require that Ti,j(0) = 0, Ti,j(·) are nondecreasing, and Ti,j(t) − Ti,j(s) ≤ t − s for s < t . Under our policies of full
utilization, the servers never idle, thus:

T1,1(t)+ T2,2(t) = t, T2,1(t)+ T1,2(t) = t. (1)

Note that Ti,j(·) are Lipschitz, and are therefore absolutely continuous. Thus their derivative exists almost everywhere with
respect to the Lebesgue measure on [0,∞).
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The number of jobs that have completed processing of activity (i, j) by time t is Di,j(t) = Si,j(Ti,j(t)). Let Qi(0) be the
initial queue lengths. The number of jobs at time t is:

Qi(t) = Qi(0)+ Di,1(t)− Di,2(t). (2)

We further require that Qi(t) ≥ 0.
The policies whichwe use in the two cases impose additional conditions on the dynamics of the queues. In the inherently

stable Case 1, we use pull priority policy. Hence we will not serve the push activities (i, 1) unless the corresponding queue
of the server is empty. This implies that the allocation processes T (·) need to satisfy:∫ t

0
Q2(s)dT1,1(s) = 0,

∫ t

0
Q1(s)dT2,1(s) = 0.

In the inherently unstable Case 2, we use an affine threshold policy. The affine threshold for server 1 is the line Q2(t) =
β1 + κ1Q1(t). Server 1 will give preemptive priority to the pull activity (2, 2) only if 0 < Q2(t) < β1 + κ1Q1(t), and in
that case it will not allocate time to the push activity (1, 1). On the other hand, if Q2(t) ≥ β1 + κ1Q1(t) then server 1 will
give priority to activity (1, 1), to prevent starvation at the queue of server 2 (Q1), and will not allocate time to activity (2, 2).
A symmetric rule is used by server 2, with the affine threshold given by the line Q1(t) = β2 + κ2Q2(t). Hence, for the
inherently unstable Case 2:∫ t

0
1{0 < Q2(s) < β1 + κ1Q1(s)}dT1,1(s) = 0,

∫ t

0
1{Q1(s) ≥ β2 + κ2Q2(s)}dT1,2(s) = 0∫ t

0
1{Q2(s) ≥ β1 + κ1Q1(s)}dT2,2(s) = 0,

∫ t

0
1{0 < Q1(s) < β2 + κ2Q2(s)}dT2,1(s) = 0

4. Fluid limits and fluid models

In this section we assume (A1), and consider the behavior of the push pull network under fluid scaling. To study the
network under fluid scaling we consider the six dimensional network process Y (t) = (Q (t), T (t)), and parameterize it by
n = 1, 2, . . . as follows: For each n set the initial queue lengths as Q n(0), and let Y n(t) be the network process starting from
this initial condition, where all the Y n share the same sequences of random processing times ξi,j. Denote by Y n(t, ω) the
realization of the n’th network process for some ω in the sample space. We define fluid scalings as:

Ȳ n(t, ω) =
Y n(nt, ω)
n

.

A function Ȳ (t) = (Q̄ (t), T̄ (t)) is said to be a fluid limit of our network if there exists a sequence of integers r →∞ and a
sample path ω such that:

Ȳ r(·, ω)→ Ȳ (·), u.o.c.

It may now be shown that under Assumption (A1), and assuming

lim inf
n→∞

Q n(0)/n <∞,

(see also the remark at the end of this section) that except for a set of ω of measure zero, fluid limits exist for every ω, and
every one of them satisfies the following fluid equations:

Q̄i(t) = Q̄i(0)+ λiT̄i,1(t)− µiT̄i,2(t),

Q̄i(t) ≥ 0,

T̄i,j(0) = 0, T̄i,j(·) is non-decreasing

(3)

as well as

T̄1,1(t)+ T̄2,2(t) = t, T̄2,1(t)+ T̄1,2(t) = t (4)

and in addition, under the pull priority they satisfy:∫ t

0
Q̄2(s)dT̄1,1(s) = 0,

∫ t

0
Q̄1(s)dT̄2,1(s) = 0. (5)

For details, see for example Theorem 4.1 of [11] or Appendix A.2 of [10]. Further, under the affine threshold policy:∫ t

0
1{0 < Q̄2(s) < κ1Q̄1(s)}dT̄1,1(s) = 0,

∫ t

0
1{Q̄1(s) ≥ κ2Q̄2(s)}dT̄1,2(s) = 0∫ t

0
1{Q̄2(s) ≥ κ1Q̄1(s)}dT̄2,2(s) = 0,

∫ t

0
1{0 < Q̄1(s) < κ2Q̄2(s)}dT̄2,1(s) = 0.

(6)
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Eqs. (3)–(6) represent a deterministic continuous fluid analog of the stochastic model introduced in the previous section.
Note that in the fluid scaling the shift constants β1, β2 have disappeared. We shall refer to Eqs. (3)–(5) as the fluid model of
Case 1. Similarly we shall refer to (3), (4) and (6) as the fluid model of Case 2.
A fluid solution of Case 1 (Case 2) is any pair (Q̄ , T̄ ) that satisfies the fluid model equations of Case 1 (Case 2). We say

that the fluid model of Case 1 (Case 2) is stable if there exists a δ > 0 such that for every fluid solution of Case 1 (Case 2),
whenever |Q̄ (0)| = 1 then Q̄ (t) = 0 for any t ≥ δ.
Our main result in this section is:

Theorem 1. Consider the push pull network, assume that assumption (A1) holds, and use in Case 1 the pull priority policy, and
in Case 2 the affine threshold policy. Then the fluid model is stable.

This theorem will be used to show positive Harris recurrence in the next section. It also immediately leads to the following
corollary, which describes the fluid scale behavior of the push pull network:

Corollary 1. Consider the push pull network with some fixed initial queue lengths, Q (0), under the assumptions of Theorem 1.
Then almost surely Y (nt)/n, D(nt)/n will converge as n → ∞ u.o.c. to a fluid limit Ȳ (t) = (Q̄ (t), T̄ (t)), D̄(t) which satisfies:
Q̄i(t) = 0, T̄i,j(t) = θi,jt, D̄i,j(t) = νit.

The proof of Theorem 1 is bymeans of a Lyapounov function, f . As in [20], we shall make use of the following elementary
Lemma 1. Recall that Ti,j(t) are Lipschitz with constant 1. It then follows that T̄i,j, and also Q̄i(t), are Lipschitz, for every fluid
solution. Hence they are absolutely continuous with derivative defined almost everywhere. We say that t is a regular point
of a fluid solution if the derivatives of Ȳ exist at t .

Lemma 1. Let f be an absolutely continuous nonnegative function, and let ḟ denote its derivative whenever it exists.
(i) If f (t) = 0 and ḟ (t) exists, then ḟ (t) = 0.
(ii) Assume that for some ε > 0 at regular points t > 0, whenever f (t) > 0 then ḟ (t) ≤ −ε. Then f (t) = 0 for all t ≥ f (0)/ε.
Furthermore, f (·) is non increasing and hence once it reaches 0 it stays there forever.

Proof of Theorem 1. Case 1: Define f (t) = Q̄1(t) + Q̄2(t). Clearly f (t) ≥ 0 and f (t) = 0 if and only if Q̄ (t) = 0. Also, if
|Q̄ (0)| = 1 then f (0) is bounded (by B = 1). We show that f satisfies the conditions of Lemma 1, for some ε, and hence
f (t) = 0 for t > f (0)/ε, and so if |Q̄ (0)| = 1, Q̄ (t) = 0 for t ≥ B/ε which proves stability of the fluid model.
Define ε = min{µ1−λ1, µ2−λ2}. The rate parameters of Case 1 ensure that ε > 0. We bound ḟ (t) by−ε for all regular

time points t at which f (t) > 0. Note that at any regular time point:

˙̄Q i = λi ˙̄T i,1 − µi ˙̄T i,2. (7)

We now analyze all possible values of Q̄i(t):
• Assume Q̄1(t), Q̄2(t) > 0:

By (5), ˙̄T 1,1 = ˙̄T 3,1 = 0 and thus by (4), ˙̄T 1,2 = ˙̄T 2,2 = 1. As a consequence, ˙̄Q i(t) = −µi and,

ḟ = −(µ1 + µ2) ≤ −ε.

• Assume Q̄1(t) > 0, Q̄2(t) = 0:
By (5) ˙̄T 2,1 = 0 and thus by (4), ˙̄T 1,2 = 1. As a consequence,

ḟ = λ1 ˙̄T 1,1 − µ1 − µ2 ˙̄T 2,2 = λ1 − µ1 − (λ1 + µ2) ˙̄T 2,2 ≤ −(µ1 − λ1) ≤ −ε.

• Assume Q̄1(t) = 0, Q̄2(t) > 0:
Similarly to the previous argument,

ḟ ≤ −(µ2 − λ2) ≤ −ε.

This completes the proof for Case 1.
Case 2: We use the same technique as in Case 1. First we choose positive constants, d, h and g as follows:

d <
λ1

λ2
,
λ2

λ1
, h < d,

1
κ1
,
1
κ2
, g >

λ1

λ2
,
λ2

λ1
,

√
κ1

κ2
,

√
κ2

κ1
.

Now our Lyapounov function is:

f (Q̄1(t), Q̄2(t)) =



η1η2(dQ̄1(t)− Q̄2(t)) if Q̄2(t) ≤ hQ̄1(t),

η1η
−1
2 (gQ̄1(t)− Q̄2(t)) if hQ̄1(t) < Q̄2(t) ≤

√
κ1

κ2
Q̄1(t),

η−11 η
−1
2 (gQ̄2(t)− Q̄1(t)) if hQ̄2(t) < Q̄1(t) <

√
κ2

κ1
Q̄2(t),

η−11 η2(dQ̄2(t)− Q̄1(t)) if Q̄1(t) ≤ hQ̄2(t).
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Fig. 3. Illustration of the Lyapunov function for the inherently unstable network (Case 2). Arrows point in the drift directions.

With,

η1 =

√
√
κ1g −

√
κ2

√
κ2g −

√
κ1
> 0 and η2 =

√
g − h
d− h

> 0.

The Lyapunov function is illustrated in Fig. 3. Again, it is easily seen that f (t) ≥ 0 and f (t) = 0 if and only if Q̄ (t) = 0, and if
|Q̄ (0)| = 1 then f (0) is bounded by some finite value B. Furthermore, it is straightforward to see that f is continuous in the
values of Q̄1(t), Q̄2(t). We now bound ḟ (t) for all regular time points t at which f (t) > 0, by analyzing all possible values of
Q̄i(t). We again use the dynamics (7):

• Assume 1
κ2
Q̄1(t) < Q̄2(t) ≤

√
κ1
κ2
Q̄1(t):

Then f (t) = η1η−12 (gQ̄1(t)− Q̄2(t)) and by (6) we have that
˙̄T 1,1 = ˙̄T 2,1 = 0 and thus ˙̄T 1,2 = ˙̄T 2,2 = 1. Hence by (7):

ḟ = −η1η−12 (gµ1 − µ2) < 0.

• Assume 0 < Q̄2(t) ≤ 1
κ2
Q̄1(t):

By (6) we have that ˙̄T 1,1 = ˙̄T 1,2 = 0 and thus ˙̄T 2,1 = ˙̄T 2,2 = 1. Now look at two cases: If (hQ̄1(t) ≤ Q̄2(t)) then
f (t) = η1η−12 (gQ̄1(t)− Q̄2(t)) and by (7):

ḟ = −η1η−12 (λ2 − µ2) < 0.

Alternatively, if Q̄2(t) < hQ̄1(t) then f (t) = η1η2(dQ̄1(t)− Q̄2(t)) and:

ḟ = −η1η2(λ2 − µ2) < 0.

• Assume Q̄1(t) > 0, Q̄2(t) = 0:
By (6) we have that ˙̄T 1,2 = 0 and thus ˙̄T 2,1 = 1. Note that we can not use (6) to explicitly obtain ˙̄T 1,1 and ˙̄T 2,2. In this

region, f (t) = η1η2(dQ̄1(t)− Q̄2(t)) and thus by (7):

ḟ = η1η2(dλ1 ˙̄T 1,1 − (λ2 − µ2 ˙̄T 2,2))

= η1η2(dλ1 ˙̄T 1,1 − (λ2( ˙̄T 1,1 + ˙̄T 2,2)− µ2 ˙̄T 2,2))

= −η1η2((λ2 − dλ1) ˙̄T 1,1 + (λ2 − µ2) ˙̄T 2,2)
≤ −η1η2min{λ2 − dλ1, λ2 − µ2}
< 0.
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The remaining cases of Q̄1(t) <
√
κ2
κ1
Q̄2(t) are symmetric and yield similar bounds. All the bounds above are negative

constants, and we choose−ε as their maximum. This completes the proof. �

Remark. So far in this section we assumed that the nth network starts with queue lengths Q n(0), and that all the jobs in
the network had no previous processing, so that the Si,j(t) are counting processes, with intervals ξi,j which have long term
rates as specified in assumption (A1). A more general model assumes that at time 0 the head of the line job in each queue
or infinite supply has received some processing, and let ξ̃i,j be the residual processing time of this first job. Then the first
interval is a residual processing time with a different distribution from the other ξ `i,j, ` > 1. In that case Si,j(t) are delayed
counting processes. We now associate with the nth network an initial state consisting of Q ni (0), ξ̃

n
i,j. All the results of this

section remain valid and unchanged as long as we assume that ξ̃ ni,j/n→ 0 a.s. (see [21]).

5. Positive Harris recurrence

In this sectionwe add the set of Assumptions (A2) to Assumption (A1), and use the fluid stability results from the previous
section to show that the push pull network under our policies can be described by a positive Harris recurrent Markov chain.
To do so we adapt the framework developed by Dai [11], see also [22].
We begin by defining the network state process. Denote byUi(t), Vi(t), i = 1, 2 the residual processing times of the head

of the line activities which are in process or preempted at the current time t . Ui(t) is for the pull activity of type i and Vi(t)
is for the push activity of type i. Now denote the network state process by X(t) = (Q (t),U(t), V (t)).
The state space is S = Z2

+
× R2

+
× R2

+
, and |X(t)| is the sum of the components of X(t). Since the evolution of X(t)

between arrivals and departures is deterministic, X(t) is piecewise deterministic, and it is not difficult to show that X(t) is
a piecewise deterministic strong Markov process (c.f. [23]):

Proposition 1. Under Assumptions (A1), (A2a), X = {X(t), t ≥ 0} is a strong Markov process with state space S.

Let P t(x, ·) be the transition probability of X . That is for x ∈ S, B ∈ B(S),
P t(x, B) ≡ Px{X(t) ∈ B} ≡ P{X(t) ∈ B | X(0) = x}.

A nonzero measure π on (S,B(S)) is invariant for X if π is σ -finite, and for each t ≥ 0,

π(B) =
∫

S
P t(x, B) π(dx), B ∈ B(S).

Let τA = inf{t ≥ 0 : X(t) ∈ A}. We say that X is Harris recurrent if there exists some σ -finite measure ν on (S,B(S)), such
that for all A ∈ B(S) with ν(A) > 0 we have Px(τA < ∞) = 1 for all x ∈ S. If X is Harris recurrent then an essentially
(up to a positive scalar multiplier) unique invariant measure π exists. When π is finite (in which case we normalize it to
a probability measure) we say that X is positive Harris recurrent. Positive Harris recurrence is a common notion of stability
since it implies certain ergodicity properties. For example, given f : S 7→ R+, denote π(f ) =

∫
S f (x) π(dx) whenever the

integral makes sense. Then if |π(f )| <∞:

lim
t→∞

1
t

∫ t

0
f (X(s))ds = π(f ) Px a.s. for each x ∈ S. (8)

Ergodicity of the process X is a stronger property: A positive Harris recurrent process X(t) is ergodic if P t(x, ·) converges to
π in total variation norm:

lim
t→∞

sup
B∈B(S)

|P t(x, B)− π(B)| = 0 for all x ∈ S.

To establish positive Harris recurrence or ergodicity of X(t), we need some further concepts: Let ν be a nontrivial measure
on (S,B(S)). A non-empty set A is said to be petite with respect to ν if there exists a probability distribution a on (0,∞)
such that for all x ∈ A∫

∞

0
P t(x, B)a(dt) ≥ ν(B), for all B ∈ B(S).

Petiteness of Amay be interpreted as the property that all sets B are ‘‘equally accessible’’ from any x ∈ A. If for some closed
set A, the recurrence time τA satisfies Px(τA <∞) = 1 and A is petite then X(t) is Harris recurrent (see Theorem 4.1 in [22]).
A non-empty set A is said to be smallwith respect to ν if there exists a fixed n such that for all x ∈ A:
Pn(x, B) ≥ ν(B), for all B ∈ B(S).

A non-empty set A is said to be uniformly small with respect to ν if this holds for all n ∈ [s1, s2] for some s1 < s2. If X(t) is
positive Harris recurrent and if for some closed set A the recurrence time τA satisfies Px(τA < ∞) = 1 and A is uniformly
small then X(t) is ergodic (see Theorem 4.3 in [22]).
Formore onMarkovprocesses, positiveHarris recurrence andpetite or small sets, see [24] for an introduction anddiscrete

time results, and [25,26] for continuous time results. In the context of queueing networks the lecture notes of Bramson [22]
give an excellent summary.
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We are now in a position to rigorously define Assumption (A2b′):

(A2b′) A = {x : |x| ≤ m} is petite for anym > 0.

Our main result in this paper is:

Theorem 2. Under Assumptions (A1), (A2a) and (A2b′), the network state process X is positive Harris recurrent for Case 1 under
the pull priority policy and for Case 2 under an affine threshold policy. Furthermore, for Case 1 we may substitute
Assumptions (A2b′) with (A2b), which implies in that case that the process X is ergodic.

Proof. The proof uses the framework of Dai [11]. Themain theorem in that paper (Theorem 4.2) states that if the fluidmodel
of a multi-class queueing network (with exogenous arrival streams) is stable then the associated Markov process is positive
Harris recurrent. However, our model does not fall into that scope and hence we must adapt the proof.
The following discussion outlines the adaptation. Dai shows that positive Harris recurrence of the network state process

follows directly from two statements:
(i) Convergence of a fluid scaled process scaled by its initial state: There exists δ > 0 such that

lim
|x|→∞

1
|x|
Ex|X(δ|x|)| = 0.

(ii) Petiteness of closed bounded sets as in our Assumption (A2b′).
The arguments of Dai that statements (i) and (ii) imply positive Harris recurrence are valid also for our push pull network,

and so to prove the theorem we need to show that (i) and (ii) hold.
The main result of Dai is to show that stability of the fluid model, as defined in the previous Section 4, implies (i). The

proof that fluid stability implies (i) needs no changes in our case. Hence, under Assumptions (A1) and (A2a), our Theorem 1,
in which we have proved stability of the fluid model, implies (i) for the push pull network.
Hence, if we make Assumption (A2b′), the positive Harris recurrence of the push pull network follows.
The technical Assumption (ii), that all closed bounded sets are petite is awkward, as it is difficult to check. Thus it is

useful instead of Assumption (A2b′) to find a sufficient condition which is easier to check. Dai’s paper asserts that for multi-
class queueing networks with an exogenous input stream the assumption (A2b), that inter-arrival times have a spread out
distribution with unbounded support, implies (ii). His proof follows directly from the earlier work of Meyn and Down [27],
who proved the same result for generalized Jackson networks. This needs to be extended to the case of an infinite supply of
work. The difference is that with an infinite supply of work the departure process from an infinite virtual queue is in general
not independent of the state of the other queues. Guo and Zhang [6] have adapted Meyn and Down’s ideas to a reentrant
line with an infinite supply of work where the policy is to give lowest priority to the activity with the infinite supply.
The following Lemma 2 extends the results of Guo and Zhang [6], and shows that in Case 1, under pull priority, the

Assumption (A2b) implies (A2b′), and hence positive Harris recurrence. In fact it is shown in Lemma 2 that Assumption
(A2b) implies that all closed bounded sets A = {x : |x| ≤ m} are uniformly small. This implies that under (A2b) X is not only
positive Harris recurrent, but is actually ergodic (see Theorem 4.3 in [22]). �

We note that so far we have not been able to prove the equivalent of Lemma 2 for the affine threshold policies,
nevertheless we believe it to be true. This would imply that assumption (A2b) can replace assumptions (A2b′) also for
case 2.

5.1. Uniformly small property of bounded sets under pull priority policy

In this section we show that for pull priority policies, if the push activities have distributions which are spread out with
unbounded support, then all closed and bounded sets of states are uniformly small. We prove this result not just for the
push pull network but for a wider class of multi-class queueing network with infinite virtual queues.
We consider a multi-class queueing network with nodes k ∈ K = {1, . . . , K}, where node k serves one or more classes,

and has one class which has an infinite virtual queue. There are no exogenous arrivals. We assume that routing of jobs
between classes is deterministic, and processing times of jobs are independent, with those of each class being identically
distributed. For the j job produced by the IVQ class of node k, we denote by ξk(j) its first step processing time at node k, and
by ζkk′(j) its subsequent processing time along the route, at node k′. Note that because routing is deterministic all the ζkk′(j)
are independent.
Service to each class (push and pull) is head of the line preemptive resume (HL). For a given policy the state of the network

x ∈ S consists of the queue lengths, the residual processing times of the head of the line job in each class, and some additional
information on jobs in the network, which is needed by the policy (such as service completion times along the route for each
of the jobs currently in the network), so that under this policy the state of the network at time t , X(t), is a Markov process.
We define a norm |x| to be the sum of the queue lengths and the residual processing times of all the classes and denote the
Borel sets of states byB(S).
A pull priority non-idling policy is a policy which keeps each node busy at all times, and which works on the IVQ class of

each node only when all other queues at that node are empty.
A weak pull priority non-idling policy is a policy which keeps each node busy at all times, and which is processing some

jobs from a non-IVQ class at all times at which not all of them are empty.
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Lemma 2. Consider a multi-class network with IVQs as above, under weak pull priority non-idling policy. Assume that the
distributions of ξk(1), k ∈ K have unbounded support and are spread out (Assumption A2b ). Then every closed bounded set of
states A = {x : |x| ≤ m} is uniformly small.

Proof. Our proof is patterned on the proof of Proposition 4.7 in the Lecture Notes of Bramson [22].
Let Vk denote the total amount of processing on node k which is needed to process all the jobs initially in the network.

The initial state x of the network includes residual processing times with total duration ≤ m and up to m jobs in the
various queues.We index previous jobswhichwere generated by IVQ k (including the residual job) as 0,−1, . . . ,−m. Then:
Vk ≤ Ṽk = m+

∑
k′∈K

∑m
j=0 ζk′k(−j). Note that Ṽk are independent. We can findM, ε1 > 0 such that P(Ṽk ≤ M) > ε1.

By the spread out assumption, for each k there exists Lk0 such that
∑Lk0
j=1 ξk(j) has a continuous component. It follows that

there exists L̃k, δk > 0 and some interval of length M + 3 such that Ξk(L̃k) =
∑L̃k
j=1 ξk(j) satisfies: P(Ξk(L̃k) ∈ [t1, t2]) >

δk(t2−t1) for all [t1, t2] contained in the interval. Let L = max L̃k, and defineWk(L) = Ξk(L)+
∑
k′∈K

∑L
j=1 ζk′k(j). ThenWk(L)

is at least as spread out asΞk(L). Hence, there exist some ak ≥ M and an ε2 > 0 such that P(Wk(L)) ∈ [t1, t2] > ε2(t2 − t1),
for all [t1, t2] ⊆ [ak −M, ak + 3].
Let N =

∑
k=∈K ak + K(M + 3). By the assumption of unbounded support, there exist bk > N and ε3 such that

P(ξk(L+ 1) ∈ [bk, bk + 1]) > ε3.
Define now the events:

G1,k = {ω : Vk ≤ M},
G2,k = {ω : Vk +Wk ∈ [ak, ak + 3]},
G3,k(t1,k, t2,k) = {ω : Vk +Wk + ξk(L+ 1) ∈ [t1,k, t2,k]},

G1 =
⋂
k∈K

G1,k, G2 =
⋂
k∈K

G2,k, G3(t1, t2) =
⋂
k∈K

G3,k(t1,k, t2,k),

G = G1 ∩ G2 ∩ G3(t1, t2)

where ti = (ti,k, k ∈ K). Also define the intervals Ik = [ak + bk + 1, ak + bk + 3].
We now show, for t1, t2 such that [t1,k, t2,k] ⊆ Ik, k ∈ K:

P(G) ≥ (ε1ε2ε3)K
∏
k∈K

(t2,k − t1,k).

Let G̃1,k = {ω : Ṽk ≤ M}, then G1,k ⊇ G̃1,k. We calculate:

P(G̃1,k ∩ G2,k ∩ G3,k(t1,k, t2,k)) =
∫ bk+1

bk

∫ M

0
P(Wk(L) ∈ [t1,k − r − s, t2,k − r − s])P(Ṽk ∈ dr)P(ξk(L+ 1) ∈ ds)

> ε1ε2ε3(t2,k − t1,k)

where we use the independence of Vk,Wk(L), ξk(L+ 1) to write the integral, and we use:

[t1,k − r − s, t2,k − r − s] ⊆ [ak + bk + 1− r − s, ak + bk + 3− r − s]
⊆ [ak − r, ak + 3− r] ⊆ [ak −M, ak + 3]

to obtain the inequality. Furthermore, (Ṽk,Wk(L), ξk(L+ 1)) for k ∈ K are independent, and so:

P(G) ≥ P

(⋂
k∈K

Ṽk ∩ G2 ∩ G3(t1, t2)

)
=

∏
k∈K

P(G̃1,k ∩ G2,k ∩ G3,k(t1,k, t2,k)).

Let J(k, j) denote the jth job generated by the kth IVQ. We now argue that conditional on G, at the time N , all the initial jobs
J(k, j), j ≤ 0 and all the jobs J(k, j)with 1 ≤ j ≤ Lwill have completed all of their processing at all the nodes, and each node
kwill be processing the first step of J(k, L+ 1), at the IVQ class. First we note that because ξk(L+ 1) > bk > N , all the nodes
will work only on the first jobs J(k, j), j ≤ L somewhere along their routes, or on the first processing step of J(k, L+ 1) until
at least the time N . Let T be the earliest time at which all the jobs J(k, j), j ≤ L have completed their whole processing route.
Assume that at some time t all the nodes k are processing the first step of J(k, L+ 1) simultaneously. Because we are using
a weak pull priority policy, all the queues which are not IVQs must be empty at t , and also, because we use HL policy, each
of the first operations of the jobs J(k, L) must be completed. Hence t ≥ T . Therefore at all t < T at least one node k is not
working on the first operation of J(k, L+ 1). Because our policy is non idling this implies that for all t < T at least one node
k is working on some job J(k′, j), j ≤ L, k′ ∈ K . But this implies that T <

∑
k∈K(Vk +Wk(L)) < N .

We have seen that Px(G) ≥ (ε1ε2ε3)K
∏
k∈K (t2,k−t1,k) for every |x| ≤ m, and [t1,k, t1,k] ⊆ Ik. Take any time s ∈ [N,N+1].

The state at that time is X(s), which includes the vector Z(s) of queue lengths of the non-IVQ classes, and Vk(s)which is the
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residual service time of the HL IVQ job of node k. Conditional on G, we have seen that Z(s) = 0 and Vk(s) ∈ [t1,k− s, t2,k− s].
Hence:

PxZ(s) = 0, Vk(s) ∈ [t1,k − s, t2,k − s] ≥ (ε1ε2ε3)K
∏
k∈K

(t2,k − t1,k).

Consider now the measure ν which is concentrated on states Z(s) = 0 and Vk(s) in the rectangle:∏
k∈K

[ak + bk + 1− N, ak + bk + 2− N] ⊆
∏
k∈K

[ak + bk + 1− s, ak + bk + 3− s]

and is proportional to K -dimensional Lebesguemeasure on this rectangle, with proportionality constant (ε1ε2ε3)K . Then for
all s ∈ [N,N + 1] the set A = {|x| ≤ m} is small with respect to the measure ν. �

Unfortunately this proof does not work for our affine threshold policies, since they require both servers to push when
Q1 = 0,Q2 > β1 or when Q2 = 0,Q1 > β2.

6. Diffusion scale analysis

In this section we add the assumption on existence of second moments, (A3), to the Assumptions (A1, A2), and consider
the behavior of the push pull network under diffusion scaling. We find that the queues are 0 on the diffusion scale, and the
departure processes, Di,j(t) converge under diffusion scaling to Brownian motions. We calculate the asymptotic variance
parameters of these, including the covariances between the departure streams.
We now define diffusion scalings for n = 1, 2, . . .. First denote

S̄(t) = lim
n→∞

S̄n(t) = lim
n→∞

S(nt)
n

.

By Assumption (A1), the limit exists a.s. u.o.c. and S̄i,1(t) = λit and S̄i,2(t) = µit . Further, use the fluid limit processes of
Section 4, Corollary 1. The diffusion scalings are:

Ŝni,j(t) =
Si,j(nt)− S̄i,j(nt)

√
n

, T̂ ni,j(t) =
Ti,j(nt)− T̄i,j(nt)

√
n

,

D̂ni,j(t) =
Di,j(nt)− D̄i,j(nt)

√
n

, Q̂ ni,j(t) =
Qi,j(nt)
√
n
.

(9)

Note that in this analysis we use a fixed Q (0), which does not change with n. Define the 10 dimensional diffusion scaled
process: X̂n(t) = (D̂n(t), T̂ n(t), Q̂ n(t)).
The following theorem describes the diffusion limit for our model.

Theorem 3. Consider the push pull network, under Assumptions (A1–A3), for Case 1 under pull priority policy, and for
Case 2 under an affine threshold policy. Then as n → ∞, X̂n ⇒ X̂ , where X̂(t) is a 10 dimensional driftless Brownian motion.
Furthermore,

D̂ni,1(t)− D̂
n
i,2(t) = Q̂

n
i (t)⇒ 0, (10)

T̂ n1,1(t)+ T̂
n
2,2(t) = T̂

n
2,1(t)+ T̂

n
1,2(t) = 0, (11)

and the variances and covariances of the limiting Brownian motions are given by:

Var(D̂1,2(1)) =
λ1µ1

(λ1λ2 − µ1µ2)3
× [λ1λ2µ1µ2(c22,1 + c

2
2,2)(λ1 − µ1)+ (λ

2
1λ
2
2c
2
1,2 + µ

2
1µ
2
2c
2
1,1)(λ2 − µ2)], (12)

Cov(D̂1,2(1), D̂2,2(1)) = −
λ1λ2µ1µ2

(λ1λ2 − µ1µ2)3
× [(λ1λ2c22,2 + µ1µ2c

2
2,1)(λ1 − µ1)

+ (λ1λ2c21,2 + µ1µ2c
2
1,1)(λ2 − µ2)], (13)

with a symmetric expression for Var(D̂2,2(1)). Similar expressions for variances and covariances of T̂1,2(·), T̂2,2(·) may be read
off from (19).

Proof. The equalities (10) and (11) follow immediately from (2) and (1). The convergence to 0 in (10) follows from
Theorem 2, since Q (t) has a limiting stationary distribution, therefore Q (nt) converges to this limiting distribution as
n→∞, and dividing by

√
n implies converges to 0 in probability and therefore also weakly.

Also, by Corollary 1, T̄ ni,j(t)→ T̄i,j(t) = θi,jt and D̄ni,j(t)→ D̄i,j(t) = νit u.o.c as n→∞.
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The rest of the proof and the calculations are straightforward:

D̂ni,2(t) =
Di,2(nt)− D̄i,2(nt)

√
n

=
Si,2(nT̄ ni,2(t))− S̄i,2(nT̄

n
i,2(t))

√
n

+
S̄i,2(nT̄ ni,2(t))
√
n

−
D̄i,2(nt)
√
n

= Ŝni,2(T̄
n
i,2(t))+ µi

Ti,2(nt)− T̄i,2(nt)
√
n

+ µi
T̄i,2(nt)
√
n
−
D̄i,2(nt)
√
n

= Ŝni,2(T̄
n
i,2(t))+ µiT̂

n
i,2(t)+ θi,2µi

√
nt − θi,2µi

√
nt

= Ŝni,2(T̄
n
i,2(t))+ µiT̂

n
i,2(t),

where all we did is to add and subtract quantities, use the definition (9), and use S̄i,2(t) = µit (by Assumption (A1), and
T̄i,j(t) = θi,jt, D̄i,j(t) = νit = µiθi,2t (from Corollary 1).
Define P̂ni,j(t) = Ŝ

n
i,j(T̄

n
i,j(t)), then summarizing the above and also using similar calculations for (15)–(17) we obtain:

D̂ni,2(t) = P̂
n
i,2(t)+ µiT̂

n
i,2(t), (14)

D̂ni,1(t) = P̂
n
i,1(t)+ λiT̂

n
i,1(t), (15)

Q̂ ni (t) = D̂
n
i,1(t)− D̂

n
i,2(t) (16)

T̂ n1,1(t) = −T̂
n
2,2(t), T̂ n2,1(t) = −T̂

n
1,2(t). (17)

Now using (14)–(17):
D̂n1,2(t)
D̂n2,2(t)
T̂ n1,2(t)
T̂ n2,2(t)

 = A


P̂n1,1(t)
P̂n1,2(t)
P̂n2,1(t)
P̂n2,2(t)

+ B
[
Q̂ n1 (t)
Q̂ n2 (t)

]
, (18)

where

A =
1

λ1λ2 − µ1µ2

−µ1µ2 λ1λ2 λ1µ1 −λ1µ1
λ2µ2 −λ2µ2 −µ1µ2 λ1λ2
−µ2 µ2 λ1 −λ1
λ2 −λ2 −µ1 µ1

 ,
and

B =
1

λ1λ2 − µ1µ2

 µ1µ2 −λ1µ1
−λ2µ2 µ1µ2
µ2 −λ1
−λ2 µ1

 .
By the functional central limit theorem for renewal processes and the continuous mapping theorem (c.f. [28]) we have
P̂n(t)⇒ P̂(t)where P̂(t) is a 4 dimensional driftless Brownian motion with a diagonal covariance matrixΛ, having entries
Var(P̂i,1(1)) = λiθi,1c2i,1 and Var(P̂i,2(1)) = µiθi,2c

2
i,2.

Incorporating the above with the weak convergence of Q̂ n to 0, we have that (D̂n1,2(t), D̂
n
2,2(t), T̂

n
1,2(t), T̂

n
2,2(t)) converges

to a driftless Brownian motion process with covariance matrix:

0 = A3A′. � (19)

The above theorem gives us the asymptotic variance rate of departures:

V̄i = lim
t→∞

Var(Di,2(t))
t

= Var(D̂i,2(1)).

The following three subsections highlight some surprising facts about the diffusion scale behavior of the push pull
network and the asymptotic variance rate of departures.

6.1. Insensitivity to the policy

The proof of Theorem 3 does not depend on the exact policy which was used. All that is needed is Q̂ n(t) ⇒ 0 and
T̄ n(t) → θ t u.o.c. In particular, the calculations for Case 1 and Case 2 are the same. In fact, any policy which achieves full
utilization and which achieves Q̂ n(t)⇒ 0 will automatically satisfy the convergence in Corollary 1.
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We reach the surprising conclusion that the diffusion scale departure processes D̂(t) do not depend on the policy, so long
as it is fully utilizing and stabilizing. In Section 7 we encounter the same phenomena for general infinite supply re-entrant
lines.

6.2. Departures variability increases with balancing

When the system approached complete balance (λi ≈ µi, i = 1, 2) it was shown in [1] that for exponential processing
times the network becomes increasingly congested in both the inherently stable and inherently unstable case. This seems to
be the case also for general processing times: We confirm this in Section 6.5 for exponential pull and general push activities
in the inherently stable case, and it is also observed in simulations for general processing times.
It turns out that this congestion in the queues is accompanied by increasing variance of the diffusion scaled departure

processes. For illustration let us evaluate (12) for the symmetric case: c2i = c
2, µi = 1, λi = λ. In this case the asymptotic

variance rate of departures is:

V̄1 = V̄2 =
λ

λ+ 1

(
λ2 + 1
λ2 − 1

)2
.

The departure rate in this case is: ν1 = ν2 = λ/(λ + 1). So the limiting index of dispersion of counts (V̄i,j/νi) grows to
infinity as λ→ µ = 1. Thus the departures of the push pull network becomemore variable in the sense of limiting index of
dispersion of counts as the system becomes more congested. This behavior is unusual. It is different from the behavior of a
stable GI/G/1 queue inwhich the limiting index of dispersion of counts is constant for any congestion level. It is also different
from the BRAVO effect observed in a finite buffer single server queue [19], where it was seen that balancing reduced the
asymptotic variance of departures.

6.3. Variance of combined departures

Using (18) or using (12), (13) one can obtain after simple manipulation the asymptotic variance rate of the combined
departure process, D1,2(t)+ D2,2(t). We have:

Var(D̂1,2(1)+ D̂2,2(1)) = ν13
[
σ 21,1

(
µ2

µ1

)2 (
λ2 − µ1

λ2 − µ2

)2
+ σ 21,2

(
λ2

λ1

)2 (
λ1 − µ2

λ2 − µ2

)2]

+ ν2
3

[
σ 22,1

(
µ1

µ2

)2 (
λ1 − µ2

λ1 − µ1

)2
+ σ 22,2

(
λ1

λ2

)2 (
λ2 − µ1

λ1 − µ1

)2]
where σi,j is the variance of the (i, j) processing time.
For the symmetric case, with λ1 = λ2 = λ, µ1 = µ2 = µ, and with ν1 = ν2 = ν, the result is quite surprising:

Var(D̂1,2(1)+ D̂2,2(1)) = ν3(σ 21,1 + σ
2
1,2 + σ

2
2,1 + σ

2
2,2)

which is the sum of the variances of two renewal processes: The process of producing jobs of type 1, with the sum of the
processing times of the two activities of type 1, and the process of producing jobs of type 2, with the sum of the processing
times of the two activities of type 2.

6.4. Negative covariance of departures

It is evident from (13) that Cov(D̂1(t), D̂2(t)) < 0. Also, when all activity processing times have the same squared
coefficient of variation c2, then both the variance and the covariance in (12) and (13) are linear in c2. In Fig. 4 we illustrate
the negative correlation between the departure processes of our network. We plot as a function of λ:

ρλ =
Cov(D̂1(1), D̂2(1))√
Var(D̂1(1))Var(D̂2(1))

, (20)

again for symmetric push pull networks with parameters c2i,j = c
2, µi = 1, λi = λ.

Our analysis applies to all λ 6= 1. When λ = 1 we have a completely balanced network and with our policies, under
diffusion scaling the queues do not converge to 0, so the analysis in this paper does not apply.
Note that for 1/2 < λ < 2, i.e when the ratio of processing times for each type of job on the two servers is not too

far from 1, we get −1 < ρλ < −0.8, so the negative correlation is very high. Most surprisingly, as λ → 1 the correlation
approaches−1, and we are close to complete resource pooling [29].
When λ is very small or very large the correlation approaches zero. This is intuitively clear, since each server is now

spending almost all of its time on just one type of job, and so the fluctuations in Di,2 depend mostly on the long activity
(push if µ � λ, pull if λ � µ), but this means that one server will essentially produce the departure stream of jobs of
type 1 while the other server will produce the departure stream of jobs of type 2. Hence the two departure processes will
be almost independent.
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Fig. 4. The correlation between departures of a symmetric push pull network.

6.5. Alternative derivation of asymptotic variance rate

We now present another derivation of (12) under some more restrictive assumptions. It illustrates an alternative
approach and provides some additional insights. We assume that the network is inherently stable (Case 1), and that the
push activity processing durations are exponentially distributed. Our derivation uses a renewal-reward approach. In this
case the behavior of the network is like two randomly alternating M/G/1 single server queues and at every time that the
system empties there is a regeneration epoch. We get first1:

Proposition 2. Consider the inherently stable push pull network with preemptive pull priority. Assume exponential processing
times for the push activities and general processing times for the pull activities with Laplace-Stieltjes transforms G∗1(s),G

∗

2(s).
Further let ρ1 =

λ1
µ1
, ρ2 =

λ2
µ2
.

(i)

E [zQ11 , z
Q2
2 ] =

(
1+

ρ1

1− ρ1
+

ρ2

1− ρ2

)−1
×

(
G∗1(λ1(1− z1))(1− z1)
G∗1(λ1(1− z1))− z1

+
G∗2(λ2(1− z2))(1− z2)
G∗2(λ2(1− z2))− z2

− 1
)

(ii)

E [Qi] = νi
1
µi

˙2+ ρi(c2i,2 − 1)

2(1− ρi)
.

Proof. After a finite duration, the system enters a regime in which at least one of the two queues is empty. Denote by
P0 the steady state probability that the network is empty and by Pi the probability of having a positive number of jobs in
queue i. Using renewal reward considerations: Pi = λiE [Bi]/(1+ λ1E [B1] + λ2E [B2]), where Bi is a busy period duration
of an M/G/1 queue with arrival rate λi and service mean µ−1i . Now the condition on the queue that is being served to
obtain,

E [zQ11 , z
Q2
2 ] = P0 + P1E [z

Q̃1 |Q̃1 > 0] + P2E [zQ̃2 |Q̃2 > 0],

where Q̃i is distributed as the steady state number of jobs in an M/G/1 system with arrival rate λi and service mean µ−1i .
Application of the P–K formula yields (i). To obtain (ii) either directly use (i) or observe that it is an application of Littles law
and the P–K formula for the mean sojourn time. �

The calculation of the asymptotic variance rate of departures is based on an embedding of the departure process Di,2(t)
in renewal-reward process where the rewards are counts of job type i departures.
We consider type 1 departures, type 2 is analogous. Let {(Xn, Yn), n = 1, 2, . . .} denote an i.i.d sequencewhere Xn denotes

the times between returns to an empty system (both servers areworking on an exponential push) and Yn denotes the number
of jobs processed on activity (1, 2) between successive empty times. Define a renewal reward process C(t):

C(t) =
N(t)−1∑
i=1

Yi where N(t) = sup

{
n :

n∑
k=1

Xk ≤ t

}
.

1 This result is of independent interest and is not needed for the derivation of the asymptotic variance rate.
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Denote by (X, Y ) a generic randomvariable from the sequence {(Xn, Yn)}. IfE [X2],E [Y 2] <∞ then the asymptotic variance
rate of C(t) is computable (c.f. [30]):

lim
t→∞

Var(C(t))
t

=
E [X2]E [Y ]2

E [X]3
− 2

E [XY ]E [Y ]
E [X]2

+
E [Y 2]
E [X]

. (21)

Now C(t) counts the number of departures of type 1 during a time interval [0, τ ]where τ ≤ t is the last regeneration time.
As a result,

lim
t→∞

Var(C(t))
t

= V̄1.

Thus to obtain (12) (for this special M/G pull-priority case) the problem reduces to computation of moments of (X, Y ):
Consider two M/G/1 queues (i = 1, 2) with arrival rates λi and service means µ−1i . Let Bi, Ii and Ni denote random variables
that are distributed as the busy period, idle period and number of customer served during a busy period respectively. Also
denote by χ an indicator random variable for the event of having the first push operation to complete in a cycle to be of type
1. Then we have the following equalities in distribution:

X = Ĩ + χB1 + (1− χ)B2, X2 = Ĩ2 + χ(B21 + 2ĨB1)+ (1− χ)(B
2
2 + 2ĨB2),

Y = χN1, Y 2 = χ2N21 (22)

XY = χ(N1 Ĩ + N1B1).
Evaluation of expectation of the above quantities is based on the first two moments of M/G/1 busy periods and the number
of customer served during a busy period as well as the covariance of the busy period duration and the number of customers
served. All of these quantities are well known (c.f. [31]) and when plugged into (21) we obtain (12) with c2i,1 = 1.

7. Re-entrant lines with infinite supply of work

In this section we consider a re-entrant line with infinite supply of work, and perform the same diffusion scale analysis
as in Section 6. A re-entrant line [32] is a multi-class queueing network with a single deterministic job route. Servers are
k = 1, . . . , K and classes are the ordered processing steps i = 1, . . . , I , partitioned into C1, . . . , CK , with i ∈ Ck if step i is at
server k. We let 1 ∈ C1 and assume that there is an infinite virtual queue of class 1 jobs. We assume independent sequences
of i.i.d. processing times, with expected processing timesmi, processing rates µi = 1/mi, processing time variances σ 2i . We
also assume that the processing time distribution of step 1 is spread out with infinite support, as in (A2b). If server 1, with
the infinite supply of work, is working all the time, and if the network is stable, then the departure rate is:

ν =

(∑
i∈C1

mi

)−1
.

We will assume that server 1 is the single bottleneck in the network, by assuming

ρk = ν
∑
i∈Ck

mi < 1, k 6= 1.

Guo and Zhang [6] considered this infinite supply re-entrant line under, a policy in which class 1 is only served when there
are no other jobs at server 1, and in addition the service to the buffers of all other classes is last buffer first served (LBFS) or
first buffer first served (FBFS). They have shown that the network process is positive Harris recurrent.
As in the previous sections of this paper we use Si(·),Qi(·), Ti(·),Di(·) to denote the service completion counting, queue

length, time allocation anddeparture processes associatedwith class i.We letQ+i (t) =
∑I
j=i+1 Qj(t)denote the total number

of jobs in the network which have completed step i (downstream of i). As before we have:
Di(t) = Si(Ti(t)), Qi(t) = Di−1(t)− Di(t), Di(t) = Q+i (t)+ DI(t).

For any non-idling policy, server 1 will work all the time and we have:∑
i∈C1

Ti(t) = t.

Under non-idling pull priority LBFS or FBFS, or any other non-idling policy for which the network process is positive Harris
recurrent we can perform a fluid scale analysis of the network as in Section 4. Let S̄(·), T̄ (·), D̄(·) denote limiting fluid scaled
processes. Then:

S̄i(t) = µit, T̄i(t) = θit, θi = ν/µi, D̄(t) = S̄(T̄ (t)) = νt.

As in Section 6 we let Ŝn(t), T̂ n(t), D̂n(t), Q̂ n(t) be the diffusion scaled processes defined analogously to (9), from which we
define the 3I − 1 dimensional diffusion scaled process X̂n(t) = (D̂n(t), T̂ n(t), Q̂ n(t)). We then have:

Theorem 4. For the re-entrant line with infinite supply of work, under non-idling pull priority that has a positive Harris recurrent
network process, as n→∞ the process X̂n(t)⇒ X̂(t)where X̂(t) = (D̂(t), T̂ (t), Q̂ (t)) is a 3I−1 dimensional Brownianmotion.
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Furthermore:

Q̂i(t) = 0, D̂i(t) = D̂I(t),
∑
i∈C1

T̂i(t) = 0, (23)

and the variance of the departure process from the line is:

Var(D̂I(1)) =

∑
i∈C1

σ 2i(∑
i∈C1
mi

)3 . (24)

Variances of various T̂i and various covariances can be read from (30).

Proof. Since the network process is positive Harris recurrent we have that Q̂ ni (t) ⇒ 0. From the dynamics of the network
the diffusion scalings satisfy:

D̂ni (t) = Q̂
+
n

i (t)+ D̂nI (t), i = 1, . . . , I, (25)

and therefore D̂ni (t)− D̂
n
I (t)⇒ 0. From the non-idling we have, for the diffusion scaling:∑

i∈C1

T̂ ni (t) = 0 (26)

and therefore:
∑
i∈C1
T̂i(t) = 0.

We now calculate the variance of the limiting diffusion scaled departure process D̂I(t). Using the exact same calculations
as in the proof of Theorem 3 we have:

D̂ni (t) = Ŝ
n
i (T̄

n
i (t))+ µiT̂

n
i (t) i = 1, . . . , I. (27)

Summing (27) over the classes i ∈ C1, and using (26), we obtain:∑
i∈C1

D̂ni (t)
µi
−

∑
i∈C1

P̂ni (t)
µi
= 0, (28)

where as in the proof of Theorem 3, P̂ni (t) = Ŝ
n
i (T̄

n
i (t)). Substituting the Eqs. (25) in (28) and solving for D̂

n
I (t)we obtain:

D̂nI (t) = ν
∑
i∈C1

miP̂ni (t)+
I∑
i=1

biQ̂ ni (t),

where bi are some constants (expressions ofmi).
Now as in Theorem 3, we have P̂ni (t), i = 1, . . . , n converge to independent drift-less Brownian motions with

Var(P̂i(1)) = νσ 2i /m
2
i . At the same time Q̂

n
i (t) ⇒ 0. Hence D̂nI (t) converges weakly to a Brownian motion, The expression

for the variance of D̂I(1), (24), follows.
The diffusion scaled time allocations can be expressed similarly as:

T̂ ni (t) = miν
∑
j∈C1

mjP̂nj (t)−miP̂
n
i (t)+

I∑
i=1

ciQ̂ ni (t), i = 1, . . . , I, (29)

where ci are some constants (expressions ofmi). Let ζ1(t), . . . , ζI(t) be independent standard Brownian motions. Then the
joint distribution of D̂I(t), T̂i(t), i = 1, . . . , I can be obtained from the representation:

D̂I(t) = (ν)3/2
∑
i∈C1

σiζi(t)

T̂i(t) = mi (ν)3/2
∑
j∈C1

σjζj(t)− (ν)1/2σiζi(t), i = 1, . . . , I. �
(30)

Note that if C1 = {1, . . . , I} (the system is re-entrant through a single server) then for pull priority policy each job
undergoes processing from step 1 to step I before the next job is introduced. Hence the departure process is actually a
renewal process with inter-departure times having mean

∑
i∈C1
mi and variance

∑
i∈C1

σ 2i . In this case, the asymptotic
variance rate (24) immediately follows. Theorem 4 shows, surprisingly, that when the departure process is not renewal
(as is the case when there is more then one server) then the asymptotic variance rate of the departures still depends only
on the first server (which is the bottleneck) and is equal to that of the renewal departures case.
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