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Abstract

We present a method for the analysis of queueing output processes that is based on an embedding
of the output process in a renewal-reward process in which the renewal periods are busy cycles and
the rewards represent the numbers of customers served during busy cycles. Our method yields an
approximation for the variance curve that is asymptotically exact as time grows to infinity.

For illustration, we consider the stable M/G/1 queue with an arbitrary, finite variance, distri-
bution for the initial state. We show that under the assumption of a finite third moment for the
service time distribution, this curve converges to a linear asymptote with a slope equal to the arrival
rate and further show that the y-intercept of this asymptote depends only on the variance of the
initial queue level, og, and the traffic intensity, p, and is equal to o — p/(1 — p).

Our result immediately yields an expression for the y-intercept of the stationary case that
depends on the first 3 moments of the service time distribution. This stimulates consideration of
a 35 year old conjecture of D. J. Daley: Among the stationary M/G/1 queues, the M/M/1 is
characterized by having a variance curve of At, where X is the arrival rate. While we leave this
conjecture unproved, we narrow down the class of candidate service time distributions to those
whose y-intercept of the linear asymptote is 0.
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1 Introduction

The theoretical study of queueing output processes has received considerable attention during the 50’s,
60’s and 70’s. Burke’s theorem, [3], stating that the output of a stationary M/M/1 queue is a Poisson
process is probably the first major result of this era. It was followed by several dozens of studies
which analyzed properties of inter-departure times, output counting processes and characterizations of
queueing systems based on their input and output relations. A classic survey is in [5], other useful
resources are [7] and [8].
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One measure of performance that has received considerable attention is the variance of the number of
outputs over time, see [18] for a survey. Evaluation of this variance plays a central role in the analysis
of manufacturing and supply chain settings. Some recent studies have investigated computational
procedures that aim to approximate this quantity for complex queueing systems (cf. [11, 12, 13, 14, 19,
20]). In this paper we propose an alternative approach for this analysis that is based on an embedding
of the output process in a renewal reward process. Our approach may be applied to any regenerative
queueing system and yields an approximation that is asymptotically exact as time grows to infinity.
For illustration, we concentrate on the M/G/1 queue and complement a classic result of Daley [4]. As
a consequence we shed some light on a 35 year old unproved conjecture.

We consider the M/G/1 queue operating under an arbitrary work-conserving non-preemptive service
discipline with arrival rate A and service time distribution G(+). Denote the Laplace-Stieltjes transform
(LST) associated with G(-) by G*(-) and the k’th moment of G(-) by gx. We assume that g3 < co and
p = Ag1 < 1. Further assume that the number of customers in the system at time 0 and the residual
service time of the customer in service, follow an arbitrary distribution with a finite variance, o3, for
the number of customers.

Our main interest is the output counting process, {D(t),t > 0} and in particular its variance curve:
Var(D(t)). It is well known that for the special case of the stationary M/M/1 queue, D(t) is a Poisson
process with rate A and thus Var(D(t)) = At, but in general this need not be the case. It can easily be
shown that,

Var(D(t)) = Xt + o(t), (1)

where o(t) is a function that increases at a slower than linear rate. Thus the asymptotic variance rate
of outputs is A and an immediate approximation for the variance curve is

Var(D(t)) ~ M. 2)

This simple approximation is attractive since it does not depend on the distribution of the initial state
and the relative error, |Var(D(t)) — At|/t, diminishes to 0 as t — oco. Nevertheless, the absolute error,
[Var(D(t))— At|, does not necessarily vanish and in general depends on the initial state. The requirement
that g3 < oo implies that the asymptotic queue length has finite variance and this implies (1), the details
are in Section 3. Some examples with g3 = co in which (1) does not hold are given in [6].

Our contribution is a refinement to the approximation (2) for which the absolute error vanishes as
t — oo. We show that there exists a constant B such that the o(t) term in (1) equals B + o(1) where
o(1) is a function that vanishes as t — oo. We refer to B as the y-intercept and denote the linear
asymptote by, v(t) = At + B. We thus have:

Var(D(t)) = 9(¢t) + o(1). (3)
Our key result is the following simple expression for the y-intercept:

= 2 p
B =0} e (4)

Considering the stationary system as a special case, set 03 = 02, where 02 denotes the steady state
variance of the number of customers in the system. This yields an expression for B that depends on
p and the first 3 moments of G(-). Note that for the stationary M/M/1 queue, 02 = p/(1 — p)? and
thus starting with stationary initial queue level yields B = 0 as expected. It is further evident that all
stationary systems in which 02 = p/(1— p)? yield ¥(t) = At. One such class of systems are those having
a service time distribution whose first moments agree with the exponential distribution.

Daley [4], conjectured the following: The M/M/1 queue is the only stationary M/G/1 queue having
Var(D(t)) = At. While it is known ([10], see also [9]), that an output Poisson process characterizes the



M/M/1 within the class of stationary M/G/1 queues, it is not known if other stationary M/G/1 queues
(other than M/M/1) yield a ”Poisson like” variance curve. Our result implies that if there are any other
such queues (service distributions), then they must have o2 = p/(1 — p)? since they must have B = 0.

Daley posed the above conjecture after finding the following form for the LST of the variance curve
for the stationary system operating under a non-preemptive service policy:

o= [ 32 (85 (- ) )

Here TI(-) is the probability generating function of the stationary number of customers in the system
and I'(s, z) = E [e=*X'2Y], where the random variables X’ and Y are respectively distributed as the
duration of an M/G/1 busy period and the number of customers served during a busy period. T'(s, z)
may be found as the root of smallest modulus of the well known busy period functional equation (cf.
[17], pp. 50):

I(s,2) = 2G" (s + A(1 = T'(s, 2))). (6)

One method for calculating the y-intercept of the stationary case is to apply the so-called final value
theorem to the right hand side term of (5). One may then apply a simple coupling argument, stated
in Section 4 to obtain the y-intercept for an arbitrary initial distribution. In this paper we choose a
different path in order to illustrate a broader method: Embedding the output process in a renewal reward
process: To this end, we analyze a renewal-reward process in which the renewal periods are busy cycles
and the rewards represent the numbers of customers served during busy cycles. In [2], the authors
specify the linear asymptote of a renewal reward process based on some moments and joint moments
of the renewal intervals and the rewards. We utilize their result to obtain the linear asymptote of
Var(D(t)). Note that in principle, our method can be used to find the linear asymptote of the variance
curve of output processes that result from any regenerative queueing process.

The remainder of the paper is organized as follows: In Section 2 we present our method of embedding
D(t) in a renewal reward process. The results are stated in a general context with out specific reference
to the M/G/1 queue. In Section 3 we show the existence of a linear asymptote for the M/G/1 queue.
In Section 4 we derive the y-intercept of the M/G/1 queue. Our proof utilizes our renewal reward
approach along with a simple coupling argument that gives some insight to the result and simplifies
the computations. We also present a corollary: an expression for the limiting value of the covariance
between the number of arrivals and the queue size. In Section 5 we consider the special case of a
stationary M/G/1 queue and discuss Daley’s conjecture.

2 Embedding Departure Counts in a Renewal Reward Process

We now present a framework for obtaining the linear asymptote. The results of this section are stated
in a general setting and do not make specific reference to the M/G/1 queue.

Consider the renewal reward process C(t) in which the renewal periods are busy cycles and the
rewards are the numbers of customers served during busy cycles. This process may also be viewed
as an output process of a modified system in which customers do not leave immediately after service
but rather all customers served during a busy period leave in a single batch once the busy period is
complete. Our assumption is that (as in the M/G/1 queue) Q(¢t) = 0 implies that C(t) = D(t) and as
a result the processes D(t) and C(t) are equal at regeneration epochs and their difference during busy
periods is never more than the number of customers served in a busy period. This relationship is the
key to obtain the linear asymptote o(t) from the linear asymptote of Var(C(t)). The latter is obtained
from the following;:



Theorem 1 (Brown and Solomon 1975, [2]): Consider a sequence of random vectors {(X;,Y;),%
0,1,...} where (X;,Y;), i > 1 are identically distributed. Further assume that X; are spread-out (cf
[1], pp. 186). Denote the moments z; = E [X7], y; = E [Y{], njx = E [XIYF], 2; = E [X]], §; = E [Y{]
and 7, =E [X]Y0 |. Further assume that x3,y2, T2, J2 < c0. Define the renewal process, N(t) and the
renewal reward process, C(t) as follows:

n N(t)—1
N(t):inf{n:ZXk>t}, C(t) = Z Y.
k=1 =0
Then Var(C(t)) = Vet + Be + o(1), where,
2
— x n
Vo = 2:3y’1 _ o +yi
3 x? x1

B = §x%y% o gwsy% + n21y1 3x2y1n11 717%1 Lxoys  ni2

¢ 4 21 3 3 x? 3 x? 2 x? T’

= 2 205 52 ~ ~ = s~
= =0 Tiwoyi | Yi(@2 — 1) +2Tinny1 Y+ 20 + )
Be = Bg-— $31+ i( 1;2 - J£1 )+y2—yf.
1 i

Note that if (X, Yp) is distributed as (X1,Y;) then B = Be. Using the next lemma we relate the
output process D(t) to the renewal reward process C(t).

Lemma 1 Consider a regenerative process {Q(t),t > 0} with regeneration epochs {T1,72,...} and a
process {D(t)} defined on the same probability space such that the sequence {D(7p41) — D(1y),n > 1}
is i.9.d. Denote 7(t) = sup{7,7a,...|mn < t} and assume that C(t) = D(7(t)) w.p. 1. Denote the
limiting life random variable by T = limy_.o(t — 7(t)) and further denote x; = E [(1o — 71)%] and
y1 = E [D(12) — D(11)] and assume that o < 0o and y1 < co.

If there exist constants Vo, Ba,V p, Bp such that

Var(D(t)) = Vpt + Bp +o(1) and Var(C(t)) = Vet + Be + o(1), (7)
then,
(i)Vp=Vec.
(ii) Bp = Be + VpE [r] - % Var(r).
Proof. We compute the variance of D(7(t)) conditioned on 7(¢):

Var(D(7(t)) = E [Var(D(7(t)))|7(t))] + Var(E [D(7(t))[7(t)])
= E [Vpr(t)+Bp +o(1)] + Var(%T(t) +5 +0(1)),

where we used E [D(7(t))] = E [C(7(t )] n +0 + o(t) for some finite v (see lemma 1 of [2]). Now
using (7) and the fact that Var(C(t)) = ( ( (t))) we have:

. L . 2

Vet +Be = VpE [r()] + Bp + %Var(T(t)) +o(t). (8)
Observe that lim;_, 4 w =1 and lim;_, w = 0, thus dividing (8) by ¢ and taking t — oo of

(8), we obtain (i).



To obtain (ii), apply (i) into (8):

Bp=Bc+VpE [t —7(t)] — y—z\far(t —7(t)) +o(1).
7

Taking ¢ — co we obtain (ii). m

Using Theorem 1 and Lemma 1 we are able to get an expression for the linear asymptote of o(t)
based on moments and joint moments of the busy cycle and the number of customers served. We
summarize this in the following theorem (stated within a general setting of regenerative processes):

Theorem 2 Consider a regenerative process {Q(t),t > 0} with regeneration epochs {11, 72,...} and a
process {D(t)} defined on the same probability space such that the sequence {D(7,+1) — D(1,),n > 1}
is i.1.d. Further denote,

2 =E[(n—m)1, 5 =E[(D(r)-D(m))], ny=E [(r2 = 1) (D(r2) - D(m))]
Z; =E [r]], gi =E [D(r1)'], nij = E [ D(m1)’].

Assume x3,Y2,T2,¥2 < oo and assume that the distribution of 7o — 11 is spread-out. If there exist
constants V p, Bp such that Var(D(t)) = Vpt+ Bp + o(1) then,

2
— x n
Vv, = 2?1 _9 1122!1 I @7
3 x? x1
_ 1 3 3 } o
Bp = p (295321% — zyy1 (dzanay + z3y1 + TaZ1y1) — 5 (na2 + 2Ry + Taye — 281151)  (9)

1

+21(J2 — §3) + 21 (3] + 2F1n11y1 + 2no1y1 — T3Y; + T2+ yi + x2y2)>.

Proof. Vp equals Vo of Theorem 1 due to (i) of Lemma 1. To obtain Bp use the formula for Bo
in Theorem 1 combined with (ii) of Lemma 1. The moments of the limiting life random variable 7 are
known to be E [1] = 25/22; and E [r?] = x3/3x;. Simplifying, we obtain the result. m

Theorem 2 reduces the problem of calculating Vp and Bp to that of calculating moment val-
ues. The asymptotic variance rate requires 5 quantities that are independent of the initial state:
(z1,22,Y1,Y2,n11). Finding the y-intercept requires an additional set of quantities, first (x3,n12,n91),
and further (Z1, &2, §1, ¥2,711) which depend on the distribution of the initial state.

We note that (i) of the above theorem validates the asymptotic variance rate in (1). To do so, use
(6) to evaluate E [X], E [X?], E [Y], E [Y?] and E [XY] where X is distributed as the M/G/1 busy
cycle (busy + idle period) and Y is distributed as the number of customers served in a busy period.
Inserting these moments in (i) yields Vp = A. In fact, (i) also provides an elementary way to obtain
the asymptotic variance rate of outputs of the M/M/1/K queue which was obtained in [15] using more
involved methods. Another application of (i) to a simple queueing network is in Section 6.5 of [16].

We also comment that in regenerative queueing systems where some of the moments may not be
calculated, they may be estimated by the use of regenerative simulation and the result can be substituted
in (i) to obtain estimates of V p. This method of estimating the asymptotic variance rate is superior to
the naive method of estimating V p: simulate an i.i.d. sequence {D;(T),..., D, (T)} for a large time
T and take the sample variance of the sequence divided by T'. Observe that the naive method contains
an inherit bias equal to,



3 Asymptotic Form of the M /G /1 Variance Curve

In this section we show that the variance curve has a linear asymptote with slope A and a finite y-
intercept. Denote the arrival Poisson process by {A(t),t > 0} and denote the number of customers in
the system at time ¢ by Q(t). First note that showing Var(D(t)) = Mt + o(¢) is almost immediate. To
do so, observe that the variance of

D(t) = A(t) + Q(0) — Q(1), (10)

is

Var(D(t)) = M + o2 + Var(Q(t)) — 2Cov(Q(0), Q(t)) — 2Cov(A(t), Q(1)). (11)

Now since p < 1 and g3 < oo, Var(Q(t)) converges to o2 which is finite. Further, the covariance terms
satisfy:

Cov(Q(0), Q(t)) < y/of Var(Q(t)),  Cov(A(t),Q(t)) < /At Var(Q(t)).

Thus we have that Var(D(t)) = At + O(v/t), where O(v/t) denotes some function that increases at a
rate bounded by a multiple of v/%. -
We now show that the O(v/#) term is in fact B + o(1).

Theorem 3 Consider the output counting process, {D(t),t > 0} of the M/G/1 queue operating under
an arbitrary work-conserving service discipline with p < 1, g3 < oo and 02 < co. Then there exists a
finite B, such that

Var(D(t)) = At + B + o(1).

Proof. Our goal is to show that the two covariances in (11) converge to a constant: First observe that
tlim Cov(Q(0),Q(t)) = 0.

This follows from the regenerative structure of the queueing process and the fact that gz < co.
To show that Cov(A(t), Q(t)) converges to a constant define 7(t) = sup{u < ¢|Q(u) = 0}. Now,

E[A®Q®)] = E[(A(r(t) + A(t) — A(7(1))Q(¢)]
E [A(T(t))]E [Q(1)] + E [A(t — 7(1)Q(t — 7(1))];
where Q(t) is distributed as the queue length of an M/G/1 queue at time ¢ starting empty. The first term
of the second equality follows from independence due to regeneration at 7(¢). The second term follows
since the pair (A(t) — A(7(t)), Q(t)) is distributed as the pair (A(t — 7(t)), Q(t — 7(t))). Combining the
above we have:
Cov(A(t),Q(t)) = E[AH)Q(H)] —E [A®)]E [Q(t)]

E [A(t —7(1))Q(t — 7(t))] — E [A(t) — A(7(£))]E [Q(1)]

E [A(t — 7(1))Q(t — 7(t))] — E [A(t — 7(1))]E [Q(1))]- (12)
Denote U(t) = A(t—7(t))Q(t — 7(t)) and observe that it is a regenerative process. Further observe that

U(t) < A(t—7(t))? < Y? w.p. 1 where Y denotes a generic random variable of the number of customers
served in an M/G/1 busy cycle. Further, denoting X as the duration of the busy cycle, observe that,

E[[XU(s)ds] E[XY?]
lim E [U(t)] = — < :
Am E U] EX] - EKx] ~°
The last inequality follows from the fact that g3 < oco. Similar reasoning along with the fact that
E [Q(t)] converges, shows that the right hand side term of (12) also converges to a constant and thus
(12) converges to a constant as t — co. W
Note that with minor modifications the above result also applies to the GI/G/1 queue.




4 The M/G/1 Linear Asymptote

We now prove our main result regarding the linear asymptote of the M/G/1. Our proof is in two steps.
We first apply Theorem 2 for the case where Q(0) = 0 w.p. 1 by using the moments (1, x2, T3, Y1, Y2, N11, 12, M21 )-
We then use a coupling argument to obtain the general result.

Lemma 2 Let By denote the y-intercept in the case where the system starts empty. Then,
E = 0'(2) + EQ.

Proof. We use a coupling argument. Consider the following two systems under the same sample
path of the arrival process and service times. System 0 starts with Q(0) = 0 and system 1 starts with
Q(0) = Qp. Operate system 1 by giving low priority to the initial Qo customers, that is, these customers
are only served with preemption when there are no other customers in system. This implies that the
first Qo customers of system 1 are being served only during idle periods of System 0. Thus after a finite
time T, the trajectories of the two systems coincide. Thus for ¢ > T, D;(t) = Do(t) + Qo, where D;(+)
denote the output counting processes. Taking variances yields the result. A similar argument hold for
the non-preemptive case. m

The above proof explains the effect of the initial queue level distribution on the y-intercept. We
now prove our main result:

Theorem 4 Consider the output counting process, {D(t),t > 0}, of the M/G/1 queue operating under
an arbitrary work-conserving non-preemptive service discipline with p < 1 and g3 < oo. If 0} < 00

then,
p

(1-p)?

Proof. ! First we calculate B (as defined in Lemma 2). The moments (1, T2, 23, Y1, Y2, 711, N12, N21)
are evaluated in the standard manner by using (6) and taking the idle period into account. For com-
pleteness, we list the expressions, denoting p, = \¢gy, for k = 2,3:

Var(D(t)) = X\t 4 02 — +o(1).

x, = )\*1.#7
L—p
g = )\72.w
(L=p)3 7
i -3, 6= 240" + 6p" +3p2 +3p5 + 3p*(12+ p) + p3 — p(24 + 6ps + )
(1—p)® ’
1
gy = m7
 op—pr+l
S CE R
—1 P2+1—p
R
— -2 303 +3p2(1 = p) + (1 = p)(ps +2(1 — p)°)

(1—p)® ’

INote that an alternative (less elegant) proof follows by a direct application of Theorem 2 along with the additional
moments (Z1, %2, 91,72, 711) of the initial busy cycle. In fact, this method is slightly less general since it requires the
initial residual service time to be of finite variance. This fact appears since the moments of the initial busy cycle depend
on the joint moments of the initial queue level and residual service time. Once these moments are plugged in (9), the
residual service time moments and cross moments are canceled out.




305 +3p2(1—p) + (1= p)(ps +2(1 = p)*)

no1 = )\_1
(1—-p)°
Inserting the above into (9) and using (%1, T2, §1, J2,711) = (A™1,2A72,0,0,0) we obtain
- P
Bo=-——" .
(1-p)?

The result now follows from Lemma 2. m

Some immediate properties of B should be mentioned: First observe that By is a lower bound for
the y-intercept that is obtained when Q(0) is constant w.p. 1. Second, as p — 1 from below, B — —oo.
Finally, observe that the sign of B is determined by the variability of Q(0) compared to the variability
of the queue length of a stationary M/M/1 queue.

Covariance of Arrivals and Queue Size

The proof of Theorem 3 in Section 3 showed that Cov(A(t),Q(t)) converges to a constant. Having
obtained B, this constant is actually immediately available:

Corollary 3 Consider the M/G/1 queue with arrival counting process A(t) and queue level process
Q(t). Assume p <1, g3 < 0o and o} < co. Then,
ot e
tlim Cou(A(t),Q(t)) = fp‘
Proof. Applying Theorem 4 to (11) we obtain:
A+ o2 — ﬁ +o(1) = M + 02 + Var(Q(t)) — 2Cov(Q(0), Q(t)) — 2Cov(A(t), Q(1)).

Cancelling terms, taking ¢ to infinity and rearranging, we obtain the result. m
Note that Corollary 3 implies that for the M/M/1 queue with an arbitrary distribution of the number
of customers having finite variance,

lim Cov(A(t), Q(t) = ﬁ

5 The Stationary M/G/1

We now consider the linear asymptote of the stationary M/G/1. In this case,

= P
B=o02 - —"—,
To(1-p)?
and o2 can be easily evaluated by using the well known Pollaczek-Khinchine formula. For our purposes
it is fruitful to parameterize o2 by the offered load p, the squared coefficient of variation ¢? and the
skewness coefficient v of G(+). To avoid ambiguity, we specify these parameters in terms of the moments:

frnd —_ ) ")/ prnd
9 (92 — g3)3/?

A useful representation of o2 for our purposes is:

2¢% —3
292 _ 297 9192 + g3

o2 =(L+ UW’



where,

1 1 1 1 1 3 5 3 3

L=<74—7 3, 1 2_7) 3 (7 3 9 2 7) 2 (7 2_7) _

1€ T3 TR T ) 3 T Tt gt T )P
It is immediately evident that the signs of L and B are > equal: A positive sign of L implies higher
variability than that of an M/M/1 queue and in turn B is positive. A negative sign implies the
opposite. Having L = 0 implies that B = 0. Note that for the exponential distribution, ¢ =1, v = 2
and indeed (as expected) L = 0. This also shows that all service time distributions that agree with the
exponential distribution on the first 3 moments yield T(t) = At. Further it is easy to check that when
v = 2 the sign of L equals the sign of ¢ — 1 and it is monotone in ¢. Moreover, when ¢ = 1, the sign of
L equals the sign of v — 2 and it is monotone in +.

Daley’s Conjecture

It is an open problem to find the class of service time distributions for which (5) yields V*(s) = A/s
(equivalent to Var(D(t)) = At). Daley conjectured, [4], that this is true only for the exponential service
time distribution. Note that in [4] he also obtains the LST of the variance curve of the stationary
G/M/1 queue and proves that within this class of queueing systems, Var(D(t)) = At only when the
arrival process is Poisson.

It is obvious that for a steady state system to have a variance curve of At we must have B = 0. Thus
having L = 0 is a necessary condition for the variance curve to be Af. Surprisingly it is not a sufficient
condition. For example, consider a service time distribution with the following LST:

1 1 : 5
192—— + 147" 28 + 8e 5 +30e™2° + 76_%8).

G"(s) = g5 (1929

It is a mixture of an exponential distribution and masses at 4 points. It is straightforward to check that
it agrees with a mean 1 exponential random variable on the first 3 moments? and thus it yields L = 0.
Yet the variance curve is not At. We observed this by calculating the LST (5) for a grid of points of s,
where for each point we solved the fixed point equation (6) numerically and the resulting LST was not
equal to A/s.
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