
Towards Q-learning the Whittle Index for Restless Bandits

Jing Fu1, Yoni Nazarathy2, Sarat Moka2 and Peter G. Taylor1

Abstract— We consider the multi-armed restless bandit prob-
lem (RMABP) with an infinite horizon average cost objective.
Each arm of the RMABP is associated with a Markov process
that operates in two modes: active and passive. At each time slot
a controller needs to designate a subset of the arms to be active,
of which the associated processes will evolve differently from
the passive case. Treated as an optimal control problem, the
optimal solution of the RMABP is known to be computationally
intractable. In many cases, the Whittle index policy achieves near
optimal performance and can be tractably found. Nevertheless,
computation of the Whittle indices requires knowledge of the
transition matrices of the underlying processes, which are
sometimes hidden from decision makers. In this paper, we
take first steps towards a tractable and efficient reinforcement
learning algorithm for controlling such a system. We setup
parallel Q-learning recursions, with each recursion mapping
to individual possible values of the Whittle index. We then
update these recursions as we control the system, learning an
approximation of the Whittle index as time evolves. Tested
on several examples, our control outperforms naive priority
allocations and nears the performance of the fully-informed
Whittle index policy.

I. INTRODUCTION

The multi-armed bandit problem (MABP) is a decision
making problem that sequentially activates one out of I
parallel Markov processes and leaves the remaining I − 1
passive: the passive processes will be frozen (with no state
transition) until they become active. Gittins [1] proved the
optimality of a simple index policy for the MABP, subse-
quently referred to as the Gittins index policy, which always
activates the process with the highest state-dependent index.

Whittle [2] extended the conventional MABP to a restless
case: the state of each process can change even when it is not
activated. This extended version is referred to as the restless
multi-armed bandit problem (RMABP), which further allows
there to be K ≥ 1 active processes at each decision making
epoch. In general, RMABP are provably PSPACE-hard [3].
Still, like the Gittins case there is the possibility of using
an index policy. In [2], Whittle proposed an index policy,
referred to as the Whittle index policy, and conjectured it to
be asymptotically optimal as the number of parallel processes
tends to infinity. Later in [4], Weber and Weiss proved the
asymptotic optimality of Whittle index policy under certain
conditions. See [5] for detailed survey.

1Jing Fu and Peter G. Taylor are with School of Mathematics and
Statistics, the University of Melbourne, Parkville, VIC 3010, Australia
jing.fu;taylorpg@unimelb.edu.au

2Yoni Nazarathy and Sarat Moka are with the School of
Mathematics and Physics, The University of Queensland, Australia
y.nazarathy;s.babumoka@uq.edu.au

The Whittle index policy, similar to Gittins index pol-
icy, always prioritizes the processes with the highest state-
dependent indices, referred to as the Whittle indices, which
are calculated by solving sub-problems with remarkably
reduced state spaces. The (R)MABP has been widely applied
in resource allocation problems such as job scheduling in
cloud computing [6], channel detection in communications
[7], the health care system [8], and dynamic posted pricing
[9]. However, calculation or approximation of Whittle indices
generally requires full knowledge of the transition matrices
of all the Markov processes. In practice, this is rarely known
by system controllers.

Problems based on Markov decision process (MDP) with
hidden transition matrices have been analyzed through Q-
learning (or deep Q-learning) for decades [10]–[13]. Al-
though (deep) Q-learning has been demonstrated to be pow-
erful in approximating value functions, the convergence time
to an optimal solution for a problem with a large state space
is still an open question. Hence Q-learning of RMABP using
a straightforward approach is not applicable.

Borkar and Chadha [14] adapted a Q-learning approach
(temporal difference method), which was proposed in [12], to
approximate the Whittle index in a RMABP with continuous
state space. Given a fixed Whittle index, they proved the
convergence of the differential cost function (or bias func-
tion). In particular, they focused on a specific case where
the Whittle index acted as a monotonic function of the
state of each of the parallel processes of the RMABP, and
the transition matrices of processes were assumed to be
known. Our work in this paper focuses on a RMABP with
discrete state space but does not assume a specific class of
Whittle indices nor any knowledge of the transition matrices.
We rather adapt a Q-learning algorithm for the Whittle
sub-problem, presenting an algorithm which experimentally
appears to work well in several RMABP settings.

To the best of our knowledge, this is the first work that
adapts the Q-learning technique to a generic RMABP with
completely concealed transition matrices. We demonstrate
by simulations that our policy, referred to as Q-learning the
Whittle Index Controller (QWIC), significantly outperforms
all benchmark policies except the fully-informed Whittle
index policy, which assumes knowledge of the transition
matrices. Note that this fully-informed Whittle index is
illustrated as a performance upper bound, which is not
applicable when the transition matrices are hidden.

II. MODEL

We use N+ and N0 as the set of positive and non-negative
integers, respectively, and for any N ∈ N+, let [N], represent
the set {1, 2, . . . , N}. Let R be the set of all reals.

Consider I parallel projects, each of which is associated
with a discrete-time Markov process, denoted by {Xi(t), t ∈
N0}, i ∈ [I]. A project can behave in two modes, active
and passive, with potentially different transition matrices. At
time t, we can choose to activate a project i ∈ [I] or not,
indicated by an action variable Ai(t) ∈ {0, 1}: if Ai(t) = 1,
the project is active; otherwise, passive.

In this paper, all the I projects are identical in that they
have the same state space, X , and the same state transition
matrices, P1,P0 ∈ [0, 1]|X |×|X | for active and passive
modes, respectively. The state space X is assumed to be
finite with states labeled by x = 1, 2, . . . , |X |. Let P 1

x,x′ and
P 0
x,x′ (x, x′ ∈X) represent the entries of P1 and P0 at row
x and column x′, respectively. Let X(t) := (Xi(t) : i ∈ [I])
and A(t) := (Ai(t) : i ∈ [I]).

The process of the entire system, {X(t),A(t)}∞t=0, acts as
a Markov decision process (MDP) with X I and {0, 1}I the
state and action spaces, respectively. The rule that decides
the probability of A(t) taking values in {0, 1}I is referred
to as a policy. In particular, we limit this work to stationary
policies; that is, Ai(t) := ai(X(t)), which is a function of
state vector, and we refer to ai(·) as the action variable for
project i ∈ [I]. In this context, all action variables ai(x)
for i ∈ [I] and x ∈ X I determine a policy, denoted by φ.
By slightly abusing notation, we rewrite the action and state
variables as aφi (·) and Xφ(t) to indicate their dependencies
on policy φ. Let aφ(x) := (aφi (x) : i ∈ [I]) for any x ∈X I ,
and Φ represent the set of all such policies φ.

By taking an action aφi (x) = a in state Xφ(t) = x (x ∈
X I , a ∈ {0, 1}) at time t, an expected reward R(xi, a),
which is bounded, for project i ∈ [I] is generated. The total
reward of the system generated at each time slot is the sum of
the rewards for each project. At each time t, we are required
to activate exactly K ≤ I of the I projects, so that∑

i∈[I]

aφi (Xφ(t)) = K, (1)

and we aim to maximize the long-run average reward of
the entire system. To this end, for initial state x(0), our
optimization problem can be written as

max
φ∈Φ

lim
T→∞

1

T

T−1∑
t=0

∑
i∈[I]

E[R(Xφ
i (t), aφi (Xφ(t)))], (2)

subject to (1).
This problem is a standard Restless Multi-Armed Bandit

Problem (RMABP), of which state space size is increasing
exponentially with the number of projects I . The RMABP
has been proved to be PSPACE-hard [3]. Thus, we resort
to simple, tractable policies that approximate optimality. As
mentioned in Section I, an index policy, which prioritizes
projects according to the descending order of state-dependent
indices, is a promising technique. Given these indices, an
index policy will always prioritizes the K projects with the
highest K indices, which represent the marginal rewards of
activating projects in corresponding states. In particular, we
consider the well-known Whittle indices.

(a) (b)

Fig. 1. The underlying project Markov chains: (a) active; and (b) passive.

III. A BASIC EXAMPLE

We start with an simple problem with state space X =
{1, 2, 3, 4} and reward R(1, a) = −1, R(4, a) = 1,
R(2, a) = R(3, a) = 0, for a ∈ {0, 1}. The process
{Xφ

i (t), t ∈ N0} (that is, project i ∈ [I]) either remains in
its current state or increments positively if it is active, while
it either remains in its current state or increments negatively
if it is passive. State increments and decrements are with
‘wrap-around’ as in Figure 1. These dynamics follow,

P1 =


1
2

1
2
1
2

1
2
1
2

1
2

1
2

1
2

 and P0 =


1
2

1
2

1
2

1
2
1
2

1
2
1
2

1
2

 .
To gain intuition for this problem consider a relatively big
system with I = 500 projects where only a tenth of the
projects are active at any time. That is, K = 50. This implies
that at every time step, 450 passive projects are subject to
the ‘decrementing action’ while only 50 active projects are
incremented. Since both P1 and P0 are doubly-stochastic
(columns sum up to 1 in addition to rows), the individual
stationary distribution is uniform. Hence in particular, a
project that has been passive for some time is likely to have
a state that is approximately uniformly distributed on X .
Also, since most of the projects are passive (nine tenths), the
average reward per time step is approximately 0 since the −1
reward from x = 1 is offset by the +1 reward from x = 4.
However, as the controller is able to activate 50 projects, it
finds an average of about 450/4 = 112.5 projects in state 3
at any time. From these, it can arbitrarily select 50 projects
and cause an average of 25 (since the transition probability is
1/2) to transition to state 4 in the next time step. Hence any
policy that chooses to activate projects in state 3 whenever
possible will almost always have 50 such possibilities at its
disposal and will move 25 projects on average into state
4. Then, each project that has just transitioned to 4 by
incrementing, will stay an average of 2 time steps (expected
sojourn time with transition probability 1/2) at state 4 until
returning to state 3. This yields an average reward of 50 per
time step. This means that the average reward per arm is
50/500 = 0.1.

This analysis of the ‘give priority to projects in state 3’
policy is not more than an intuitive explanation. In fact, if
we increase K to for example K = 250 the analysis is
not as simple as further prioritization needs to take place
between the states. Nevertheless, it serves our purpose as we
now use this example in two ways. First we consider how the
Whittle index can be computed for such an example and then
we show how our QWIC policy can obtain similar behavior
even when P0 and P1 are not known.

IV. WHITTLE INDICES
The Whittle indices are real values assigned to each state

in X and are computed offline by optimizing all the I project
processes independently. This idea remarkably reduces the
computational complexity of solving a problem over state
space X I to that over X .

The Whittle index policy has later been proved to be
asymptotically optimal under certain conditions [4]. Also, the
asymptotic optimality of the Whittle index policy or Whittle-
like index policies has been proved or discussed in recent
work [6], [15], [16]. In particular, for value functions that
solve

g+ V (x, λ) = max

{
R(x, 1)− λ+

∑
x′∈X

P 1
x,x′V (x′, λ),

R(x, 0) +
∑
x′∈X

P 0
x,x′V (x′, λ)

}
(3)

with x ∈X and g, λ ∈ R, the Whittle index (if it exists) of
a state x ∈X is a specific value λ(x) ∈ R, such that,

R(x, 1)− λ(x) +
∑
x′∈X

P 1
x,x′V (x′, λ(x))

= R(x, 0) +
∑
x′∈X

P 0
x,x′V (x′, λ(x)). (4)

If the λ(x) in (4) is not unique, then we can take any one.
We briefly explain the notation in equation (3). For a given

λ ∈ R, consider a MDP that evolves in the same way as
a project defined in Section II, except that this MDP gains
reward R(x, 1)−λ if it is active in state x ∈X . We refer to
such a MDP as a λ-project. For a given λ ∈ R, the g ∈ R in
(3) is a given parameter that is equal to the maximized long-
run average revenue of this λ-project. An optimal policy,
which maximizes the right hand side of (3) for all x ∈ X ,
will maximize the long-run average revenue of the λ-project
[17]. The Whittle index (if it exists) for state x ∈ X is the
specific value of λ such that active and passive actions in
state x make no difference in terms of the average revenue
of the λ-project, as described in (4).

Nevertheless, the existence of Whittle indices, referred to
as indexability, for a RMABP is hard to verify. To compute
these indices, conventional optimization techniques, such as
value or policy iteration, require the transition matrices P1

and P0 to be known by system controllers. In this paper,
we consider a more practical case where P1 and P0 are
unknown.

For our example problem, it can be shown that

λ(1) = −1/2, λ(2) = 1/2, λ(3) = 1, λ(4) = −1.

Hence according to the Whittle index and in agreement with
the discussion above, top priority is given to projects with
state 3. Then, Whittle gives second priority to projects with
2, then to state 1 and finally to 4.

Such priorities of states, indicated by Whittle indices,
coincide with our intuition (presented in Section III) about
the transition matrices and reward functions. Simulations on

this example will be provided later in Section V-B, after we
introduce our algorithm that does not assume any knowledge
of transition matrices.

V. Q-LEARNING FOR WHITTLE INDICES

By time t, we can retrieve information of the stochastic
process with unknown transition matrices from the history
of states and actions to solve the optimization problem
described by (2) and (1). Let H(t) := {Xφ(τ),Aφ(τ), τ ∈
[t]} represent the history of states and actions of the system
up to time t ∈ N0.

A. Q-Learning

We adapt the Q-learning technique to our problem. The Q-
learning technique often applies to a MDP without specific
knowledge of its transition rules, and is used to learn the
value functions according to observations. For instance,
consider the value functions described in (3), and for x ∈X ,
a ∈ {0, 1}, λ ∈ R, define the Q function as,

g +Qλ(x, a) = R(x, a)− λa+
∑
x′∈X

P ax,x′V (x′, λ), (5)

and V (x, λ) = maxa∈{0,1}Q
λ(x, a), where λ is considered

as a given constant.
Also, define the estimated Q function as Q̂λt (x, a) for

x ∈ X and a ∈ {0, 1}, which is the estimated value of
Qλ(x, a) according to the observed history Ht. Since all
project processes i ∈ [I] are stochastically identical, we start
our discussion with any of them and write the state variable
as Xφ(t) and Aφ(t) by omitting the subscript i.

Q-learning is an iterative process that starts out with a
set of Q̂λ0 (x, a) for all x ∈ X and a ∈ {0, 1} and updates
them. The process is operated in a way that optimizes the
estimated Q function. For t ∈ N+, it takes the action Aφ(t) =
arg maxa∈{0,1}{Q̂λt (Xφ(t), a)} and updates according to the
iteration in (6), where β and {αt}∞t=0 are hyper-parameters.
Given the observation Xφ(t+1) at time t+1 after taking the
action Aφ(t), equation (6) is a standard method in Q-learning
that updates the estimated Q functions. Note that in (6), the
transition matrices are not required. However it increments
slowly; for x ∈ X and a ∈ {0, 1}, if x 6= Xφ(t) or a 6=
Aφ(t), the estimated Q function Q̂λt+1(x, a) = Q̂λt (x, a).

The parameter β ∈ [0, 1) is a discount parameter that
is close to 1 and used to guarantee the convergence of
our estimated Q function. From the Blackwell optimality
theorem [18], there exists an optimal solution of the β-
discounted cumulative reward of the λ-project for all β near
1, and this solution will also be long-run average optimal.
We can then translate the role of the unknown parameter
g in (5) into this β by setting it close to 1 for all our
numerical experiments. The {αt}∞t=0 is a sequence of reals
in [0, 1] acting as the learning rate of the estimated Q
function. If

∑∞
t=0 αt = ∞ and

∑∞
t=0 α

2
t < ∞, then, from

[10, Proposition 5.5], limt→∞ Q̂λt (x, a) = Qλ(x, a) for any
x ∈X and a ∈ {0, 1}.

However, a RMABP is much more complicated than a
single project process with a one-dimensional state space.

Q̂λt+1(Xφ(t), Aφ(t)) = (1−αt)Q̂λt (Xφ(t), Aφ(t))+αt

(
R(Xφ(t), Aφ(t))− λAφ(t) + β max

a∈{0,1}
Q̂λt (Xφ(t+ 1), a)

)
(6)

0 200 400 600 800 1000

Time

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

R
ew

ar
d

Reward per arm over time
Whittle
QWIC
Random

Fig. 2. Accumulated average reward per arm under three policies.

The size of the state space for the RMABP is increasing
exponentially in the number of projects, I , with the size of
the domain of the Q function increasing accordingly. For
most practical problems, the entire learning process cannot
be completed within a reasonable time horizon.

B. Q-Learning the Whittle Indices

Recall the definition of the Whittle indices λ(x) (x ∈X)
and the Q function in (4) and (5). We obtain

Qλ(x)(x, 1)−Qλ(x)(x, 0) = 0. (7)

For state x ∈ X , consider a set of candidate values of
λ(x), denoted by Λ, and, for λ ∈ Λ, a ∈ {0, 1}, t ∈ N+,
define Q(λ, x, a) = Qλ(x, a) and Q̂t(λ, x, a) = Q̂t(λ, x, a).
In this context, λ becomes part of the state in a Q function,
and we approximate the Whittle index λ(x) (x ∈ X) by
optimizing

min
λ∈Λ
|Q̂t(λ, x, 1)− Q̂t(λ, x, 0)| (8)

for each t ∈ N+. Define λ̂t(x) as the estimated Whittle index
for state x ∈X at time t. The λ̂t(x) is updated to be the λ
minimizing (8).

On the other hand, these estimated Whittle indices λ̂t(·)
will indicate the priorities of projects at time t: the K projects
with highest λ̂t(X

φ
i (t)) will be activated (Aφi (t) = 1), and

all the others will be passive. The estimated Q function
Q̂t+1(·, ·, ·) and the estimated Whittle indices λ̂t+1(·) are
then updated according to new observations Xφ(t+ 1) and

updated Q̂t+1(·, ·, ·), by invoking (8) and (9).
Equation (9) follows the same manner of updating the

estimated Q functions as that in (6), except that parameter
λ in (6) becomes a state waiting to be explored in (9).
Similar to the conventional Q-learning procedure described
in Section V-A, for x ∈ X , a ∈ {0, 1} and λ ∈ Λ, if x 6=
Xφ(t), a 6= Aφ(t) or λ 6= λ̂(Xφ(t)), then Q̂t+1(λ, x, a) =
Q̂t(λ, x, a). This indicates that the estimated Q function will
be updated only for specific states and actions at each time t.
The estimated Q function Q̂t(λ, ·, 1) with smaller λ ∈ Λ are
unlikely to be updated, since a smaller index λ has a lower
priority and thus has less chance of being activated.

To address this, we introduce an exploration probability
γt ∈ [0, 1], t ∈ N+, to guarantee the exploration op-
portunities of the Q function for all λ ∈ Λ of an active
project. At each time t, after the action vector Aφ(t) has
been determined according to estimated indices λ̂t(·), with
probability γt, we
• randomly permute the binary values of elements of

Aφ(t); and
• for all x ∈ X , uniformly choose a value from Λ and

assign it to λ̂t(x).
The exploration probability γt acts as a lever that balances
the time spent on exploration and exploitation, which helps
updates of these less popular λ values.

We refer to above described policy as Q-learning the
Whittle Index Controller (QWIC). For a better explanation,
we also provide the pseudo-code of QWIC in Algorithm 1.
Later, we replace the superscript φ (of the state and action
variables) by QWIC if the stochastic process is controlled
under QWIC, and retain φ to indicate a non-specified policy.

Remark Unlike conventional Q-learning algorithms, here,
we learn the Q function and the Whittle indices, which
mutually affect the learning results of each other, simultane-
ously. The estimated Q function summarizes the information
collected through exploration, while the estimated Whittle
indices stand for the exploitation decisions determined by
the information collected so far. As mentioned in Section I,
this is the first work that approximates Whittle indices with
general but unknown transition matrices.

For the simple example discussed in Section III, Figure 2
reports the results for the long-run average reward obtained
from simulations of the process operating under the Whittle
Index policy, QWIC (10 trajectories) and a third policy that

Q̂t+1(λ̂(Xφ(t)), Xφ(t), Aφ(t)) = (1− αt)Q̂t(λ̂(Xφ(t)), Xφ(t), Aφ(t))

+ αt

(
R(Xφ(t), Aφ(t))− λ̂(Xφ(t))Aφ(t) + β max

a∈{0,1}
Q̂t(λ̂(Xφ(t)), Xφ(t+ 1), a)

)
(9)

Input : x0,x1 ∈ X I , Q0 ∈ RΛ×X×{0,1}, λ̂0 ∈ ΛX , a0 ∈ {0, 1}I and t ∈ N+

/* x1 is the newly observed state vector for a tested time slot t. */
/* x0, Q0, λ̂0,a0 are the state vector, estimated Q function and Whittle index */

/* and action vector for the previous time slot, respectively. */
Output: Q1 ∈ RΛ×X×{0,1}, λ̂1 ∈ ΛX and a1 ∈ {0, 1}I

/* Q1, λ̂1,a1 are the updated Q function, the resulting estimated Whittle */
/* index and the resulting action vector for the tested time slot. */

1 Function (Q1, λ̂1,a1)← QWICPolicy(x0, Q0, λ̂0,a0,x1):
2 Q1(λ, x, a)← Q0(λ, x, a) for all λ ∈ Λ, x ∈ X and a ∈ {0, 1}
3 for i ∈ [I] do
4 Q1(λ̂0(x0,i), x0,i, a0,i)←

(1− αt)Q̂0(λ̂0(x0,i), x0,i, a0,i) + αt
(
R(x0,i, a0,i)− λ̂(x0,i)a0,i + βmaxa∈{0,1} Q̂0(λ̂0(x0,i), x1,i, a)

)
/* Update Q1 by plugging parameters in (9). */

5 end
6 for x ∈ X do
7 λ̂1(x)← arg minλ∈Λ |Q1(λ, x, 1)−Q1(λ, x, 0)|
8 end
9 I ← a subset of [I]: if i ∈ I , then λ̂(x1,i) is one of the K largest λ̂(x1,i′) among all i′ ∈ [I]

/* Guarantee |I | = K by breaking tie cases randomly. */
10 for i ∈ [I] do
11 if i ∈ I then
12 a1,i ← 1
13 else
14 a1,i ← 0
15 end
16 end
17 With probability γt, randomizes the elements of a1 in place, and, for all x ∈ X , λ̂1(x)← a uniformly randomly selected

value from Λ.
18 return (Q1, λ̂1,a1)
19 End

Algorithm 1: Pseudo-code for QWIC.

randomly activates 100 out of the 500 processes at each time
point. For QWIC, we choose hyper-parameters β = 0.99,
γt = min(2t−1/2, 1), αt = t−1/2 and Λ as a uniform grid
with 10 points ranging from −1.25 to 1.25.

In Figure 2, the reward curves for QWIC and the Whittle
index policy are quite close to each other, both significantly
outperforming a policy that chooses active arms randomly.
As discussed in Section III, the performance of the random
policy is expected to be 0. The Whittle index policy does
achieve the highest average reward in Figure 2 and is
demonstrated to be promising in this example. However the
strength of QWIC is that it doesn’t rely on any knowledge
of the transition matrices or reward structure.

From Figure 2, we can see the quick convergence of
QWIC in terms of average revenue, although there is still
a gap between QWIC and the Whittle index policy. As the
full knowledge of transition matrices must be assumed for
implementing the latter, this gap can be regarded as a cost
of exploring hidden information.

VI. A FURTHER EXAMPLE: MENTORING INSTRUCTIONS

We now demonstrate the effectiveness of QWIC on a more
complicated example. Consider I students with |X | = 10
different study levels. We have K ∈ [I] mentors available for
these students all the time, and aim to maximize the long-
run average reward indicated by the study levels of students;
that is, let R(x, a) = c

√
x with c = 1/

√
10 a constant for

normalization. Level x = 1 is the worst study level, and 10 is
the best, however a-priori, the QWIC controller is not aware
of that. Student i ∈ [I] with level Xφ

i (t) ∈ X will move
into level Xφ

i (t+ 1) ∈X according to transition matrices

P
1
,P

0
=



0.3 0.7

0.3 0
. . .

0.3
. . . 0.7

. . . 0 0.7
0.3 0.7


,



0.7 0.3

0.7 0
. . .

0.7
. . . 0.3

. . . 0 0.3
0.7 0.3


,

based on if they get mentoring help (active) or not (passive).

We simulated the student study levels under the Whittle
index policy with full knowledge of the transition matrices,
QWIC, a policy that randomly selected K students for
mentoring at each time point and a greedy policy that
always selects students with the best levels. For QWIC,
we set β = 0.99, γt = min(2t−1/2, 1), αt = 0.3 and
Λ = {0, 1/15, 2/15, . . . , 2}. In Figure 3(a), we illustrate the
long-run average revenue gained by the different policies for
a small case with K = 1 and I = 5. In particular, for the
simulation results demonstrated in Figure 3(a), apart from
QWIC, all the tested policies are stationary policies for which
the long-run average reward. In this context, we simulate
one trajectory for each of these stationary policies; and ten
trajectories for QWIC by plugging in different seeds of the

0 1000 2000 3000 4000 5000

Time
0.35

0.40

0.45

0.50

0.55

0.60

R
ew

ar
d

Reward per arm over time

Whittle
QWIC
Greedy
Random

(a)

0 1000 2000 3000 4000 5000

Time
0.35

0.40

0.45

0.50

0.55

0.60

R
ew

ar
d

Reward per arm over time

Whittle
QWIC
Greedy
Random

(b)

0 1000 2000 3000 4000 5000

Time
0.35

0.40

0.45

0.50

0.55

0.60

R
ew

ar
d

Reward per arm over time

Whittle
QWIC
Greedy
Random

(c)

Fig. 3. Accumulated average reward for the Mentoring Instruction system: (a) K = 1, I = 5; (b) K = 10, I = 50; and (c) K = 100, I = 500.

pseudo-random numbers.
In Figure 3(a), although the trajectories of QWIC become

almost flat at time t = 5000, they diverge from each other.
This indicates that the performance of QWIC is sensitive
to the exact instances of the simulated trajectory. Also, the
trajectories for QWIC form a range of average rewards, all
of which outperform Random. The curve for Greedy locates
in the range of QWIC trajectories.

With the same system parameters except K and I , Fig-
ures 3(b) and 3(c) illustrate the evolution of the long-run
average reward with K = 10, I = 50 and K = 100,
I = 500, respectively. From Figures 3(a)-3(c), we observe
that the range of QWIC trajectories is becoming narrower as
the number of students (that is, I) increases. In Figure 3(c),
QWIC clearly outperforms all other tested policies except
the fully-informed Whittle index policy.

When there are more projects, the system receives more
feedback information within the same time horizon, and we
would expect QWIC to converge faster. This is consistent
with our observations in Figures 3(b) and 3(c).

Recall that the ideas of RMABP and Whittle indices were
proposed for large scale problems with high-dimensional
state spaces. In particular, under certain conditions, the
Whittle index policy has been proved to approach optimality
as the number of projects tends to infinity [4]. Also, from our
simulation results, our QWIC learning algorithm converges
faster in large scale problems. Given that it does not require
any prior knowledge of the transition matrices this is very
promising.

VII. CONCLUSIONS

We have taken first steps towards a general Q-learning
algorithm for the Whittle index. While further advances
are needed to make this algorithm practical, the numerical
examples that we present already illustrate promising results.

ACKNOWLEDGMENT

J. Fu and P.G. Taylor’s research is supported by the
Australian Research Council (ARC) Laureate Fellowship
FL130100039 and the ARC Centre of Excellence for the
Mathematical and Statistical Frontiers (ACEMS). S. Moka’s
research is supported by ACEMS, under grant number

CE140100049. Y. Nazarathy’s research is supported by ARC
grant DP180101602. The authors also thank Prof. Vivek
Borkar for preliminary discussions.

REFERENCES

[1] J. C. Gittins, “Bandit processes and dynamic allocation indices,”
Journal of the Royal Statistical Society. Series B (Methodological),
pp. 148–177, 1979.

[2] P. Whittle, “Restless bandits: Activity allocation in a changing world,”
J. Appl. Probab., vol. 25, pp. 287–298, 1988.

[3] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of optimal
queuing network control,” Math. Oper. Res., vol. 24, no. 2, pp. 293–
305, May 1999.

[4] R. R. Weber and G. Weiss, “On an index policy for restless bandits,”
J. Appl. Probab., no. 3, pp. 637–648, Sep. 1990.

[5] J. Niño-Mora, “Dynamic priority allocation via restless bandit
marginal productivity indices,” TOP, vol. 15, no. 2, pp. 161–198, Sep.
2007.

[6] J. Fu, B. Moran, J. Guo, E. W. M. Wong, and M. Zukerman,
“Asymptotically optimal job assignment for energy-efficient processor-
sharing server farms,” IEEE J. Select. Areas Commun., 2016.

[7] K. Liu and Q. Zhao, “Indexability of restless bandit problems and
optimality of whittle index for dynamic multichannel access,” IEEE
Trans. Inform. Theory, vol. 56, no. 11, pp. 5547–5567, Oct. 2010.

[8] S. Deo, S. Iravani, T. Jiang, K. Smilowitz, and S. Samuelson, “Improv-
ing health outcomes through better capacity allocation in a community-
based chronic care model,” Operations Research, vol. 61, no. 6, pp.
1277–1294, Nov.–Dec. 2013.

[9] A. V. den Boer, “Dynamic pricing and learning: historical origins,
current research, and new directions,” Surveys in operations research
and management science, vol. 20, no. 1, pp. 1–18, Jun. 2015.

[10] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
MA: Athena Scientific, 1996, vol. 5.

[11] V. S. Borkar, Stochastic approximation: a dynamical systems view-
point. Springer, 2009, vol. 48.

[12] H. Yu and D. P. Bertsekas, “Convergence results for some temporal
difference methods based on least squares,” IEEE Transactions on
Automatic Control, vol. 54, no. 7, pp. 1515–1531, Jun. 2009.

[13] T. Jaksch, R. Ortner, and P. Auer, “Near-optimal regret bounds
for reinforcement learning,” Journal of Machine Learning Research,
vol. 11, no. Apr, pp. 1563–1600, 2010.

[14] V. S. Borkar and K. Chadha, “A reinforcement learning algorithm for
restless bandits,” in 2018 Indian Control Conference (ICC). IEEE,
2018, pp. 89–94.

[15] I. M. Verloop, “Asymptotically optimal priority policies for indexable
and non-indexable restless bandits,” Ann. Appl. Probab., vol. 26, no. 4,
pp. 1947–1995, Aug. 2016.

[16] J. Fu, B. Moran, and P. G. Taylor, “Restless bandits in action:
Resource allocation, competition and reservation,” arXiv: 1804.02100,
Apr. 2018. [Online]. Available: https://arxiv.org/abs/1804.02100

[17] S. M. Ross, Applied probability models with optimization applications.
Dover Publications (New York), 1992.

[18] D. Blackwell, “Discrete dynamic programming,” The Annals of Math-
ematical Statistics, pp. 719–726, 1962.

https://arxiv.org/abs/1804.02100

