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Abstract We consider large volume job shop scheduling
problems, in which there is a fixed number of machines,
a bounded number of activities per job, and a large num-
ber of jobs. In large volume job shops it makes sense to
solve a fluid problem and to schedule the jobs in such a way
as to track the fluid solution. There have been several pa-
pers which used this idea to propose approximate solutions
which are asymptotically optimal as the volume increases.
We survey some of these results here. In most of these pa-
pers it is assumed that the problem consists of many iden-
tical copies of a fixed set of jobs. Our contribution in this
paper is to extend the results to the far more general situ-
ation in which the many jobs are all different. We propose
a very simple heuristic which can schedule such problems.
We discuss asymptotic optimality of this heuristic, under a
wide range of previously unexplored situations. We provide
a software package to explore the performance of our policy,
and present extensive computational evidence for its effec-
tiveness.
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1 Introduction

Job shop scheduling has always been one of the most im-
portant and most difficult problems in scheduling theory.
The formulation, which is well known (Lawler et al. 1993),
is: jobs n = 1, . . . ,N have to be scheduled on machines
i = 1, . . . , I . Job n requires rn processing activities, moving
through machines σ(n,1), . . . , σ (n, rn) in that order, with
processing times x(n,1), . . . , x(n, rn). A schedule for such
a problem is best described by a Gantt chart (Gantt 1910), as
in Fig. 1. This includes in particular the completion times of
the jobs, Cn,n = 1, . . . ,N . The utility of a schedule may be
measured in many ways. The simplest and most common are
the makespan, maxn=1,...,N Cn, the flowtime

∑
n=1,...,N Cn,

some other linear measure of the holding costs (weighted
flowtime), or

∑
n=1,...,N h(Cn,Dn) where Dn are given due

dates (number of late jobs, lateness, tardiness). In this pa-
per we focus specifically on minimization of the makespan
objective.

We are interested in job shops for which the number of
machines I is fixed, and the number of activities of each
job is bounded by a fixed rmax = max{r1, . . . , rN }, but the
number of jobs N is large. We call these large volume job
shops. For these problems it is natural to adopt a fluid ap-
proach: solve a fluid approximation of the problem and use
a schedule which tracks the fluid. Several papers (Bertsi-
mas and Gamarnik 1999; Bertsimas and Sethuraman 2002;
Bertsimas et al. 2003; Boudoukh et al. 1998, 2001; Dai and
Weiss 2002) have considered this approach, suggested vari-
ous tracking policies, and provided performance bounds. In
most of these papers (with the exception of Dai and Weiss
2002) the following assumption is made: there is a fixed set
of K jobs types, and a large number N of jobs which are
all exact copies of these K job types. Each job of type k

shares the same route and has the exact same processing
times along this route as all the other copies.
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Fig. 1 Example of a jobshop schedule

In this paper we address a much more general large vol-
ume job shop, in which all N jobs are different, each with
its own individual route and individual processing times.
Thus we have a fixed set of I machines, and a fixed up-
per bound rmax on the route lengths, but apart from that,
the N jobs are quite general. It is convenient in this case
to classify all the possible activities of all the jobs into a
fixed set of classes k = 1, . . . ,K . Activities of class k are
performed at machine σk . The processing of job n can be
described as moving through an ordered sequence of classes
k(n,1), . . . , k(n, rn), in which it is processed by machines
σk(n,1), . . . , σk(n,rn). When in class k on step i of its route,
job n will require a processing time x(i, n) which can be
any nonnegative real number. To be able to say something
about these large volume job shops we make a probabilistic
assumption on the processing times of jobs in activity class
k: we assume that they are drawn from some population of
processing times with probability distribution Gk , having fi-
nite mean mk .

What we show in this paper is that the fluid approach
works well for this general situation, and the results are quite
similar to those obtained for the large volume job shop based
on a fixed set of K jobs. In fact:

• The fluid solution can be calculated as before: the optimal
fluid makespan is equal to the machine lower bound, and
it can be achieved by a processor sharing policy which
uses constant processing rates for each class and reduces
the workload linearly as a function of time.

• The policy for tracking the fluid solution is very simple: it
essentially uses the deviation of each class from the fluid
solution to assign dynamic priority to that class.

• This policy is asymptotically optimal: as N increases the
makespan increases linearly with N , while the subopti-
mality remains bounded by a quantity which is o(N).

• Depending on several scenarios, the additive suboptimal-
ity bounds seem to be of order O(1), O(log(N)) or
O(

√
N).

Our purpose in this paper is mainly expository: to explore
how far the fluid approach can help in minimizing makespan
under increasingly more general assumptions on the large
volume job shop. Our emphasis is not on proving exact re-
sults, which are difficult to obtain in such general settings,
but to try and understand how ideas which worked for the
more restricted formulations need to be modified.

It turns out that the fluid solution is generalized easily,
and also that tracking policies for the general case need not
be more complicated; in fact, they may be simpler when
the model is less structured. Furthermore they can be im-
plemented with less information—the exact data of all the
jobs is mostly not needed, and the schedule can be imple-
mented online with very restricted information on the state
of the system. Finally we wish to explore what price has
to be paid for the increased generality: how large does the
gap between the fluid lower bound solution and the actual
makespan become, as we relax more assumptions?

To achieve this we concentrate mainly on simulation ex-
perimentation, to get some idea on the actual asymptotics of
our large volume job shops. We provide a software package
that can be used for this exploration and extensive analysis
of simulation results.

The paper is structured as follows. In Sect. 2 we motivate
the fluid approach to large volume job shops. We describe
three types of job shop problems. The first of these is suit-
ably handled by the use of combinatorial optimization. The
second type of problem is suitably handled by the use of
a stochastic Markov decision approach for steady state op-
timization of queuing networks. These two methodologies
are unsuitable for the third type of problem, the large vol-
ume job shop, for which an approach that bridges these ap-
proaches is required. We survey in general terms some of
the aspects of deterministic job shop scheduling and of sto-
chastic optimization of queuing networks. We then outline
our ideas of a combined approach, in which we solve a fluid
job shop problem and schedule the jobs on line to track the
fluid solution.

In Sect. 3 we present the fluid job shop and its solution,
and prove that it provides a lower bound. This is a well-
known result (Chen and Yao 2003; Weiss 1995), and we
present it here mainly to illustrate how it works for our gen-
eral large volume job shop. We then survey in Sect. 4 various
previous papers including (Bertsimas and Gamarnik 1999;
Bertsimas and Sethuraman 2002; Boudoukh et al. 2001;
Dai and Weiss 2002), which used the fluid solution as a blue-
print, and discuss those results.

In Sect. 5 we present our own method for tracking the
fluid solution. We show that it generalizes the previous pa-
pers. In Sect. 6 we describe the implementation of our policy
and a software system which we developed for that purpose.
In Sect. 7 we present results of experiments which we car-
ried out. We conclude in Sect. 8, with a discussion of fluid
solutions in a wider context.

2 Three examples of job shops, and the approaches
to their scheduling

To put our large volume job shop into context and motivate
the fluid approach, we describe three typical scenarios.



J Sched (2010) 13: 509–529 511

2.1 Printed circuit board (PCB) assembly

A robot operates several tools in a sequence of steps to per-
form component assembly, insertion, placement, and attach-
ment on a PCB. Here the sequence of activities for each tool
is subject to various order constraints, and the whole process
can often be formulated as a job shop scheduling problem,
with the tools as machines, and components or subassem-
blies as the jobs (Kulak et al. 2007). The optimal schedule
for this problem will then be coded and used by the robot re-
peatedly for each PCB. The inverse of the makespan will in
this case be the throughput (the production rate) of the robot,
and minimizing the makespan of the schedule will maximize
the production of PCBs and the utilization of the robot.

The PCB scheduling problem is a pure scheduling prob-
lem, with a clear objective, which needs to be solved opti-
mally once for each PCB design, and will then be reused
often. It falls within the realm of combinatorial optimization
problems.

2.2 Transmitting data through the Internet, control of data
switches

Packets of data are transmitted from origin nodes to tar-
get nodes via intermediate nodes (cf. Stallings 2007). Here
packets arrive and depart from the system, and the controller
has no detailed information on processing times (packet
sizes) or routes. The system is operating over a long time,
under homogeneous conditions, and a choice of policy deter-
mines its steady state performance. There is no makespan in
this problem, but the measure which is equivalent to minimal
makespan in this infinite horizon problem is the throughput
rate, the rate at which messages are transmitted along links
of the network, and the rate at which messages are deliv-
ered at the various destinations. The control of the system
is performed by allocating channel capacities to the pack-
ets, and by discretionary routing decisions. The equivalent
of flowtime in this system is the sojourn time of packets in
the system, or end-to-end delay. Often one needs to balance
throughput with flowtime: higher throughput entails more
congestion, and longer end-to-end delays.

Optimization of the steady state behavior of a commu-
nication network or of data switches is a problem of opti-
mal control of a queuing network, and often falls within the
realm of stochastic Markov decision processes.

2.3 Scheduling in a wafer fab

A wafer fab is a plant for the manufacturing of semicon-
ductor computer chips (cf. Van Zant 2004). It may cost
3 × 109 $, and will typically contain some 60,000 wafers in
process at any moment in time, with work in process (WIP)

sales value of 180 × 106 $. Here each wafer follows a re-
entrant route of several hundred steps through some 60 ma-
chine groups. At any point in time one needs to sequence
the work in front of each machine, which includes wafers in
different stages of completion along the route. Initially the
schedule starts with jobs in various stages (orders of wafers
currently in production), and it needs to take into account
future arriving jobs (future orders to be released into the
system later). Furthermore, in this large system there will al-
ways be some noise, so that any schedule derived at a certain
time may be subject to unforeseen changes in its execution
at later times, including a few large changes and many small
ones. Hence the schedule will need to be readjusted or recal-
culated as time moves on. Wafers may have due dates and
may incur holding costs. By focusing on the makespan we
will ignore these costs, but we will obtain high throughput
and high utilization of bottleneck machines.

For this type of problem, the solution of the combinator-
ial optimization problem, which yields the optimal schedule
for the current state of the job shop, is both intractable, be-
cause of the problem size, and of doubtful value, because of
system noise. At the same time, trying to optimize the steady
state of the wafer fab is both intractable and of little value
because a wafer fab never reaches a steady state: by the time
the initial load in the fab is exhausted (six weeks), the prod-
uct mix, the processing steps, and the equipment will have
undergone several changes. The wafer fab is an important
example of a large volume job shop. It is this third type of
problem which we wish to address in this paper.

Job shop scheduling by methods of combinatorial opti-
mization, and control of multi-class queuing networks by
optimization of the steady state are two areas of research
which have been widely investigated. We give a brief survey
of aspects relevant to this paper on both types of problems.
We then outline our approach for the wafer fab type of prob-
lem, which forms a bridge between the two approaches.

2.4 Combinatorial optimization for job shop scheduling

Scheduling of a jobshop to minimize makespan is an
NP-hard optimization problem (Garey and Johnson 1979;
Lawler et al. 1993). Furthermore, finding a fully polyno-
mial approximation scheme for this problem is NP-hard as
shown by Williamson et al. (1997). In fact, it is shown in that
paper that for a certain class of job shops, schedules with
makespan of length 5 exist, but it is NP-complete to decide
whether a schedule having a makespan of length 4 exists.
This implies that calculation of an approximation which has
performance ratio better than 5/4 is NP-hard. This hard ex-
ample of job shop problems is of a very special form: all
the jobs consist either of two or three activities, and each
activity is of unit length, while the number of machines is
comparable to the number of jobs.
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Taking a different approach, based on geometrical ideas
expressed by the Steinitz Lemma, Sevastyanov (1987, 1994)
(see also Barany 1981) describes a polynomial time algo-
rithm, which achieves additive suboptimality, bounded by a
quantity proportional to the duration of the longest activity.

A particular instance of job shop, the 10 × 10 job shop
scheduling problem, became quite famous in the 1970s–
1980s. The problem originated with Muth and Thompson
(1954) and consists of 10 jobs, each with its own route
through 10 machines: the routes as well as the processing
times in this problem were randomly generated, and the
problem was used as an illustration of a job shop in Conway
et al. (1967). In the 1970s it was picked up as a challenge,
and for more than 10 years the entire scheduling commu-
nity was trying to find the optimal schedule: upper and lower
bounds were posted and slowly converged until in 1987 Car-
lier and Pinson (1989) proved that the optimum makespan is
930. We will use this 10 × 10 example of a job shop as the
main benchmark for our experimentation in this paper.

These results indicate that to solve real job shop schedul-
ing problems one should look for heuristic methods. One
should not expect them to provide guaranteed performance
bounds for all problems, but one should tailor them to work
well for particular types of problems: they should require
a reasonable amount of computations, and provide a good
solution with guaranteed error size for most problems that
occur in practice.

A remarkably good heuristic, the shifting bottleneck
heuristic, based on the work of Balas (1968), is described
by Adams et al. (1988). This heuristic can solve the 10 × 10
problem in about 20 seconds, and it can solve some larger
problems to optimality or obtain heuristic solutions which
are close to the optimum, together with tight bounds, in rea-
sonable time. The shifting bottleneck heuristic serves as the
backbone in algorithms for a wide variety of variants of
job shop problems. More recent approaches are discussed
by Shmoys et al. (1994), Martin and Shmoys (1996), Sev-
astyanov and Woeginger (1998), and Jansen et al. (2000).
See also the book of Pinedo (2002).

2.5 Steady state control of multi-class queuing networks

In a queuing network there are streams of arriving jobs
of several types, requiring a sequence of processing activ-
ities from several servers. Jobs of the same type waiting for
the same activity along their route define a class, and each
server may serve queues of jobs of several classes, hence
the name multi-class. The state of the system is described
by the queue lengths of the various classes and by the resid-
ual processing and interarrival times. The policy which is
used to control these networks is nonpredictive, since there
is no exact data about the future. Furthermore, the initial
state of the system and individual arrival and service times

have little influence on the long-term behavior of the sys-
tem, and the current state at each time may also not be ob-
served in detail. The system is controlled based on proba-
bility distributions of the arrival streams and the process-
ing times of each class. It is assumed that the system will
run for a long time, and so under any homogeneous pol-
icy it will reach a steady state. Optimization of this steady
state is the subject of stochastic dynamic programming, also
named Markov decision processes. Optimal solutions and
algorithms to compute them exist, but the computational
complexity of these problems is even worse than the deter-
ministic job shop scheduling problem. It is shown by Pa-
padimitriou and Tsitsiklis (1999) that the general problem is
EXP-complete: it cannot be solved in polynomial time.

Some important problems have priority type index solu-
tions which are optimal, as discovered by Klimov and Git-
tins (1974, 1979), or nearly optimal. These include restless
bandit problems introduced by Whittle (1981) and marginal
productivity indexes introduced by Nio-Mora (2001, 2002,
2006).

Most often the optimal or near optimal solutions are
much more complex, and there have been several ap-
proaches to construct heuristics to solve them. One tech-
nique is to solve the actual Markov decision problem ap-
proximately, by approximating the optimal value function;
see, for example, Veatch (2005), and Moallemi et al. (2008).

Queuing networks in balanced heavy traffic can be ap-
proximated by diffusion processes, as suggested by Kushner
(1989, 1990, 2001) and by Harrison (1988). On the diffu-
sion scale input and output of the queues is approximated
by Brownian motion, and the queues in heavy traffic are ap-
proximated by reflected Brownian motion. The limiting be-
havior of queuing networks in heavy traffic and their control
has been the subject of much research, by Wein (1992), Har-
rison and Van Mieghem (1997), Tassiulas (1995), Dai and
Lin (2005, 2006), Stolyar (2004), and others.

Other heuristics for obtaining approximations to opti-
mal steady state control, based on both fluid and diffusion
scaling, were suggested by Meyn (2001), Henderson et al.
(2003), Chen et al. (2003). See also two recent books by
Chen and Yao (2003) and by Meyn (2008).

2.6 Large volume job shops and their modeling by finite
horizon multi-class queuing networks

Our approach to the scheduling of large volume job shops,
such as the wafer fab, incorporates the features of the com-
binatorial job shop problem and the features of the queuing
network steady state optimization problem. What is needed
here is an approach which bridges the gap between these
two types of problems. To do this we retain the dependence
on the batch of jobs to be scheduled; we assume there is a
finite set of N jobs to be scheduled. The number of jobs is



J Sched (2010) 13: 509–529 513

however large and involves a large total number of activities.
Because there will be noise in this system, we do not wish to
construct a schedule which will depend on the exact initially
specified routes and processing times of all the jobs. Instead
we wish to take advantage of the averaging that will occur
in the large number of activities.

To that purpose we consider for each machine all the
activities which are processed on that machine and divide
them into a fixed number of classes. The classes of each ma-
chine i will be the constituency of this machine, denoted by
k ∈ Ki . We then base our schedule not on the processing
times of activities of the individual jobs, but on the popula-
tion of processing times of the activities of the entire class.
This yields a probability distribution of processing times,
Gk for each class k. Similarly, we do not base our schedule
on the routes of the individual jobs: instead we consider all
the routing steps which follow the completion of the activ-
ities of class k. This yields routing probabilities Pkk′ where
a fraction Pkk′ of activities of class k are followed by an ac-
tivity of type k′, and where a fraction 1 − ∑

k′ Pkk′ of the
jobs complete their processing and leave the system after an
activity of class k.

This is exactly the model of a multi-class queuing net-
work (cf. Harrison 1988), in which there are I machines
and K classes. Jobs of class k are served according to ser-
vice time distribution Gk , and are then routed to class k′
with probability Pkk′ or leave the system with probability
1−∑

k′ Pkk′ . Here the queue length Qk(t) denotes the num-
ber of jobs of type k in the system at time t .

To describe the large volume job shop, we specify as
Qk(0) the initial number of jobs of type k, for k = 1, . . . ,K ,
so that N = ∑

k Qk(0). Since we are only interested in
scheduling this finite batch of jobs, there are no exogenous
arrivals in this multi-class queuing network, and we only
control it until the initial jobs are completed. We have thus
modeled our large volume job shop as what we will call a
finite horizon multi-class queuing network.

Note: One can include release times in this finite horizon
multi-class queuing network model, by letting all the jobs
be initially in class k = 0, with its own dedicated machine 0
which releases the jobs into the system.

Evaluation of the performance Combinatorial optimiza-
tion involves a finite number of possible schedules with a
unique verifiable optimum. It is then possible to evaluate ex-
actly the performance of a policy for each instance. It is the
accepted practice to evaluate the heuristic on the basis of
its worst-case performance: the performance for the worst
problem instance. This worst-case performance guarantee
may often not be representative of the performance of the
heuristic on standard problems. In contrast, queuing models
which are stochastic require further modeling assumptions:

it is assumed that the problem arises from a limited popula-
tion of problems, which is described by a probability distri-
bution, and one then performs an average case analysis for
this population of problems, by evaluating the expected per-
formance. If the probabilistic assumptions are reasonable,
the performance evaluation will indeed reflect the actual per-
formance.

For a large volume job shop one would in practice have
a well-defined population of jobs, routes, and processing
times, and the distribution of class processing times and the
routing probabilities may be quite realistic. We therefore
take the approach of evaluating the expected performance,
under probabilistic assumptions.

3 The fluid solution

Consider the example in Fig. 1, and assume that we can di-
vide each job into two half-sized jobs, as described in Fig. 2.
Using the half-sized blocks, subject to the original routes,
we can repeat the schedule of Fig. 1 twice, as done on the
top of the figure. However, we can now do better—we are
now able to schedule all the work without any idle time on
any of the machines, as seen on the bottom part of the fig-
ure. It is important to note that this half job representation
allows us more than just the preemption of each activity in
the middle. It actually allows us to start the next half activity
on the route immediately when a half activity is finished.

For any job shop scheduling problem the total processing
time of all the jobs on each one of the machines imposes a
lower bound on the makespan; this is known as the machine
lower bound. Also, the total duration of the whole route of
each job imposes a lower bound on the makespan, known as
the job lower bound. With many jobs we expect the machine
lower bound to be much larger than the job lower bound. In
Fig. 1 the makespan is larger than either of the lower bounds,
but with the two repeated half jobs in Fig. 2 the machine
lower bound is achieved, and the job lower bound, which is
now half of its original value, has become almost irrelevant.

Fig. 2 Improved makespan for two half-sized job shops
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If we were to look at any job shop, and divide each of the
jobs into N jobs with 1/N processing times, then the job
lower bound would become very small. At the same time,
we would guess that similar to Fig. 2, there will be very
little idleness, and the makespan can near the machine lower
bound.

The fluid problem takes this process of divisibility to the
limit, and indeed in the fluid problem the makespan equals
the machine lower bound, and there exists a very simple pol-
icy which achieves it (it is far from unique). We describe
now the fluid job shop, and present this result as a theorem.
The result is well known, and various versions of this the-
orem were proved in the past, starting with Weiss (1995),
where it was first shown for a re-entrant line. It was proved
again in the context of job shop scheduling in Bertsimas and
Gamarnik (1998, 1999, 2001), and a proof in the context of
multi-class queuing networks is given in the book of Chen
and Yao (2003) §12.3.2. For completeness and for clear ex-
position of the fluid ideas, we present the proof again here,
in a version that is suitable for a general large volume job
shop that is modeled as a finite horizon multi-class queuing
network.

Intuitively, imagine that we dismantle each job into tiny
job molecule particles, each of which can move through the
route of the job on its own. We assume head-of-the-line pri-
ority among the particles of each job, so that in each activity
the particles of each job will arrive and depart starting from
the first particle, in their original order. We can now imag-
ine each machine to be serving all the particles that it has
waiting in a round robin fashion. Then the inventory of each
activity of each job will decrease linearly, simultaneously
with inventories of other jobs sharing the same class. Parti-
cles will then move on to their next class out of each ma-
chine in fixed proportions, so that the inflow and outflow of
each of the classes in each of the machines will be at a linear
rate. By adjusting the round robin rates for each job in each
class, the inventories at each machine will reduce linearly to
zero exactly in the time determined by the machine lower
bound of the bottleneck machine. Note that classes which
start off with zero inventories will have particles moving in
and out at equal rates, and will stay with negligible inventory
throughout.

We now formalize this intuitive discussion. To do so we
look at our job shop scheduling problem as a finite horizon
queuing network in which the jobs are classified into classes
k = 1, . . . ,K . We let Ik(n, j) be the indicator (value 1 for
yes, 0 for no) that the processing activity of step j of job n

is a class k activity. We write the initial number of jobs of
class k in the job shop:

Qk(0) =
N∑

n=1

Ik(n,1).

We also write the total number of class k activities, included
all the steps of all the jobs:

Q+
k (0) =

N∑

n=1

rn∑

j=1

Ik(n, j),

and the total number of route transitions from class k to
class k′:

Φ+
kk′ =

N∑

n=1

rn−1∑

j=1

Ik(n, j)Ik′(n, j + 1).

We now describe the dynamics of the job shop. For k ∈ Ki

denote by Uk(t) the total time which machine i allocates to
the processing of jobs of class k. Let Sk(Uk(t)) count the
number of jobs which have completed their processing at
class k after a total processing time of Uk(t), and have left
class k by time t , and let Φkk′(Sk(Uk(t))) count how many
of these jobs were routed to class k′ on their next processing
step. Then Qk(t), the number of jobs in class k at time t

(queue k), is

Qk(t) = Qk(0) − Sk

(
Uk(t)

) +
∑

k′
Φk′k

(
Sk′

(
Uk′(t)

))
, (1)

and the total number of activities of class k which at time t

have not yet completed processing is

Q+
k (t) = Q+

k (0) − Sk

(
Uk(t)

)
. (2)

This is a complete description of the dynamics of the job
shop in terms of the finite horizon queuing network, but it
is subject to several obvious as well as hidden additional
constraints. In particular, queues have a nonnegative inte-
ger number of jobs in them, time can be allocated only
to queues with ≥1 jobs, and time allocation starts at 0 at
time zero, is continuous nondecreasing and can only in-
crease at a rate ≤1. This means that Uk(t) are Lipschitz,
with constant 1, and therefore have a derivative defined al-
most everywhere. We denote the derivative by uk(t) wher-
ever it is defined, so that uk(t) = U̇k(t) = d

dt
Uk(t) and

Uk(t) = ∫ t

0 uk(s) ds. In fact, for a job shop schedule the only
possible time allocation rates are uk(t) ∈ {0,1}, and uk(t)

can only change from 1 to 0 when Sk(Uk(t)) increases, i.e.,
when a job in class k completes its processing. Writing some
of these requirements, we get constraints which supplement
(1), (2),

Qk(t) is integer and ≥ 0,

Uk(0) = 0, uk(t) ∈ {0,1},
∑

k∈Ki

uk(t) ≤ 1,

if Qk(t) = 0 then uk(t) = 0,

uk(t) can decrease only when Sk

(
Uk(t)

)
increases.

(3)
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The fluid model of the job shop problem relaxes these
constraints: we now assume that the jobs are composed of
fluid, so that it is no longer required that the queue lengths
be integer. We also assume that the machines are infinitely
divisible and can allocate processing at rates which are real
numbers between 0 and 1. We also assume that all jobs of a
class are processed at a uniform rate, and are routed in fixed
proportions.

To obtain the constant processing rate we calculate the
total amount of processing required for class k:

Tk =
N∑

n=1

rn∑

j=1

Ik(n, j)x(n, j).

The average processing time mk and average processing rate
μk = 1/mk for class k activities and the routing fraction Pkk′
from class k to k′ are given by

mk = Tk/Q
+
k (0), μk = Q+

k (0)/Tk,

Pkk′ = Φ+
kk′/Q

+
k (0).

With these quantities we can now write the relaxed con-
straints for the fluid network. Denoting by qk(t), q

+
k (t) the

immediate and the total class k fluid in the system at time t ,
we have the fluid dynamics:

qk(t) = qk(0) − μk

∫ t

0
uk(s) ds

+
∑

k′
Pk′kμk′

∫ t

0
uk′(s) ds, (4)

q+
k (t) = q+

k (0) − μk

∫ t

0
uk(s) ds, (5)

where the initial conditions are qk(0) = Qk(0), q+
k (0) =

Q+
k (0).
In matrix notation we define the constituency matrix C

with elements ci,k = 1 if k ∈ Ki , ci,k = 0 otherwise, and the
input-output matrix R defined by

R = (
I − P T

)
diagonal(μ)

where I is the unit matrix, T denotes transpose, and diagonal
(μ) is the diagonal matrix of processing rates. We also let 1
denote a vector of 1’s, and we let 1q(t)�=0 be the indicator of
the event that not all the fluid queues are empty.

We then get the fluid minimum makespan problem:

min
∫ ∞

0
1q(t)�=0 dt

s.t. q(t) = q(0) −
∫ t

0
Ru(s) ds,

Cu(t) ≤ 1,

u(t), q(t) ≥ 0.

(6)

Theorem 3.1 Let Ti = ∑
k∈Ki

Tk be the total workload of
machine i, and let i∗ ∈ arg max{T1, . . . ,TI } be a bottleneck
machine (it may be unique or there may be several), and
T∗ = max{T1, . . . ,TI } be the machine lower bound for the
job shop. Then the fluid problem (6) achieves as optimal ob-
jective value the machine lower bound T∗. Optimal machine
allocation rates and optimal fluid levels (nonunique) for the
various classes are given, for 0 < t < T∗, by

uk(t) = q+
k (0)

μkT∗ ,

qk(t) = qk(0)

(

1 − t

T∗

)

, (7)

q+
k (t) = q+

k (0)

(

1 − t

T∗

)

.

Proof Clearly, the value of T∗ is a lower bound for the fluid
problem. Hence all we need to show is that the solution (7)
satisfies the constraints, and reaches this objective value.

Calculating Cu(t), for each i, we have
∑

k∈Ki
uk(t) =

∑
k∈Ki

q+
k (0)

μkT∗ = Ti

T∗ ≤ 1. Clearly, also u(t) ≥ 0.

Calculating q+
k (t), for each k, for these machine alloca-

tion rates:

q+
k (t) = q+

k (0) − μk

∫ t

0
uk(s) ds

= q+
k (0) − μk

q+
k (0)t

μkT∗ = q+
k (0)

(

1 − t

T∗

)

.

Calculating qk(t), for each k, for these machine alloca-
tion rates:

qk(t) = qk(0) − μk

∫ t

0
uk(s) ds +

∑

k′
Pk′kμk′

∫ t

0
uk′(s) ds

= qk(0) − t

T∗

(

q+
k (0) −

∑

k′
Pk′kq

+
k′ (0)

)

= qk(0) − t

T∗

(

q+
k (0) −

∑

k′
Φk′k

)

= qk(0) − t

T∗

(
N∑

n=1

rn∑

j=1

Ik(n, j)

−
∑

k′

N∑

n=1

rn−1∑

j=1

Ik′(n, j)Ik(n, j + 1)

)

= qk(0)

(

1 − t

T∗

)

− t

T∗

(
N∑

n=1

rn∑

j=2

Ik(n, j)

−
N∑

n=1

rn−1∑

j=1

Ik(n, j + 1)
∑

k′
Ik′(n, j)

)

= qk(0)

(

1 − t

T∗

)

.
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Clearly, for all 0 < t < T∗, qk(t) ≥ 0, and furthermore,
qk(T∗) = 0 for all k. Hence the objective for this solution
equals T∗. �

Note By using constant machine allocations the fluid lev-
els in each class decrease linearly from the initial value to
0 by time T∗. Any class which did not have any fluid ini-
tially will remain at a level qk(t) = 0 throughout. This will
be achieved by having equal rates of inflow and outflow for
such classes. In this solution every bottleneck machine is
working at full utilization. Machines which are not bottle-
necks work at a constant less than full utilization, the uti-
lization is Ti/T∗.

3.1 Example: The ten by ten job shop scheduling problem
(Muth and Thompson 1954)

The data for this example is given in Table 1. There are 10
machines and 10 jobs, the routes are permutations of the
machines, so each route visits all the machines exactly once.
Viewed as a finite horizon queuing network, there are 100
activities, so there are 100 classes. We shall denote class k

by the pair (n, j) which is step j of job n. The cell of row
n column j of the table refers to class (n, j), with σ(n, j)

as the top entry, and x(n, j) as the bottom entry. The total
work for each job is given in the right margin column of the
table. The job lower bound is for job 4, and equals 655.

Class k = (n, j) is in the constituency of machine
σ(n, j), and it has a single activity that goes through
this class. Hence, q(n,1) = 1, q(n,j) = 0, j = 2, . . . ,10, and
q+
(n,j)

= 1 for all (n, j). The processing duration for class
k is simply Tk = x(n, j). The machine workloads Ti , i =
1, . . . ,10 are given at the bottom of Table 1. The bottleneck
machine is machine 4, with T∗ = 631.

The fluid solution is very simple. The machine alloca-
tion to class k = (n, j) is simply u(n,j)(t) = x(n,j)

T∗ . The
class buffer content is q(n,1)(t) = (1 − t

T∗ ), while for j =
2, . . . ,10 q(n,j)(t) = 0. For each job n, fluid flows out of
the class of step 1 of the job, at rate t

T∗ , through all the class
buffers of the other steps (which have an input rate equal to
the output rate and hence stay empty), and out of the last
step. The system is empty at T∗ = 631. Figure 3 describes
the fluid picture. It is this picture which we wish to track for
large volume job shops.

Table 1 The 10 × 10 job shop
scheduling problem Job Step

1 2 3 4 5 6 7 8 9 10 Total

1 1 2 3 4 5 6 7 8 9 10

29 78 9 36 49 11 62 56 44 21 395

2 1 3 5 10 4 2 7 6 8 9

43 90 75 11 69 28 46 46 72 30 510

3 2 1 4 3 9 6 8 7 10 5

91 85 39 74 90 10 12 89 45 33 568

4 2 3 1 5 7 9 8 4 10 6

81 95 71 99 9 52 85 98 22 43 655

5 3 1 2 6 4 5 9 8 10 7

14 6 22 61 26 69 21 49 72 53 393

6 3 2 6 4 9 10 1 7 5 8

84 2 52 95 48 72 47 65 6 25 496

7 2 1 4 3 7 6 10 9 8 5

46 37 61 13 32 21 32 89 30 55 416

8 3 1 2 6 5 7 9 10 8 4

31 86 46 74 32 88 19 48 36 79 539

9 1 2 4 6 3 10 7 8 5 9

76 69 76 51 85 11 40 89 26 74 597

10 2 1 3 7 9 10 6 4 5 8

85 13 81 7 64 76 47 52 90 45 560

Machine workloads for the 10 × 10 problem

Machine i 1 2 3 4∗ 5 6 7 8 9 10

Ti 493 548 576 631∗ 534 416 491 499 531 410
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Fig. 3 The form of the fluid solution of the 10 × 10 example

4 Approaching the machine lower bound

In the previous section it was established that the fluid so-
lution for a job shop scheduling problem has the machine
lower bound as its makespan. Intuition then suggests that
the minimum makespan of a large volume job shop should
be close to this lower bound. This is in fact true in various
situations, and furthermore, heuristics which come close to
the optimum and to the lower bound can be developed for
these situations. In this section we survey various papers that
discuss heuristics which indeed achieve this lower bound as-
ymptotically, as the volume of the job shop increases.

The various heuristics differ in three ways: in the setup,
i.e., the type of large volume job shop that is considered, in
the scheduling algorithm, and in the degree to which they
approach the lower bound. The following table thumbnails
some of these features of the various papers. More details
and further explanations are given in the detailed survey that
follows in Table 2.

4.1 The synchronized lots algorithm of Bertsimas and
Gamarnik (1999)

Bertsimas and Gamarnik (1999) consider the following
setup for their large volume job shop problem: there is
a fixed number of machines numbered i = 1, . . . , I , and
a fixed set of job types, numbered m = 1, . . . ,M , each
with its route σ(m,1), . . . , σ (m, rm) and processing times
x(m,1), . . . , x(m, rm). We use K = {k : k = (m, j), j =
1, . . . , rm, m = 1, . . . ,M} to denote the set of activities
for all these jobs, and Ki = {k : σ(k) = i} to denote the
constituency of machine i. Let rmax = max{r1, . . . , rM} de-
note the length of the longest route. Let yi = ∑

k∈Ki
x(k)

and ymax = max{y1, . . . , yI } denote the individual machine
work requirements and the maximal machine lower bound
for performing one repetition of this set of jobs. Then
I,M, rmax, ymax quantify the job shop setup.

For the large volume job shop with this setup Bertsimas
and Gamarnik assume that there are Nm jobs of type m to
be scheduled, with a total number of jobs N = ∑M

m=1 Nm.
From this one can calculate the fluid solution with makespan
(that equals the machine lower bound) T ∗.

Bertsimas and Gamarnik propose the following algo-
rithm which we refer to here as a synchronized lots algo-
rithm: choose a number Ω , to be determined soon. Deter-
mine a lot size for each type of job: am = 
NmΩ

T ∗ � (here

·� denotes rounding upwards). Perform a sequence of lot
schedules, � = 1,2, . . . , each of which lasts for a duration
of Ω + ymax. For lot � at time (� − 1)(Ω + ymax), assign
activities to each machine as follows: at machine i for job
type m, and activity k = (m, j) ∈ Ki , consider for process-
ing only such jobs which are available for processing of ac-
tivity k at that time, and choose for processing all of them
or am of them, whichever is smaller. This is gated service
with an upper bound: only jobs available at the machine at
the start of a lot-schedule will be processed and not any later
arrivals, and no more than am activities of class (m, j) ∈ Ki

Table 2 Heuristics for large
volume job shops using the fluid
approach

Job shop setup Type of algorithm Optimality gap Reference

N
M

copies of a set Synchronized O(1) Boudoukh et al. (1998),

of M fixed jobs cyclic pipeline Bertsimas and Gamarnik (1999)

Nm copies of fixed Synchronized O(
√

N) Bertsimas and Gamarnik (1999)

m = 1, . . . ,M jobs O(
√

N) lots

Nm copies of fixed Greedy tracking O(1) Bertsimas and Sethuraman (2002)

m = 1, . . . ,M jobs

Nm random jobs on Synchronized O(logN) Dai and Weiss (2002)

routes m = 1, . . . ,M cyclic pipeline

with safety stocks

N random jobs Greedy tracking Between O(1) Indicated by

and O(
√

N) simulation here,

and by Nazarathy and Weiss (2009)
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will be processed. Perform the processing of the lot at each
machine and then idle. Clearly, each machine can process
its lot continuously with no idling until it is complete. It is
seen immediately that each machine will complete its lot in
a duration which is ≤Ω +ymax. It will then idle until the end
of the � period, at �(Ω + ymax).

This processing of gated lots with bounded lot size pro-
duces synchronization between the machines: in the first lot
am jobs of type m are available to receive the first process-
ing step of their route. After processing of the first lot, these
jobs are available for scheduling of the activity of the second
step on their route, so at the beginning of the second lot, the
first and second steps on each route will have am jobs avail-
able. After rmax lots all the machines will be synchronized:
each machine i will perform exactly am activity processing
steps for each activity k = (m, j) ∈ K, for as long as there
are any such activities left in the job shop. All the first step
activities of all the Nm jobs of type m will then be com-
pleted after 
Nm/am� lot-schedules. By definition of am,

Nm/am� ≤ T ∗

Ω
. Hence, all the first step activities of all the

jobs on all the routes will be completed after no more than

T ∗

Ω
� lot-schedules. Because of the synchronization, the last

activities of all the jobs on all the routes will be completed
by rmax − 1 periods later. So the synchronization heuristic
will achieve a makespan T Lots which is bounded by

T Lots ≤
(

T ∗

Ω
+ rmax

)

(Ω + ymax)

= T ∗ + rmaxΩ + T ∗ymax

Ω
+ rmaxymax.

This is minimized (similar to EOQ lot sizing in Inventory
theory), by choosing Ω = √

T ∗ymax/rmax, yielding

T ∗ ≤ T Opt ≤ T Lots ≤ T ∗ + 2
√

T ∗rmaxymax + rmaxymax.

As can be seen, the synchronized lots-schedule is asymptot-
ically optimal as N → ∞, with an additive optimality gap
of order O(

√
N).

4.2 The cyclic pipeline schedules of Bertsimas and
Gamarnik (1999) and Boudoukh et al. (1998, 2001)

Bertsimas and Gamarnik (1999) and Boudoukh et al. (1998,
2001) consider a different setup, which is more restrictive,
but achieves a tighter bound. Once again they assume a fixed
set of machines and a fixed set of jobs, as above, and a set
of fixed integers bm, m = 1, . . . ,M . The number of jobs of
type m is now restricted to be Nm = bmÑ . Ñ is called the
multiplicity of the job shop scheduling problem. The total
number of jobs is then N = Ñ

∑
m bm

One can now compute T ∗ for any number of repeti-
tions Ñ , and define Ω = T ∗/Ñ . One then modifies the syn-
chronization algorithm somewhat: the lot sizes are deter-
mined by bm instead of am, and the processing duration of
each lot is simply Ω (instead of Ω + ymax).

The job shop schedule will be completed in Ñ + rmax −1
lots, and so the makespan of this cyclic heuristic T Cyclic will
satisfy

T ∗ ≤ T Opt ≤ T Cyclic ≤ T ∗ + Ω(rmax − 1).

Note that Ω(rmax − 1) is a fixed quantity, independent of Ñ ,
while T ∗ grows linearly with Ñ . This synchronized cyclic
schedule is asymptotically optimal as N → ∞, with an ad-
ditive optimality gap of order O(1).

We may without loss of generality consider only the case
of bm = 1, by considering bm copies of job of type m as
if they are different types. There are now M types (corre-
sponding to the sum of the original bms), with Ñ repetitions
of each. This case was examined more closely by Boudoukh
et al. (1998, 2001).

It is now seen that the schedule is indeed cyclic: there is
an initial synchronization phase, which lasts at most rmax −1
lots. This is the buildup part of the schedule. After that the
schedule of each lot includes the processing of exactly one
activity of each class k = (m, j), and this continues until the
Ñ th lot is completed. This is the cyclic part of the schedule.
Following lot Ñ one has again at most rmax − 1 incomplete
lots until the full schedule is completed. This is the runout
part of the schedule.

One can see in this cyclic schedule the phenomena of
pipelining. Clearly, since only jobs which are available at
the beginning of the cycle are scheduled in this cycle, all
the activities which are processed within a cycle belong to
different jobs: the pipeline holds at any time one job for
each of the different k = (m, j) activities, and these all
move down the pipeline one step at a time. Cyclic sched-
ules have also been considered previously, for various flow
shop scheduling problems, in Hanen (1994), Hochbaum and
Shamir (1991), Matsuo (1990), McCormick et al. (1989),
Roundy (1992).

4.3 The greedy fluid tracking algorithm of Bertsimas
and Sethuraman (2002)

Bertsimas and Sethuraman (2002) consider the same setup
as Bertsimas and Gamarnik (1999) in Sect. 4.1, with Nm

copies of jobs (the types) m = 1, . . . ,M . They improve on
the results of Bertsimas and Gamarnik (1999) by achieving
an additive upper bound which is O(1), similar to the bound
for the cyclic schedule of Sect. 4.2, in which the numbers of
jobs of each type were equal.

The idea is as follows. The fluid solution can be viewed as
a processor sharing policy, and the cyclic schedule of Bert-
simas and Gamarnik (1999), Boudoukh et al. (1998, 2001)
in Sect. 4.2 can be viewed as a round robin approximation
to this processor scheduling schedule. When the number of
jobs of each type is unequal, round robin no longer works.
To approximate the fluid solution, Bertsimas and Gamarnik
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(1999) in the synchronized lot algorithm have divided all the
activities into lots of equal size, and approximated the fluid
solution by performing a round robin of lots. However, the
size of the lots O(

√
N) led to an additive gap of O(

√
N).

The problem of approximating the performance of
processor sharing by processing discrete individual tasks
without machine splitting or preeemption is frequently en-
countered in computing and communications, and several
simple and elegant methods have been proposed when round
robin does not work (see Demers et al. 1990; Greenberg
and Madras 1992; Parekh and Gallager 1993, 1994; Zhang
1995). Bertsimas and Sethuraman adapt one of these meth-
ods, the fair queuing based on start times (FQS) algorithm.

The algorithm works as follows: number the Nm jobs of
type m by n = 1, . . . ,Nm. Each of these jobs will need to un-
dergo processing activities (m,1), . . . , (m, rm), of durations
x(m,1), . . . , x(m, rm). Define the following.

Discrete start time DSm,j (n) = the actual time at which
the nth processing of activity (m, j) starts.

Fluid start time

FSm,j (1) = 0,

FSm,j (n) = FSm,j (n − 1) + T ∗

Nm

, n > 1.

Nominal start time

NSm,1(n) = FSm,1(n),

NSm,j (1) = NSm,j−1(1) + x(i,k), j > 1,

NSm,j (n) = max

{

NSm,j (n − 1) + T ∗

Nm

, DSm,j−1(n)

}

,

n, j > 1.

The greedy fluid tracking algorithm is extremely simple:
whenever a machine becomes free, or whenever a job arrives
at an idle machine, this machine will start processing the job
with the lowest nominal start time NS.

Bertsimas and Sethuraman (2002) show first that all
available jobs do indeed possess a nominal start time, so
that the algorithm can be executed, and they show that the
makespan T Greedy Tracking has the following worst-case per-
formance bounds:

T ∗ ≤ T Opt ≤ T Greedy Tracking ≤ T ∗ + max
i=1,...,I

(2zi + yi),

where the quantities zi, yi for machine i are derived from
processing of a single lot of the M jobs,

zi = max
{
xm,j : σ(m, j) = i

}
,

yi =
∑

(m,j):σ(m,j)=i

xm,j .

The greedy tracking algorithm is of course asymptot-
ically optimal as N → ∞, with an additive performance
gap O(1).

An important feature of the greedy tracking algorithm is
that, while the nominal start times track the fluid solution
(i.e., they are close to the fluid solution), the actual sched-
ule (i.e., the actual start times) need not track the fluid solu-
tion: jobs may be scheduled well ahead of their nominal start
times. For example, if all the activities which a machine is
processing are first step activities of several types of jobs,
and if this machine is not a bottleneck machine, then it will
work with no idling until it completes all its work at the time
Ti , well ahead of T ∗. It is for this reason that we refer to this
algorithm as greedy tracking.

4.4 Scheduling similar but nonidentical jobs in a cyclic
schedule

In all the papers which we surveyed so far the job shops had
a finite set of fixed processing times, x(m, j), j = 1, . . . , rm,
m = 1, . . . ,M , and all the jobs in the large volume job shop
had exactly these processing times. This is a highly unrealis-
tic assumption. We now describe the work of Dai and Weiss
(2002) in which processing times are not restricted.

Dai and Weiss (2002) consider a setup similar to Bert-
simas and Gamarnik (1999), Boudoukh et al. (1998, 2001)
described in Sect. 4.2: there are m = 1, . . . ,M job types,
with fixed routes (m,1), . . . , (m, rm), and Ñ jobs of each
type. The difference is that now the processing times of the
Ñ jobs of route m are not identical. We now have processing
times Xm,j (n) for step j of job n of type m. Dai and Weiss
model these processing times as drawn independently from
some processing time distributions with means x(m, j).

They suggest a schedule which is similar to the cyclic
schedule of Bertsimas and Gamarnik (1999), Boudoukh
et al. (1998, 2001) described in Sect. 4.2, which they name
a safety stock offset cyclic schedule. We describe here a
modified version of this schedule—this modification makes
the schedule more natural, without essentially changing the
analysis and results presented in Dai and Weiss (2002).

Locate the bottleneck machine based on the average
processing times, x(m, j), by calculating the fluid makespan
for these average processing times, and let T ∗ now denote
the estimated machine lower bound. Without loss of gener-
ality, assume the bottleneck is machine 1.

Order the activities of all the job types in a single se-
quence which is consistent with the order of the individual
routes (this can be done for example by concatenating all the
steps of routes 1, . . . ,M). Redefine the job shop as a single
type job shop with the single combined route (a re-entrant
line) with ordered steps k = 1, . . . ,K , and order the N = Ñ

modified jobs as n = 1, . . . ,N . Processing at each machine
will be prioritized by this order of the jobs.
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Determine safety stocks for each activity. These should
be of order of magnitude Sk = O(logN).

Perform the schedule in 3 phases.

Buildup phase Build up safety stocks, by processing enough
job steps so that machine i will have Sk jobs waiting for the
performance of step k for every k ∈ Ki . This step will re-
quire time T0 (estimated as O(logN)).

Main phase, with cyclic schedule Perform N cycles, in
which each machine processes exactly one job from each
activity k ∈ Ki . The timing of the cycles is determined
by machine 1, which performs successive cycles without
any idling. The remaining machines start each cycle at the
completion of the previous cycle on that machine, or when
machine 1 starts it next cycle, whichever is later. This main
phase ends when machine 1 is forced to idle, because it has
no available jobs to perform a full cycle. This phase will
require time T̃ ∗ (estimated as close to T ∗).

Runout phase Complete all the remaining jobs in some ar-
bitrary nonidling fashion. This phase will require time T1

(estimated as O(logN)).

This policy is similar to the Drum Buffer Rope policy of
Goldratt and Cox (1987), which is intended for flow shops:
here the bottleneck keeps a buffer with safety stock which
prevents it from idling. The buffer is fed by the other ma-
chines to keep the level of the safety stocks, the bottleneck
determines the cycle time, and the other machines idle when
they complete their stocking up of the buffer. Dai and Weiss
use this idea in a job shop setting.

We make a few more comments on this policy.
The schedule is online and decentralized: In particular, in

the main phase each machine picks up the next job by order
of jobs, and the only common signal which is needed is the
completion time of each cycle at the bottleneck machine,
which permits the other machines to start the next cycle.

Jobs are not necessarily performed according to first-in
first-out (FIFO) order at each machine. The priority order of
jobs is according to their initial numbering from 1 to N . This
is called time stamping, and is usually better than an FCFS
policy in multi-operation manufacturing environments or in
a multi-class queuing network. It has the advantage that jobs
can be ordered by due dates.

Within each machine, serving jobs according to time
stamp priorities results in a partial last buffer first served
(LBFS) policy. This happens because those jobs which are
waiting for later activities will have an earlier time stamp
than jobs that are waiting for activities which are earlier in
the processing route; therefore, they will be served first.

By choosing the size of the safety stocks as Sk =
O(logN), the probability that any machine will exhaust its
safety stock is kept under control.

For technical reasons Dai and Weiss make the following
assumption about the processing time distributions.

Assumption 4.1 (Existence of exponential moments) The
probability distributions of the random processing times
Xm,j (n) satisfy

E
(
eθXm,j (1)

)
< ∞ for some θ > 0,

which ensures that the P(Xm,j (n) > x) decreases exponen-
tially fast.

This assumption is valid in many cases; in particular, it is
reasonable for processing times in a manufacturing or ser-
vice environment. It may however not hold in computing or
data communication systems, where file sizes and therefore
also transmission and computing times may be extremely
variable, and consist of items of many differing scales (re-
ferred to as mice and elephants in the computing literature).
Dai and Weiss prove the following.

Theorem 4.2 Consider random instances of the job shop
with fixed routes. Assume that there is a single bottleneck
machine, and that the processing time distributions possess
finite exponential moments. Let N denote the multiplicity.
Let T Opt denote the (random) optimal makespan and T H de-
note the (random) makespan of the safety stock offset cyclic
schedule, with safety stocks

Sm,j = 
c2 logN� for j = 2, . . . , rm, m = 1, . . . ,M.

There exist constants c1 > 0 and c2 > 0 such that

P
{
T H − T Opt ≥ c1 logN

} ≤ 1/N for all N ≥ 1.

In practical terms this is asymptotically optimal as
N → ∞, with an additive optimality gap of O(logN).

The reason for this O(logN) additive optimality gap is
that the levels of the safety stocks fluctuate over time much
like the queue length process in a queuing system. If the
safety stocks are exhausted, the cyclic schedule is disrupted.
Hence, to avoid the safety stocks from being exhausted, ini-
tial safety stocks are set to be larger than the largest fluc-
tuation. This largest fluctuation of the safety stocks, dur-
ing the scheduling of N cycles, corresponds to a maximal
queue length in a queuing system while it serves N cus-
tomers. The latter is of order O(logN) if traffic intensity
is less than 1, and if processing times possess exponential
moments. Hence, under the assumptions of Theorem 4.2 the
necessary safety stocks are O(logN).

5 An on-line tracking rule for general large volume job
shops

The large volume job shops of Sect. 4 assumed a fixed set of
M routes, with all the N jobs following those same routes
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as N becomes large. In this section we generalize the setup
to jobs which follow arbitrary routes of bounded length. We
present a scheduling rule which does not make any assump-
tions regarding the structure of the job shop problem and
is extremely easy to implement. This schedule was briefly
discussed under the name of greedy fluid algorithm (GFA)
by Boudoukh et al. (2001). Our schedule is based on the
classification of the jobs into classes, k ∈ K, as described
in Sect. 3. Our scheduling rule attempts to track the fluid
solution, in a way which is similar to the greedy tracking
algorithm of Bertsimas and Sethuraman (2002) described in
Sect. 4.3.

We achieve the tracking by assigning on-line priorities to
classes of jobs at any time t . Recall that we use Qk(t) to de-
note the count of jobs in class k at time t , and we use Q+

k (t)

to denote the count of all the activities of class k which are
still to be completed after t . The priority of class k at time t

is determined by comparing Q+
k (t) with q+

k (t), which is the
amount of fluid that still needs to go through class k at time
t , as given in the fluid solution (7). Define the lag-fraction
for class k at time t as

Q+
k (t) − q+

k (t)

q+
k (t)

. (8)

This measures by how much the actual schedule of jobs of
class k is lagging behind the optimal fluid solution, mea-
sured as a fraction of the fluid solution value. Classes which
have a higher value of lag-fraction have higher priority.

The lag-fraction is equivalent to a simpler priority index,
which is easily derived. Recall that Q+(0) = q+(0), and use
(7) to write

Q+
k (t)

Q+
k (0)

=
(

Q+
k (t) − q+

k (t)

q+
k (t)

+ 1

)/(

1 − t

T∗

)

,

which leads to the following.

An online fluid tracking policy At each time t and for
each machine i that is free, denote Ki (t) = {k ∈ Ki :
Qk(t) > 0}. This is the set of available activities of ma-
chine i. If Ki (t) = ∅, machine i idles. Otherwise, machine i

will process an activity of class k of one of the available
jobs, where

k ∈ arg max
k′∈Ki (t)

Q+
k′(t)

Q+
k′(0)

. (9)

When the argmax is not unique, choose k using an arbitrary
tie-breaking rule. When there are several jobs of class k,
choose one using an arbitrary rule.

As we can see, only two things are necessary for this pol-
icy: first we need to classify the activities of all the jobs into
a finite fixed number of classes, and second we need to ob-
tain Q+

k′(0), the total number of times that activities of each

class k will be performed. Note also that we can use equiva-
lently

k ∈ arg min
k′∈Ki (t)

S+
k′ (t)

Q+
k′(0)

,

where we only need to keep track of service completion of
activities of each class k′.

If all the jobs follow a fixed set of routes, a natural classi-
fication is simply the union of the steps of all the routes. In
the 10×10 example this would lead to 100 classes. For each
of the m = 1, . . . ,M routes there would then be Nm jobs in
the large volume job shop, and all the classes of route m

will have Q+
k′(0) = Nm. A more general situation is a job

shop in which each machine (as is the case in a manufac-
turing environment) has a fixed set of activities that it does,
and each job has some individual fixed sequence of activ-
ities, of a bounded length. The number of possible routes
could then be much larger than the number of jobs even
in a large volume job shop. For example, for the 10 × 10
model, we could assume that each of the 10 machines has
10 activities which it can perform, and each job consists
of 10 steps that go through all the machines. The number
of 10 step routes which visit each machine exactly once is:
10!1010 ≈ 3.6 × 1016 routes. In our simulations we experi-
mented with job shops of up to 10 · 216 jobs. We note that
10!1010/(10 · 216) ≈ 510 so the number of jobs is negligible
compared to the number of routes. To obtain Q+

k′(0) in that
case we would need to count the visits of all the jobs to each
class.

More generally, we can apply our fluid tracking policy
also if Q+

k′(0) is not known exactly, by using an estimate.
For example, if job routes are stochastic, and we know what
proportion of jobs starts at each k, given by a row probability
vector (αk)

K
k=1, and we know the routing probabilities Pk,k′

from class k to k′, then for a total of N jobs we can estimate
(Q+

1 (0), . . . ,Q+
K(0)) = Nα(I − P)−1.

The fluid tracking policy is more general than the policies
which we surveyed in Sect. 4. It is interesting to note that
when it is applied to the job shops that were considered in
Sect. 4 it performs similarly to them. We go into more details
now.

Proposition 5.1

(i) If the job shop is a re-entrant line in which all the
jobs follow a single route (which may revisit any ma-
chine several times), then the fluid tracking policy will
be equivalent to LBFS, and will give highest priority to
jobs that are nearest to completion.

(ii) If the job shop has M fixed routes, then jobs on each
route will be served according to LBFS at each machine.

Proof If jobs from a single route are waiting as class k and
as class k′ at machine i, and k (k′) is step j (j ′) along the
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Fig. 4 The form of the fluid limit of the fluid tracking policy in a
re-entrant line

route, with j < j ′ (k′ is downstream, further along the route
than k) then of necessity Q+

k (t) < Q+
k′(t), so k′ always has

priority over k. �

Similar to the greedy tracking algorithm of Bertsimas and
Sethuraman (2002) of Sect. 4.3, our rule may schedule jobs
earlier than in the fluid solution. To illustrate this, consider
processing of jobs in a re-entrant line job shop according to
our general greedy tracking algorithm. The schedule which
is obtained does not in fact resemble the fluid picture of
Fig. 3. Rather, it follows in the fluid limit the picture de-
scribed in Fig. 4, as we now explain.

For a re-entrant line define the following sequence of suc-
cessive bottleneck classes: let i be the bottleneck machine,
in the sense that

∑
k∈Ki

mkQ
+
k (0) is maximal among all the

machines. Denote as k1 the first class served by machine i.
Define k1 > k2 > · · · > kL = 1 inductively: following kl

consider only the work in classes 1, . . . ,Ki , locate the bot-
tleneck machine for this work only, and let kl+1 be the first
buffer of that machine. Work will accumulate in these bot-
tleneck classes, which will be working essentially without
idling, until there is no more work for them in the job shop.

Consider now a job shop with fixed routes and random
processing times as discussed by Dai and Weiss (2002).
Comparison of our fluid tracking policy with the safety stock
offset cyclic schedule of Dai and Weiss shows the follow-
ing: for a job shop with fixed stochastic routes and total of
N jobs, under the assumptions of Theorem 4.2, the gap be-
tween the fluid lower bound and the heuristic value is with
high probability O(logN).

6 The job shop scheduling software package

In order to evaluate the policy proposed in the previous
section, we have implemented a software package that al-
lows for simulation of large volume job shop problems.

This package is called the Job Shop Simulation Package
(JSSP). It is available at http://stat.haifa.ac.il/~yonin/thesis/
jobshopsim/shopsim.html. The JSSP simulates job shop
realizations with a fixed number of routes having arbi-
trary multiplicity. It implements a discrete event simulation.
Processing times of jobs are either deterministic or may be
generated as random variables. The scheduling rules include
the fluid tracking policy that we describe here as well as sev-
eral other rules such as buffer priority policies. An input file
specifies the structure of the job shop problem including
mean processing times for each operation.

The JSSP is deployed in several configurations. First, it
may be run in batch mode. This allows for mass simulation
of job shop realizations. We have used this mode to collect
some of the simulation results which we present below. Sec-
ond, the JSSP may be run using an interactive graphic user
interface. In this mode, it is possible to visually inspect the
evolution of the job shop. The visual display includes a toy
graphical model of the job shop and a Gantt chart which
is continuously updated as the simulation progresses. See
Fig. 5. There is no limitation to use a single model, any job
shop problem may be displayed by properly defining an in-
put file. The third mode is somewhat similar, but operates in
a different setting: in a web browser as a JAVA applet. All
of the above configurations make this package suitable for
both demonstration and empirical research.

7 Simulation experiments with the on-line tracking rule

We have used the JSSP to evaluate the performance of large
job shop scheduling rules. We have run a total of approx-
imately 50,000 simulation runs of various configurations.
The total execution time of all simulations was more than
two months (on a PC). And the collection and ordering of
the data was quite involved. The simulation study is fully
described in Nazarathy (2001).

Our primary purpose was to evaluate the effectiveness of
the on-line tracking rule of Sect. 5 on a massive scale. As
we saw in Sect. 4, the performance of job shop schedules
based on fluid heuristics can be expected to be asymptoti-
cally optimal when the volume of jobs is large. If the job
shop consists of a fixed number of job types that have iden-
tical routes and processing times, then the cyclic heuristic
achieves a makespan that is within a constant bound from
the fluid lower bound, for any volume of jobs. Dai and Weiss
(2002) show that for a fixed set of routes and jobs with ran-
domly generated processing times, under the assumption of
a single bottleneck machine, and existence of exponential
moments, the gap between a fluid heuristic and lower bound
can be bounded by a O(logN) for a volume of N jobs. We
expect our tracking rule to perform similarly. In fact, we
found that it performed better than the O(logN) guaran-
teed by Dai and Weiss: even when relaxing the assumption

http://stat.haifa.ac.il/~yonin/thesis/jobshopsim/shopsim.html
http://stat.haifa.ac.il/~yonin/thesis/jobshopsim/shopsim.html
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Fig. 5 (Color online) A screen shot of the JSSP. This picture rep-
resents a simulation of the 10 by 10 problem. The simulation state
is summarized in the left-hand side of the screen and is graphically
displayed in the center of the screen. Each circle represents a machine.
Red circles are in operation and blue are idling. Yellow widgets on the

circles represent buffers of jobs. Triangles represent initial jobs and
squares represent finished jobs. The tiny red dots are actual jobs. The
Gantt chart at the bottom right is continuously updated and visually
displays the utilization over time of each of the machines

of existence of exponential moments, we found that the gap
between the heuristic and the fluid lower bound behaves like
a constant which does not grow with the volume of jobs.

The instances of large volume job shops which we have
simulated are mostly based on the 10 × 10 problem of Muth
and Thompson. In addition, we have made use of a 15 × 20
problem that was used in Adams et al. (1988) (see Table 1,
Problem 9, of that paper) and a 10 × 50 problem used in

Storer et al. (1992) (see Table 3, Problem “10 × 50 Hard”,
of that paper). In all 3 problems each of the jobs need to pass
through all machines. We shall refer to these three problems
as MT, ABZ, and SWV respectively. Our method of gen-
erating job shop problem instances was to take the original
problem (MT, ABZ, or SWV) and generate many jobs that
follow the original routes. For example, for the SWV prob-
lem, in each experiment the basic unit consists of 50 jobs,
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each with 10 activities, on all 10 machines. For each ex-
periment we used several multiplicities, N , with the values
N = 2l where l = 1, . . . ,15 (some of the experiments were
only run for smaller l). We used stochastic randomly gen-
erated processing times in the experiments, and so we have
used between 15 and 50 replicates for each multiplicity of
each experiment.

In each simulation replicate we used our fluid tracking
policy of Sect. 5 to schedule the jobs. We used the follow-
ing tie-breaking rules: we ordered the classes k = 1, . . . ,K .
Whenever two classes at a machine had the same priority
value, we took the class with the lower k. We ordered the
jobs in each class as follows: jobs which were in the class
initially (at time 0) were ordered in line arbitrarily. Any
jobs arriving later into the class joined the end of the line.
We then used head-of-the-line priority within each class and
simulated the following 3 quantities:

• The fluid solution machine lower bound T∗. This is the to-
tal busy time of the bottleneck; it is random for stochastic
processing times.

• The completion time of the last job on the bottleneck ma-
chine, Tc. At this time there is no more work for the bot-
tleneck machine anywhere in the job shop.

• The makespan of the schedule, TH .

By the design of our fluid tracking heuristic we expected the
bottleneck machine to be busy most of the time. However,
at the start of the schedule there is a period in which it may
be starved of work, until safety stocks are built up, cycles
appear, and pipelining occurs. This initial idling of the bot-
tleneck is included in the difference Tc − T∗. There follows
a long period in which the bottleneck machine is busy with
no interruptions, until almost the time that it completes the
processing of the last job. The remainder of the schedule is
the time that is required of all the other machines to com-
plete all the processing, and is given by TH − Tc. We refer
to the first of these as the starve time of the bottleneck and to
the second as the runout time. We refer to their sum TH −T∗
as the gap. As discussed in Sect. 3, it is an upper bound on
the suboptimality of our heuristic.

Note that the expected fluid makespan increases linearly
with the multiplicity N . For the original 10 × 10 problem
this is 631N , and is equal to ≈ 107 for N = 214. Mostly
we obtained gaps of no more than 4000 (and often much
less). Thus the suboptimality of our scheduling rule for large
volume jobs shops is negligible!

We now describe our experiments.

7.1 Experiments on sensitivity to the distribution
of processing times

We took instances of the MT10 and used the processing
times (see Table 1) as means, and generated the activity

processing times of each job out of some given distributions
with these means. The different distributions which we used
and the arguments for experimenting with each of them were
as follows.

Deterministic: All jobs of the 10 types are identical with
the original 10 × 10 data. The gap converges to a constant
value of 447, for all N ≥ 10. Of course, there is no need
for replicates.
Gaussian, CV = 0.25: We use Gaussian distribution for all
activities, with standard deviation σ = 0.25μ, i.e., coeffi-
cient of variation of one quarter. This is a reasonable and
realistic distribution for processing times (we truncated at
0 in the rare events of negative values). Typical gaps con-
verged to ∼500.
Exponential: This has CV = 1 and is rather more variable
than usual for manufacturing. Typical gaps converged to
∼1300.
Weibull with shape parameter 1

2 : This distribution is even
more variable (CV = 2.2). Furthermore, while Weibull dis-
tributions with shape parameter <1 possess finite moments
of every order, they do not possess finite exponential mo-
ments, since their density decreases more slowly than any
exponential. This means that the results of Dai and Weiss
(2002) do not apply.
Pareto 3: This distribution possesses finite mean and vari-
ance, but all higher moments are infinite. Again the results
of Dai and Weiss (2002) do not apply.
Pareto 2: This distribution possesses finite mean but infi-
nite variance (and hence infinite higher moments). Results
of Dai and Weiss (2002) do not apply.

The results of this experiment are summarized in Fig. 6:
there are 6 figures for the six different distributions, which
show the values of the gap. The horizontal axes in each fig-
ure give the multiplicity on a logarithmic scale, for multi-
plicities of N = 2l . At each multiplicity we plot the gap
for each replicate as a dot, and the heavy green line with
dots gives the average gap, over the replicates. The range
between the light green lines above and below the average
are the 5% and 95% empirical values for the replicates. We
also plotted in the heavy blue line the average starve time.
The runout time is then given by the height between the gap
and starve time.

Our conclusions from this experiment are:

• The gap for all 6 types of distributions converges to a con-
stant, hence is seems that the suboptimality is bounded by
a constant for all 6 distributions.

• It seems that the bound of O(logN) for the gap, shown
by Dai and Weiss (2002), is conservative, and the require-
ment of exponential moments is not needed.

• The runout time is significantly smaller than the starve
time, and converges faster with N .
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Fig. 6 Gap as a function of log2(N) as estimated by simulation for MT high-multiplicity problem with varying processing time distributions

• Observation of the actual runs confirms that the bottle-
neck machine is busy continuously through most of the
schedule, after an initial period which almost equals the
starve time, and until the bottleneck machine finishes all
its work.

7.2 Experiments on alternative job shop structures

We also performed similar experiments to the ones de-
scribed above, on large volume job shops that are gener-
ated from SWV and ABZ. Our findings were consistent with

those of MT10: The suboptimality of our fluid heuristic is
bounded by a constant, irrespective of the distribution used.
For these cases we have simulated deterministic, exponen-
tial, and Pareto 2 problem instances similar to what is de-
scribed above. Our results are given in Fig. 7.

Similarly to the more detailed MT results, the subopti-
mality gap again appears to be a constant.

7.3 Experiments with multiple bottlenecks

In the 10 × 10 MT example, machine 4 is the unique bottle-
neck machine, with fluid makespan of 631. A single bottle-
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Fig. 7 Gap as a function of log2(N) as estimated by simulation for the ABZ and SWV high-multiplicity problem with varying processing time
distributions

neck has been one of the requirements for Theorem 4.2 of
Dai and Weiss (2002). To test the effect of multiple bottle-
necks we have modified the 10×10 data to obtain a problem
in which all the machines were bottlenecks, by stretching all
the processing times of the nonbottleneck machine activi-
ties. The new values of the 100 processing times were then
used as new means for generating simulation runs.

We performed two experiments. In the first we left all the
routes as in the original 10 × 10 problem. In this experi-
ment all 10 machines were bottlenecks but all the jobs were

initially, at time 0, located in classes of 3 of the machines,
machines 1, 2, and 3 (see Table 1). In the second experiment
we did a cyclic rearrangement of the steps of each route so
that the job on route m = 1, . . . ,10 started with an activity
at machine m.

In the first experiment we found that the gap increased
with the multiplicity N , faster than O(logN) but slower
than O(N). Figure 8 summarizes this experiment: it shows
the ratio of the gap to N , on a logarithmic scale of N . It
seems that this does converge to 0 as N increases, hence the
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Fig. 8 Balanced job shop (all machines are bottleneck). The mean
relative gap on a logarithmic scale of N . Processing times are taken
from an exponential distribution

heuristic is still asymptotically optimal. We repeated this ex-
periment for the various distributions, with similar results. In
Fig. 8 we used exponential processing times. When a queu-
ing network is working at close to full utilization, and there
is more than one bottleneck, the system is said to be in bal-
anced heavy traffic. We conclude that our heuristic performs
less well in a situation of balanced heavy traffic.

In the second experiment, when all 10 machines were
bottlenecks but each of the machines starts with N initial
jobs, the behavior was entirely different: the gap seemed to
converge to a constant. Under these conditions the job shop
behaves like a queuing network with infinite virtual queues,
as discussed by Weiss et al. (2008), Nazarathy and Weiss
(2008, 2009), Weiss (2005). We conclude that with an am-
ple supply of initial work the heuristic is effective also when
there are multiple bottlenecks.

8 Concluding remarks

We have surveyed some previous work in which it was
shown that for a large volume job shop it is possible to
achieve a makespan which is very close to the machine
lower bound. We have posed the fluid job shop minimum
makespan problem and solved it under some general as-
sumptions, and found that the optimal fluid makespan equals
the machine lower bound T∗, and can be achieved by de-
creasing all the fluid volumes in the job shop linearly, from
their initial state at time 0, to 0 at time T∗.

We then introduced our fluid tracking policy, which gives
priority to jobs of a class with the highest Q+

k (t)/Q+
k (0).

This policy is very simple to implement, it requires very lit-
tle prior information, and it is decentralized and on-line.

We note nevertheless that the minimum makespan prob-
lem is somewhat degenerate. Clearly, the fluid problem has
many optimal solutions, and with a large volume job shop
there are very many schedules, which are very different, and
yet achieve very close to the optimal makespan.

The idea of tracking a fluid solution can however also
be used for other problems. In Nazarathy and Weiss (2009),
Weiss (1999) we use it to minimize weighted flowtime in a
multi-class queuing network over a finite time horizon. This
can be implemented as a heuristic for minimum weighted
flowtime in a job shop.

We believe that our approach of solving a fluid problem
and tracking the fluid solution by an online decentralized
policy provides a bridge between deterministic scheduling
theory and the control of steady state queuing networks. We
hope that it will prove useful in practice, in large volume job
shops.
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