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Abstract Wireless devices are often able to communicate on several alternative
channels; for example, cellular phones may use several frequency bands and are
equipped with base-station communication capability together with WiFi and Blue-
tooth communication. Automatic decision support systems in such devices need to
decide which channels to use at any given time so as to maximize the long-run aver-
age throughput. A good decision policy needs to take into account that, due to cost,
energy, technical, or performance constraints, the state of a channel is only sensed
when it is selected for transmission. Therefore, the greedy strategy of always ex-
ploiting those channels assumed to yield the currently highest transmission rate is
not necessarily optimal with respect to long-run average throughput. Rather, it may
be favourable to give some priority to the exploration of channels of uncertain qual-
ity.

In this chapter we model such on-line control problems as a special type of Restless
Multi-Armed Bandit (RMAB) problem in a partially observable Markov decision
process framework. We refer to such models as Reward-Observing Restless Multi-
Armed Bandit (RORMAB) problems. These types of optimal control problems were
previously considered in the literature in the context of: (i) the Gilbert-Elliot (GE)
channels (where channels are modelled as a two state Markov chain), and (ii) Gaus-
sian autoregressive (AR) channels of order 1. A virtue of this chapter is that we unify
the presentation of both types of models under the umbrella of our newly defined
RORMAB. Further, since RORMAB is a special type of RMAB we also present
an account of RMAB problems together with a pedagogical development of the
Whittle index which provides an approximately optimal control method. Numerical
examples are provided.

Julia Kuhn
The University of Queensland, University of Amsterdam, e-mail: j.kuhn@uq.edu.au

Yoni Nazarathy
The University of Queensland

1



2 Julia Kuhn and Yoni Nazarathy

1 Introduction

Communication devices are often configured to transmit on several alternative chan-
nels, which may differ in their type (e.g. WiFi versus cellular) or in their physical
frequencies. Further, due to physical transmitter limitations, a device can only use a
limited number of channels at any given time. Thus, the question arises which chan-
nels to select for transmission so as to maximize the throughput that is achieved over
time.

Channel 1

Channel 2

Select 1

Channel state feedback

Fig. 1 A transmitting device needs to choose whether to transmit on Channel 1 or Channel 2.
Transmitting on a channel results in immediate channel state feedback.

To illustrate the problem, we consider the scenario depicted in Figure 1. At ev-
ery discrete time instance, the transmitter has the choice to use either channel 1
or channel 2. The channels cannot be used in parallel due to hardware limitations
and/or energy constraints. The selected channel then yields an immediate reward
that depends on the condition of the channel (e.g. the reward may be measured as
the number of bits successfully transmitted). Consequently, an observation of the
state of that channel is also obtained. The unselected channel on the other hand is
not observed in this time instance.

Ideally, the transmitter would choose channels in a way that achieves the largest
throughput over time. However, the nature of communication channels is often
stochastic and thus the transmitter does not know the current state of each channel
with certainty. A good prediction of the channel state can be obtained when there is
strong dependence between the current state of a channel and its state in the (recent)
past. Such channel memory can for example be caused by other users interfering on
the same channel, multipath of physical signals, or other persistent disturbances.

In utilizing channel memory to make wise channel selection decisions the trans-
mitter needs to balance a trade-off between exploitation and exploration: On the one
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hand, based on the controller’s belief regarding the current state of each channel, it
may make sense to choose the channel expected to transmit the highest number
of bits over the next time slot. On the other hand, it may be sensible to check the
condition of the other channel so as to decrease uncertainty regarding its current
state. How should channels be selected, based on the information available, so as to
maximize the long-run expected throughput?

A first step towards answering this control problem is to devise suitable chan-
nel models; that is, models that capture channel behaviour reasonably well and at
the same time are simple enough to be mathematically tractable. To capture such
a dependency, channel states are often modelled as Markov processes. One such
very simple process is the so-called Gilbert-Elliot channel (GE), where there are
two possible states, 0 (“bad”) and 1 (“good”), and transitions between states oc-
cur in a Markovian manner. The application of the GE model in channel selection
and specifically opportunistic spectrum access is motivated by its ability to capture
bursty traffic of primary users [7]. Due to its simplicity it has been very popular in
modelling channel selection problems; refer to the literature review in Section 5.

Another class of models, which has only recently come to attention in the con-
text of wireless channel selection [4, 20], are Gaussian autoregressive processes of
order 1 (which we denote by AR). Here, the channel state is a continuous random
variable following a normal distribution, and its evolution is determined by a sim-
ple linear recursion perturbed by Gaussian noise. It has been found that Gaussian
autoregressions model the logarithmic signal-to-noise ratio of a channel reasonably
well; for details see [1].

The virtue of both the GE and the AR model is that they are simple and tractable,
yet allow to capture the exploration–exploitation trade-off that the controller faces.
The models are simple in the sense that the belief which the controller maintains
about the state of the channel is neatly summarized by sufficient statistics. In the
GE case, this sufficient statistic is given by the conditional probability of being in
the good state, given the information that is available to the controller at the time.
In the AR case, it is sufficient to keep track of the conditional mean and variance
of the state, which quantify the expected gain from exploitation and the need for
exploration, respectively.

An optimal policy for the channel selection problem needs to balance this
exploration–exploitation tradeoff. While such a policy could in principle be com-
puted by dynamic programming, this is typically computationally infeasible in prac-
tice [33]. However, recognizing that the problem is essentially a Restless Multi-
Armed Bandit (RMAB) problem, we may apply techniques from RMAB theory to
find a (near-)optimal solution: the well-known Whittle index [41] (a generalization
of the celebrated Gittins index [9, 10]).

Our main focus in this chapter is on the RMAB formulation of the problem. We
call this special type of RMAB the Reward-Observing Restless Multi-Armed Bandit
(RORMAB) problem. While the chapter does not contain new results, it is unique
in that it provides a unified treatment of both the GE and the AR approaches for
channel models, and considers also the channel selection problem in the mixed case
where some of the channels are modelled as GE while the others are AR. This is of
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interest in networks where some but not all of the channels may be subject to user
interference.

The remainder of this chapter is structured as follows. In Section 2 we formulate
the RORMAB problem, and present the GE and AR models in a unified manner. In
Section 3 we motivate the use of index policies and in particular the Whittle index.
The presentation can be used as a stand-alone brief account of RMAB problems. In
Section 4 we show how to use channel models to evaluate the Whittle index numer-
ically, and use it as a solution strategy for an example channel selection problem. In
the latter section we also provide a number of performance comparisons. Section 5
contains a literature survey, and points out some open problems.

2 Reward-Observing Restless Multi-Armed Bandits

In this section we formulate the RORMAB problem within the context of wireless
channel selection. This type of problem is a special case of a Partially Observable
Markov Decision Process (POMDP) as considered in [36]. An MDP is partially
observable if the decision maker does not know the current state of the system with
certainty. In our setting, where we consider a network of d channels, the partially
observable state of the system can be represented as d-dimensional, and corresponds
to the joint state information of the individual channels.

We consider channels X1(t), . . . ,Xd(t), operating as independent Markov pro-
cesses in discrete time t ∈ N0. We assume that the models and their parameters are
known but do not have to be the same for each channel. At every time instance, the
decision maker chooses a subset C (t) of k channels, C (t) ⊂ {1, . . . ,d}. For every
selected channel i ∈ C (t) a reward ri

(
Xi(t)

)
is obtained and the value of Xi(t) is

observed, where each ri is assumed to be a known, deterministic function from the
underlying state space to R. The other channels i /∈ C (t) are not observed and do
not yield a reward.

In an ideal situation, at every decision time the controller would choose those
channels that yield the highest reward ∑i∈C (t) ri

(
Xi(t)

)
. Unfortunately, this can-

not generally be achieved because channel states are stochastic and the values of
X1(t), . . . ,Xd(t) are not known at decision time t.

However, because the channel states are sequentially dependent due to the chan-
nel memory, the controller can use information about the previous state of a channel
to make predictions about its current state. The accuracy of the prediction depends
on the age of the information, i.e. the number of time steps ago that a channel was
last observed. This number is denoted by ηi(t) := min{τ ≥ 1 : i ∈ C (t−τ)}, so that
the last time channel i was chosen is given by t−ηi(t). The information available to
the transmitter at time t (prior to making its decision) can then be summarized and
represented by Y (t) :=

(
Y1(t), . . . ,Yd(t)

)
, where for i = 1, . . . ,d,

Yi(t) =
(

ηi(t),Xi
(
t−ηi(t)

))
.
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Based on Yi(t), the controller’s belief about the state of channel i at time t is sum-
marized by Fi(x) := P

(
Xi(t) ≤ x | Yi(t)

)
, the conditional distribution of channel i

given the information collected up to that time. For the channel models we consider,
this probability distribution is characterised by scalar- or vector-valued sufficient
statistics. That is, for channel i there exists a parameter ϑi(t) that fully specifies the
probability distribution of Xi(t) given the information Yi(t). In our first model (GE
as described below), Fi(·) is a Bernoulli distribution, so ϑi(t) is the “success proba-
bility”. In our second model (AR as described below), Fi(·) is a normal distribution,
hence, ϑi(t) is a two-dimensional vector specifying the conditional mean and con-
ditional variance. Using the terminology common in literature on POMDP, we refer
to ϑi(t) as the belief state of channel i at time t – indeed ϑi(t) represents our belief
concerning the state of the channel.

In summary, as time evolves from t to t + 1, given the current belief state ϑ :=
(ϑ1, . . . ,ϑd) and a channel selection policy π , the following chain of actions takes
place:

ϑ C

∑i∈C ri(Xi)

π

observe state,

collect reward
update belief

Objective. Our aim is to find a policy π so as to maximize the accumulated
rewards over an infinite time horizon as evaluated by the average expected reward
criterion

Gπ(ϑ) := liminf
T→∞

1
T

Eπ
ϑ

[
T−1

∑
t=0

∑
i∈C (t)

ri
(
Xi(t)

)]
, (1)

where the subscript indicates conditioning on Xi(0) being distributed with parame-
ter ϑi. Note that other reward criteria have been considered, including finite horizon
problems and/or discounted rewards/costs [34]. In this chapter we focus on the av-
erage reward criterion (1) in order not to overload the exposition.

It can be proven formally [5, 36] that a POMDP as considered here, with partially
observable states Xi(t) and rewards ri

(
Xi(t)

)
, is equivalent to a fully observable

MDP with states ϑi(t) and rewards Eϑi(t)
[
ri
(
Xi(t)

)]
. Namely, the best throughput

that we can achieve is the same for both, and it is achieved by the same (optimal)
policy. This justifies that we consider the MDP with states ϑi(t) in the remainder of
this chapter.

Belief State Evolution. For RORMAB, the decisions determined by a policy π

affect the updating of the belief state based on the observation update mapping Oi(·)
and the belief propagation operator Ti(·) as follows:
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ϑi(t +1) =

{
Oi
(
Xi(t)

)
, if i ∈ C (t),

Ti
(
ϑi(t)

)
, if i /∈ C (t).

(2)

The observation update mapping Oi(·) determines how the belief state of channel
i is updated when that channel is selected for transmission. In this case we observe
Xi(t), and hence its realization can be used by the observation update rule when
implementing the controller. Further, for analytical, modelling and simulation pur-
poses, when i ∈ C (t), the distribution of Xi(t) is determined by the known value
ϑi(t), so Xi(t) can be replaced by a generic random variable coming from this dis-
tribution. This comes to emphasise that Xi(t) is actually not part of the state of the
MDP.

The belief propagation operator Ti(·) defines the update of the belief state of
a channel when it is not selected for transmission. Because in this case no new
observation is obtained, the update is deterministic.

Since a channel may not be selected for several consecutive time slots, it is useful
to also consider T k

i (·) (the k-step operator obtained by applying Ti(·) k times) as
well as attracting fixed points of the operator Ti(·). As we describe below, in both
the GE and the AR model, the k-step operator has an explicit form and converges to
a unique attracting fixed point; this is useful for understanding the dynamics of the
model.

We now specify the observation update and belief propagation operations in the
context of each of our two channel models.

Gilbert-Elliot (GE) Channels. In this case Xi(t) is a two state Markov chain on
the state space {0,1}, where 0 represents a “bad” state and 1 is a “good” state of the
channel. The transition matrix can be parametrized as

Pi =

[
p00

i p01
i

p10
i p11

i

]
=

[
1− γi ρi γi ρi

γi ρi 1− γi ρi

]
,

where we denote x := 1−x. One standard parametrization of this Markov chain uses
transition probabilities p01

i , p10
i ∈ [0,1] (and sets p00

i = p01
i , p11

i = p10
i ). Alternatively

we may specify the stationary probability of being in state 1, denoted by γi ∈ [0,1],
together with the second eigenvalue of Pi, denoted by ρi ∈

[
1−min(γ−1

i , γi
−1), 1

]
.

Then ρi quantifies the time-dependence of the chain. When ρi = 0 the chain is i.i.d.,
otherwise there is memory. Specifically, when ρi > 0 there is positive correlation
between successive channel states and when ρi < 0 that correlation is negative. The
relationship between these parameterisations is given by γi = p01

i /(p01
i + p10

i ), and
ρi = 1− p01

i − p10
i . The parametrization with transition probabilities p`ki ∈ [0,1] is

standard. As opposed to that, our alternative parametrization in terms of γi and ρi
has not been used much in the literature. Nevertheless, we find it captures the be-
haviour of the model in a useful manner, especially when carrying out numerical
comparisons.

As the Bernoulli distribution is fully specified by the success probability, it suf-
fices to keep track of this parameter. Because we have
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ϑi(t) = P
(
Xi(t) = 1 |Yi(t)

)
,

the belief state space of channel i, denoted by Si, is given by the interval [0,1]. Now
the observation update operation is defined by:

Oi(x) =

{
p01

i , if x = 0 ,

p11
i , if x = 1 .

That is, if the observed channel was “bad” (x= 0), then the chance of a good channel
is given by the entry p01

i , and otherwise (x = 1) by p11
i . The belief propagation

operation is
Ti(ϑ) = ϑ p11

i +ϑ p01
i = ρi ϑ + γi ρi .

This follows by evaluating the probability of {Xi(t + 1) = 1} based on ϑi(t) and
the probability transition matrix Pi. It is a standard exercise for two state Markov
chains (recurrence relations) to show that the k-step transition probability, and thus
the k-step belief propagation operator, takes the form

T k
i (ϑ) = γi +ρ

k
i (ϑ − γi).

Note that γi is a fixed point of this operator, and the sequence T k
i (ϑ) converges to

this fixed point. Further note that when ρi > 0 this sequence is monotonic, otherwise
if ρi < 0 it oscillates about γi as it converges to it. The case of ρi = 0 is not of interest
because in that case there is no channel memory.

Gaussian Autoregressive (AR) Channels. In this case the channel states follow
an AR process of order 1, that is,

Xi(t) = ϕi Xi(t−1)+ εi(t) ,

with
{

εi(t) : t ∈ N0
}

denoting an i.i.d. sequence of N
(
0,σ2

i
)

random variables.
We assume |ϕi|< 1 in which case the processes are stable in the sense that as time
evolves they converge to a stationary version. Note that if ϕi ∈ (0,1) the states are
positively correlated over time; for ϕi ∈ (−1,0) the correlation is negative. The
case ϕi = 0 may be neglected as it corresponds to observations being independent.
Linear combinations of Gaussian random variables are still Gaussian, and hence,
their conditional distribution at time t is fully described by the conditional mean
µi(t) and the conditional variance νi(t). That is, the sufficient statistic (vector) for
the state of channel i is:

ϑi(t) =
(
µi(t), νi(t)

)
.

In this AR case, the observation update operation is:

Oi(x) =
(
ϕi x, σ

2
i
)
.

This is due to the fact that an observation of x at time t implies a predicted expected
value of ϕi x at time t +1 with variance σ2

i . In contrast, the belief propagation oper-
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ation is given by
Ti(µi, νi) =

(
ϕi µi, ϕ

2
i νi +σ

2
i
)
. (3)

It is easy to show by recursion of the mean and the variance that the k-step belief
propagation is:

T k
i (µi, νi) =

(
ϕ

k
i µi, ϕ

2k
i νi +

1−ϕ2k
i

1−ϕ2
i

σ
2
i

)
. (4)

The belief state space in this case is Si = R× [νmin
i ,νmax

i ) where νmin
i = σ2

i and
νmax

i = σ2
i /(1−ϕ2

i ). The attracting fixed point of Ti(·) is the mean-variance pair
(0, νmax

i ). It is further interesting to note that the second coordinate of the belief
state can only attain values in a countable subset of [νmin

i ,νmax
i ). This is because

when the channel is selected, the conditional variance decreases to the value νmin
i ,

and thus, νi in (4) is always proportional to σ2
i , where the factor is given by a

geometric series in ϕ2
i . Observe further that, since νi < νmax

i and because |ϕi| < 1,
it always holds that the variance increases when updated with Ti(·), that is, the
decision maker’s uncertainty regarding the state of the channel indeed grows as
long as no new observation is obtained.

Mixed Model Example. Having specified the GE and AR channel models, we
now consider a mixed model example, which is also used for numerical illustration
in Section 4. Research papers in this field to date seem to have focussed on problems
with channels of the same type (mostly GE, some AR); it is therefore interesting to
investigate a mixed channel model example, where a proportion q ∈ [0,1] of the
channels is GE and the others are AR. This can occur in examples where the domi-
nating phenomena of some of the channels is user interference (GE channels), while
for other channels the key feature is slow-fading behaviour (AR channels).

Our model parameters are αi,γi for i = 1, . . . ,qd (GE channels) and ϕ j,σ
2
j for

j = qd +1, . . . ,d (AR channels); we assume qd is an integer.
For the purpose of exposition we consider the following stylised case of reward

functions:

ri(xi) =
xi− γi√
γi (1− γi)

, and r j(x j) =

√
1−ϕ2

j

σ j
x j , (5)

where xi is a value observed in GE channel i and x j is the value observed in AR
channel j. We specifically choose these functions so that the steady state values of
rewards from both channels have zero-mean and unit-variance, hence making the
channels equivalent in these terms. That is, in the case where the controller does not
have additional state information, the controller obtains the same mean and variance
on any channel chosen.

The state space of the MDP with (joint belief) states ϑ = (ϑ1, . . . ,ϑd), with
scalars ϑi, i = 1, . . . ,qd, and 2-dimensional vectors ϑ j, j = qd + 1, . . . ,d, is given
by:
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S := [0,1]qd×
d

∏
j=qd+1

R× [νmin
j ,νmax

j ).

An optimal policy π for such an MDP is usually not available in closed form. It can
then be computed approximately with the aid of dynamic programming algorithms,
on a discretized and truncated state space. This is feasible with sufficient accuracy
only if d is very small (and indeed this is carried out as part of the numerical ex-
amples provided in Section 4 for d = 2). With more channels, the computational
task quickly becomes intractable – hence we resort to a sensible index heuristic (the
Whittle index), which we present in the next section.

3 Index Policies and the Whittle Index

In this section we explain the idea behind the use of index policies and specifically
the Whittle index, a generalization of the well-studied Gittins index [9, 41]. Whittle
proposed this type of index as a heuristic solution to RMAB problems. We first
describe a general form of RMAB problem so as to put our specific RORMAB
problem in context.

Consider state processes ϑ1(t), . . . ,ϑd(t) subject to a control set C (t)⊂{1, . . . ,d}
which selects k of the d processes at each time. In the (more general) context of
RMAB, we refer to each of these processes as an arm of a bandit. Based on the con-
trol decisions captured in the control set C (·), each of the processes evolves either
according to an active mapping Ai(·) if i ∈ C (t), or according to a passive mapping
Pi(·) otherwise. This can be represented as follows:

ϑi(t +1) =

{
Ai
(
ϑi(t),Ui(t)

)
, if i ∈ C (t),

Pi
(
ϑi(t),Ui(t)

)
, if i /∈ C (t).

(6)

Here, {Ui(t), i = 1, . . . ,d} are independent i.i.d. (driving) sequences of uniform
(0,1) random variables. An alternative representation is to use Markovian transi-
tion kernels, one for the active operation and one for the passive operation.

Remark: Comparing (6) and (2) it is evident that our RORMAB channel selec-
tion problem is a special case of the RMAB problem. Channels and belief states
of the RORMAB correspond to arms and states of the RMAB, respectively. In
the RORMAB, the active mapping Ai(ϑ ,u) is replaced by Oi

(
F−1(u ; ϑ)

)
where

F−1(· ; ϑ) is the inverse probability transform generating a random value of the
state, distributed with parameter(s) ϑ ; and the passive mapping Pi(ϑ ,u) does not
depend on the random component and is replaced by Ti(ϑ). In the remainder of
this section we depart from the RORMAB context and present a brief exposition of
RMAB and the Whittle index.

The RMAB problem arose as a generalisation of the Multi-Armed Bandit (MAB)
problem. In that case Pi(ϑ ,u) = ϑ ; that is, unselected arms do not evolve. This
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problem is known to be solved optimally in great generality by the celebrated Git-
tins index [9]. Whittle’s RMAB generalization allows for “restless” state processes,
where arms keep evolving also while they are not used for transmission (although
not necessarily according to the same transition kernel). This modelling framework
is more realistic for the channel selection problem but also appears in a variety of
other application areas; see [41] for further examples. For RMAB problems, index
policies are typically not optimal. However, the Whittle index, which we present
below, has in many cases proven to be asymptotically optimal with respect to the
average reward criterion as the number of arms grows large [38, 40].

We now first describe index policies in general before we turn to Whittle’s opti-
mization problem and the associated Whittle index policy.

Index Policies. Index policies are defined in terms of functions ι1, . . . , ιd such
that ιi maps the current state of arm i to a certain priority index, irrespective of the
current state of any other arm.

Definition 1. Let ϑ := (ϑ1, . . . ,ϑd) denote the vector of states in a system with d
arms. An index policy πι with stationary decision rule δι , activates those k arms that
correspond to the k largest indices,

δι

(
ϑ
)
= argmax

C : |C |=k
∑
i∈C

ιi
(
ϑi
)
.

Ties are broken arbitrarily, but in compliance with the requirement that k arms have
to be selected.

For an intuitive justification as to why index policies may work well in large sys-
tems, consider the following: Pick an arbitrary arm and suppose we want to decide
whether to select it as active or not (passive), based on the current state. Generally,
we would make our decision dependent on the states of the remaining arms. In this
way, our decision strategy is highly influenced by the proportion of arms that are
in a certain state. In a large system (with many arms), however, this proportion can
be expected to remain relatively stable over time. In this sense, the larger the sys-
tem, the less important it is for us to consider other arms; we always find ourselves
in roughly the same situation for decision making. In conclusion, in a system with
many arms, little is lost if we make decisions for each arm solely based on its current
state, disregarding the current state of any other arm in the system.

How to best define the index functions ιi? A simple example is the myopic in-
dex. In the context of RORMAB, where states are actually belief states, it is defined
by ιM

i (ϑi) = Eϑi

[
ri(Xi)

]
. Thus, under the myopic policy the transmitter greedily

chooses those channels that promise the largest immediate rewards (“exploitation”).
However, as one may expect, it turns out that such a policy is not necessarily op-
timal (see our numerical examples in Section 4, as well as the literature survey in
Section 5). It may be favourable to give some priority to “exploring” other channels
in order to decrease the transmitter’s uncertainty with respect to their current state.

Moving back to the more general RMAB, this motivates us to consider the more
sophisticated Whittle index, which takes the possible need for considering future



Wireless Channel Selection with Restless Bandits 11

states (or “exploration” in the case of RORMAB) into account. To derive his heuris-
tic, Whittle relaxed the constraint that exactly k arms have to be selected at each time
point, and replaced it by the requirement that k arms are selected on average. Since
the latter constraint is weaker, the optimal throughput (value/gain of the MDP) un-
der this constraint is an upper bound for the optimal throughput that can be achieved
in the original problem. We shall see that this relaxation allows to formulate the de-
cision making problem as a Lagrange optimization problem, from which Whittle
obtained a rule for determining ιi

(
ϑi
)
.

Whittle’s Optimization Problem. For ease of exposition we consider an MDP
with a finite state space S = S1× ·· ·× Sd . We further remain in the setting where
arms that are not selected do not yield a reward (this assumption is easily generalized
so that the Whittle index is applicable much more broadly). Under suitable regularity
conditions, the optimal long-run average throughput rate is independent of the initial
state of the system (see e.g. [5]); in this section we assume that we are in such a
setting.

Recall the definition of the average reward criterion, Eq. (1). For a time horizon
T (T → ∞) we sum up the rewards that are obtained from the selected arms at each
time point. Equivalently, we could group selected arms according to their states, and
keep track of how many arms were selected while being in a specific state, over the
whole time horizon. That is, rather than considering each time step t separately and
adding up rewards as obtained at each time step, we can consider how many arms
were in a certain state when selected, and multiply this proportion with the reward
that is obtained from an arm in that state. If we do so for all states, then the total is
equivalent to the value of the average reward as T → ∞.

This is the viewpoint we are taking in this subsection; it is inspired by the expo-
sition in [27]. Define pi(v) as the expected long-run fraction of time that arm i is
selected when it currently is in state v ∈ Si; that is,

pi(v) := lim
T→∞

1
T

Eπ

[
T

∑
t=0

1
{

i ∈ C (t), ϑi(t) = v
}]

.

Subject to Whittle’s relaxation, we can then formulate the optimization problem as
the Linear Programming (LP) problem:

GW = max
p

d

∑
i=1

∑
v∈Si

ri(v) pi(v), subject to
d

∑
i=1

∑
v∈Si

pi(v) = k , (7)

where ri(v) denotes the reward that is obtained from selecting arm i when its state is
v (as before ri(·) is a known, deterministic function). Formulating this as an equiva-
lent Lagrangian optimization problem we obtain:
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L (λ ) = max
p

d

∑
i=1

∑
v∈Si

ri(v) pi(v)−λ

(
d

∑
i=1

∑
v∈Si

pi(v) − k

)

= max
p

d

∑
i=1

∑
v∈Si

(
ri(v)−λ

)
pi(v)+λk

=
d

∑
i=1

Li(λ )+λk ,

(8)

with
Li(λ ) = max

pi
∑

v∈Si

(
ri(v)−λ

)
pi(v) . (9)

Since in (8) there is no longer a common constraint for the arm, each arm can be
optimized separately through (9). By strong LP duality we know that there exists
a Lagrange multiplier λ ∗ that yields L (λ ∗) = GW . LP complementary slackness
ensures that (assuming λ ∗ 6= 0) any optimal solution to (8) must satisfy the relaxed
constraint, and is therefore also optimal for Whittle’s relaxed problem (7). It was
observed by Whittle [41] that we can interpret the Lagrange multiplier as a cost for
selecting an arm (or equivalently, as a subsidy for not selecting an arm). That is,
imposing a cost of λ ∗ on the selection of an arm causes the controller to select k
arms on average under a policy that optimises GW .

Indexability and the Whittle Index. In accordance with [41], we make the fol-
lowing reasonable regularity assumption.

Assumption: Arm i is indexable, that is, the set of states for which it is optimal to
select arm i decreases monotonically from Si to /0 as the cost λ increases from −∞

to ∞. This property holds for every arm in the system.

While this assumption is intuitively appealing, it turns out that it does not gen-
erally hold [38, 41], and proving its validity can be surprisingly difficult [9]. In the
context of RORMAB, it has been verified for the GE model as considered in [22],
and numerical evidence suggests that it also holds for the AR model [20]; the latter,
however, is still to be proven.

Indexability implies that for each arm i there exists a function of the current state,
λi(v), such that it is optimal to select the arm whenever λi(v) > λ and to leave it
passive otherwise (the decision maker is indifferent when λ = λi(v)). In this sense,
λi(v) measures the “value” of arm i when it is in state s. Furthermore, applying
this policy to all arms in the case where λ = λ ∗ (that is, selecting arm i whenever
λi(v) > λ ∗) results in a policy that is optimal for Whittle’s relaxed problem (7)1.
This motivates choosing the index function ιi(·) as ιW

i (v) := λi(v) (as was proposed
in [41]).

How do we find λi(·)? Recall that the decision maker is indifferent when λ =
λi(v), and that we are interested in the case where the cost λ is chosen to be the

1 When λi(v) = λ ∗, one needs to decide for the action to be taken in state v in an appropriately
randomized fashion that ensures that the relaxed constraint is satisfied [40, 41].
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optimal cost λ ∗ that causes the decision maker to select k arm on average. Further-
more, we saw that the Lagrangian (8) can be solved by considering arms one by one
(in accordance with the intuition described at the beginning of this section, where
it is argued that not much is lost by decoupling arms provided the system is large
enough). In fact, (9) is the Lagrangian corresponding to a one-arm sub-problem in
which there is only a single arm which can be selected or not, and where selecting
the arm yields the state-dependent reward but also an associated cost λ . Now the
optimal λi(v) is the one that makes us indifferent between selecting or not selecting
the arm when it is in state v. In summary, we define the Whittle index as follows (cf.
[41]).

Definition 2. The Whittle index is the largest cost λ in (9) such that it is still optimal
to select the arm in the one-arm sub-problem.

Intuitively, the Whittle index can perhaps best be thought of as an opportunity
cost, to be paid for loosing the opportunity to select one of the other arms in the con-
strained system with multiple arms. Naturally, we then prioritize arms with higher
opportunity cost.

Computing the Whittle Index. As stated in Definition 2, the Whittle index is
derived from the optimal policy for the one-arm sub-problem. Thus, the compu-
tational complexity of the Whittle index increases only linearly with the number
of arms: we need the optimal policy for at most d non-identical single-arm sub-
problems. In contrast, the complexity of computing the optimal policy for the full
system increases exponentially (the latter problem is in fact PSPACE hard [33]).

It is well-known [14, 34] that in great generality the optimal average reward
G is constant (independent of the initial state), and satisfies Bellman’s optimality
equation. For the one-arm sub-problem associated with our arm selection problem
this optimality equation reads as,

G+H(ϑi) = max
{

ri(ϑi)−λi +E
[
H
(
Ai(ϑi,U)

)]
, E
[
H
(
Pi(ϑi,U)

)]}
, (10)

with ϑi ∈ Si and U a uniform (0,1) random variable. Here, ri(ϑi)−λi is the imme-
diate reward obtained from deciding to use the arm, corrected by the opportunity
cost λi. The bias function H accounts for the transient effect caused by starting at
initial state ϑ rather than at equilibrium.

The optimal policy for this one-arm sub-problem is then to choose the action that
maximizes the right-hand side of (10). It can be found from dynamic programming
algorithms such as (relative) value or policy iteration. Then the Whittle index for
state ϑi can be effectively computed by solving (10) for an increasing sequence of
λi(v) and finding the maximal λi(v) for which selecting the arm is still optimal.

Note that for the RORMAB, the one armed subsidy problem (10) becomes:

G+H(ϑi) = max
{

Eϑi

[
ri(Xi)

]
−λi +Eϑi

[
H
(
O(Xi)

)]
, H
(
T (ϑi)

)}
. (11)
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As before, an observation is obtained which is the realization of a random variable
X with probability distribution determined by ϑ (as indicated by the subscript). If
the arm is not used, then no reward is obtained and the belief is propagated using
the operator T . We solve this problem numerically for GE and AR arms in the next
section.

4 Numerical Illustration and Evaluation

We now return to RORMAB and compare the performance of the Whittle index
policy to that of the myopic policy and, for small d, to the optimal policy. To evaluate
the Whittle indices, we usually need the optimal policy associated with Whittle’s
one-armed problem with subsidy. We obtain the latter from relative value iteration
(on a discretized state space) using the optimality equation (11). This can be written
more explicitly using the reward functions from (5) as

G+H(ω) = max
{

ri(ω)−λ +ω H
(

p11
i )+ω H(p01

i ) , H
(
ω p11

i +ω p01
i
)}

(12)

when the channel is GE (so that ϑ = ω), and

G+H(µ, ν) = max
{

r j(µ)−λ +
∫

∞

−∞

H(ϕ y, σ
2)φµ,ν(y)dy, H

(
ϕµ,ϕ2

ν +σ
2)}
(13)

when the channel is AR (in which case ϑ = (µ,ν)). Here φµ,ν denotes the normal
density with mean µ and variance ν . Note that in the case of GE channels, the Whit-
tle indices are in fact available in closed form, [22]. Still, from an implementation
perspective we find it easier to carry out relative value iteration numerically.

Fig. 2 shows the optimal switching curve for a small mixed system with one AR
and one GE channel. To the left of the curve, where ω is large in comparison to
µ , the optimal policy is to select the GE channel. To the right of the curve select-
ing the AR channel is optimal. The curve shifts with the age of the AR channel:
the more time has passed since the AR channel has last been observed, the more
inclined the transmitter should be to select that channel in order to update the avail-
able information regarding its state. In other words, it is indeed optimal to give some
priority to exploration if AR channels are present in the system. Note, however, that
for “older” channels this effect is less pronounced because in that case the resulting
change in the conditional variance ν is smaller (recall the belief propagation of ν

defined by (3)).
Fig. 3 shows a comparison of the rewards that are obtained per channel on av-

erage under different policies. Here, k = d/2 channels are selected at a time in a
system with d channels, where half of the channels are GE and the other half is AR.
All of the AR channels are with ϕ = 0.8 and σ = 2 (as in Fig. 6). The GE channels
on the other hand are heterogeneous, with γ = 0.8 and ρi ∈ [0.2,0.8] evenly spaced
such that 0.8 = ρ1 > · · · > ρd/2 = 0.2. Depicted are the average rewards per arm
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Fig. 2 Optimal switching curves for a system with d = 2 channels: an AR channel with ϕ = 0.8
and σ = 2, and a GE channel with ρ = 0.5 and γ = 0.8. This figure shows the switching curves on
the ω,µ plane, one curve per age η ∈ {1,2,3}.

obtained under the Whittle and the myopic index policy, and, as an upper bound, we
also computed the average rewards that could be obtained in a fully observable sys-
tem under the myopic policy. Due to the high computational complexity, the optimal
policy is only evaluated for d = 2.
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Fig. 3 Comparison of Whittle and myopic index policies for increasing number of channels d
when half of the channels are GE and the other half is AR. For d = 2, the average reward ob-
tained under the optimal policy is indicated by a black dot. We compare to the average reward that
could be obtained if both arms were observed at each time point (that is in the fully observable or
“omniscient” setting).

All policies seem to approach a certain steady performance in terms of average
reward per arm rather quickly as the number of channels grows large while the ratio
k/d remains fixed. The achieved average reward level demonstrates the significant
improvement in throughput that can be achieved by utilising the channel memory:
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the average reward is increased by more than 30% compared to the zero average
reward that is obtained when channel memory is not used.

Fig. 3 also confirms that some degree of exploration is favourable: In this exam-
ple the Whittle index policy improves the average reward per arm by about 5% with
respect to the myopic policy. This is in contrast to scenarios where all channels are
GE and stochastically identical. In the latter case it can be shown that the Whittle
and the myopic index policy are equivalent. We give further details in (i) below.

From a practical perspective an increase of 5% may appear small, however, it can
be crucial in systems that are nearing fundamental limits. For example, for wireless
devices with limited battery life such an increase may effectively correspond to
a decrease of a few percent in power consumption, which may be significant in
increasing the operational time of the device.

Next, we investigate the Whittle indices ιW (ω) obtained for GE channels with
various parameter combinations (Fig. 4). We observe the following properties of
ιW (ω):

(i) The index function ιW (ω) increases monotonically; the larger the conditional
probability that the channel is in a good state, the more priority should be given
to that channel. This implies that the Whittle index is equivalent to the myopic
policy in systems with identical channels, as we mentioned above.

(ii) ιW (ω) is linear in
[
0,min{p01, p11}

]
and

[
max{p01, p11},1

]
, and changes

slope at γ .

These properties have been proven in [22] for GE channels with reward function
r(ω) given by the identity function.

We further note that the Whittle indices are overall smaller if γ is larger because
in this case the rewards smaller (as r j defined by (5) is decreasing in γ).

In Fig. 5 we show the difference between the Whittle and the myopic index func-
tion. It can be seen that the index functions are identical on

[
0,min{p01, p11}

]
and[

max{p01, p11},1
]
: In these regions exploration is not essential it is rather certain

that the state will evolve towards γ . Accordingly, we see that ιW and ιM differ around
γ , and on a larger interval to the left of γ .

Fig. 6 depicts the difference between Whittle and myopic indices as obtained for
an AR channel. The obtained indices increase with µ because the expected immedi-
ate reward is larger. Note that for increasing age the Whittle indices increase relative
to the myopic indices. Again this suggests that exploration pays off. Furthermore,
for high ages the difference between the Whittle and the myopic indices is largest
around zero, which corresponds to the unconditional mean reward of the channel.
Similarly to the GE case, this may be explained by noting that exploration is more
important if µ is close to the unconditional mean as it is less clear in which direc-
tion the belief state will evolve. If µ is far away from the unconditional mean on
the other hand, then it is likely that the updated conditional mean will be closer to
unconditional mean. However, when the age is close to zero, then due to the positive
correlation of the channel it is also important that µ was large just an instance ago.
Thus, while for small ages the Whittle indices are generally close to the myopic
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Fig. 4 Whittle indices for GE channels
parametrized by α and γ .
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Fig. 5 Difference between Whittle and my-
opic index function.

indices, the largest difference can be seen for positive µ (however not too far away
from the unconditional mean of the channel).
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Fig. 6 Contour plot of γW (µ,ν)− r(µ), the difference of Whittle and myopic indices, for an AR
channel with ϕ = 0.8, σ = 2.

5 Literature Survey

There is a vast body of literature on MDP as well as topics related to (restless) multi-
armed bandits. Here, we focus on the RORMAB formulation of the basic channel
selection problem as formulated in this chapter, with GE or AR channels. Other
(approximate) solutions to this MDP problem have been put forward [15], but are
not considered here.
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GE Channels. The Gilbert-Elliot model was proposed in [8] for the purpose of
modelling burst-noise telephone circuits. It was the first non-trivial channel model
with memory. Since the 1990’s, the model and its generalizations have been used for
modelling flat-fading channels in wireless communication networks. Its application
in the context of Opportunistic Spectrum Access (OSA) is motivated by the bursty
traffic of primary users [17, 45]. For an account on the history of the GE model we
refer to [35].

Due to its simplicity, the GE model is mathematically tractable and has been
analysed extensively in the context of channel selection in wireless networks. We
survey a number of papers that model the problem as a RORMAB with GE channels.
Unless otherwise stated, channels are assumed to be independent and stochastically
identical.

One of the first papers in this context appears to be [19]. The paper is motivated
by the problem of allocating bandwidth of a shared wireless channel between a
base station and multiple homogeneous mobile users. Thus, from an engineering
perspective, the set-up slightly differs from the problem considered in this chapter;
the model and the mathematical analysis, however, apply directly to the channel
selection scenario (where simply “users” are replaced by “channels”).

In [19], the noisiness of the link for the users is modelled using the GE model.
At any point in time a user may either be connected to the base station or not. The
current state of a user is only observed when a packet is transmitted to that user.
Rewards are given by the number of successful transmissions. The analysis is with
respect to the discounted reward criterion over an infinite time horizon. The authors
show that the myopic policy is generally optimal for the case of d = 2 users. For the
case d > 2 and positively correlated channels, it is proven that the myopic policy is
optimal if the discount factor is small enough (Condition (A) in [19]). Furthermore,
in the positively correlated scenario the myopic policy is seen to be equivalent to a
“persistent round robin” policy where the link is dedicated to each user in a cyclic
fashion according to their initial probability of being in a good state, and packets are
transmitted to the same user until a packet fails to be transmitted correctly.

Following this work, the GE channel model has been analysed extensively in
a surge of research on OSA, which goes back to [18]. The aim of this branch of
research is to find secondary user policies that efficiently exploit transmission op-
portunities created by the bursty usage patterns of licensed primary users in wireless
networks.

One of the first to formulate the RORMAB with GE channels in the context
of OSA were Zhao et al. in 2005 [44]. The authors compare the transmission rate
achieved by the myopic policy to the optimal policy using numerical examples.

This work was the starting point of a sequence of papers analysing the perfor-
mance of the myopic policy. In [42], optimality is proven for the case of choosing
one out of two channels, with respect to expected total discounted rewards over
finite as well as infinite time horizon.

The scenarios in which the myopic policy is optimal are then generalized in a se-
quence of papers. Javidi et al. [16] consider the case of selecting 1 out of d channels
and prove optimality of the myopic policy under the discounted reward criterion for
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positively correlated channels provided the discounted factor satisfies a certain in-
equality with respect to the transition probabilities. Under the additional ergodicity
criterion

|p11− p00|< 1, (14)

the myopic policy is further shown to be optimal under the average reward criterion
(cf. (1)). The work of [16] is extended in [21] to the case of selecting d−1 out of d
channels.

In [43] for the case of choosing 1 out of d channels the result of [19] is confirmed
that the myopic policy is a persistent round robin scheme if channels are positively
correlated. It is further shown that if correlation is negative, then the myopic policy
is a round robin scheme, where the circular order is reversed in every time slot (and
as for the positively correlated case, the user switches to the next channel as soon
as the currently used channel signals has transitioned to the bad state). For the case
d = 2, the myopic policy is shown to be optimal in general, as had already been
established in [19]. Furthermore, it is shown that the performance of the myopic
policy is determined by the stationary distributions of a higher-order countable-state
Markov chain. The stationary distribution is known in closed form for the case d = 2.
For the case d > 2, lower and upper bounds are established.

For negatively correlated channels and the case of selecting 1 out of d channels,
the finite and infinite horizon discount-reward optimality of the myopic policy is
proven in [3], provided that either d ∈ {2,3} or the discount factor is less than
half. These results also hold under average rewards under the additional ergodicity
condition (14). For the finite-horizon discounted reward criterion, the results of [3]
are generalized in [2] to the case of selecting k channels.

In 2014, Liu et al. [24] provide a unifying framework of the optimality conditions
for the myopic policy that resulted from the OSA-motivated research of the chan-
nel selection problem with GE channels. The problem formulation in [24] is more
general as it one to sense k out of d (identically distributed) channels but select only
l ≤ k of those channels for transmission, based on the outcome of the sensing. The
authors provide a set of unifying sufficient conditions under which the myopic pol-
icy is optimal. It is shown that the optimal policy is not generally myopic if l < k.
(This is intuitive because the user is allowed to explore channels without having to
use them.)

The Whittle index policy has also been studied both for the bandwidth allocation
problem that was put forward in [19], and also in the context of OSA. As opposed
to [19], a paper by Niño-Mora [28] handles the problem of bandwidth allocation
when users are heterogeneous. The author proves that the problem is indexable and
provides closed-form expressions for the index function.

For the basic RORMAB with GE channels, Liu and Zhao [22] prove that the
Whittle index and the myopic policy are equivalent for positively correlated iden-
tical channels, thus, yielding the optimality of the Whittle index in this case. In
[32], the indexability and closed-form expression for the Whittle index in the case
of discounted rewards are derived for a more general model where the achievable
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transmission rate (the reward) for a channel in the bad state is, in general, non-zero
and any rate above this achievable rate leads to outage.

Apart from the index policies proposed in this line of research, algorithms for
approximating an optimal policy have also been investigated. See, for example,
[11, 13], where algorithms for the more general model with correlated channels
are proposed, and investigated regarding their performance.

In the context of GE channels a number of generalizations of the basic model con-
sidered in this chapter have been considered. For example, a paper by Niño-Mora
[29] allows for non-identical channels with sensing errors/measurement noise. Im-
perfect sensing was also considered in [23, 39]. In [32] the authors consider a prob-
lem where in both states, good and bad, transmission may fail with a certain non-
zero probability, and it is only observed whether transmission was successful or not.
Another recent paper with imperfect sensing is [26]. In this paper (co-authored by
us) we focus on stability issues of queues associated with channel (server) selection
in the context of imperfect sensing.

The paper [25] deals with random delay of feedback arrivals. Correlated channels
were considered in [11, 12, 13]. Action-dependency of channel model parameters
is taken into account in [37]. A very substantial paper is [38], which considers an
RMAB in continuous time, and allows for non-identical channels, a time-dependent
number of channels, and multiple actions. In this paper, a more general class of
index policies is considered, which includes the Whittle index if the bandit problem
is indexable. Asymptotic optimality for this class is proven for systems with many
channels.

AR Channels. The AR channel model has only recently come to attention in
the context of channel selection, and consequently the mathematical analysis is still
at its starting point. The first to propose the application of this model for channel
selection were Avrachenkov et al. [4] in 2012. This is motivated by empirical studies
[1], showing that the AR model captures the signal-to-noise ratio (SNR) behaviour
of the channels reasonably well.

In [4], the authors compare the performance of the myopic and an ad-hoc ran-
domized policy to the optimal policy by means of numerical examples. It is con-
cluded that the myopic policy is “nearly optimal” when all channels are similarly
correlated, with respect to the long-run average reward criterion. In contrast, the
randomized policy appears to perform better when there is a significant difference
in the magnitude of the correlation of the channels.

Subsequently, the authors show how to model the problem when two transmit-
ters are present that can possibly interfere with each other. In this case the SNR is
replaced by the signal-plus-interference-to-noise-ratio (SINR) to model the states
of the channels. The scenario is formalized as a competitive MDP (also called a
stochastic game) – an MDP in which the instantaneous rewards for each player and
the transition probabilities among the states are controlled by the joint actions of
the players in each state. Then, similar to the single user case, a randomized and a
myopic policy are suggested (now based on the SINR).
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A second paper that deals with channel selection with AR channels is [20]. In
this paper we investigate structural properties of the Whittle index with respect to
expected total discounted rewards. The monotonicity and convexity of the value
function associated with the one-channel sub-problem is proven. Furthermore, nu-
merical evidence for the indexability of the one-armed problem is provided, and
the Whittle index policy is shown to outperform the myopic policy in numerical
examples.

Then, a parametric index is proposed that is as simple as the myopic index but
allows to give some priority to exploration, and therefore yields a better performance
than the latter. For this parametric index, we put forward recursive equations that
identify the asymptotic behaviour of the network in the setting with many channels.
In addition, a simple heuristic algorithm is proposed to evaluate the performance of
index policies; the latter is used to optimize the parametric index.

We also note that a related body of literate to AR channels deals with the prob-
lem of optimal sensing of Kalman filters. A key paper in this line of research is
[31]. A related paper is [30] as well as the recent [6] which appears to provide an
indexabillity proof using a new novel method. It is possible that ideas put forward
in these papers dealing with the Whittle index and simple Gaussian processes may
be fruitful for the RORMAB problem with AR channels. This avenue of research
remains to be explored.

Acknowledgement: YN is supported by Australian Research Council (ARC)
grants DP130100156 and DE130100291. JK is supported by DP130100156. The au-
thors are indebted to Aapeli Vuorinen for his contribution to the numerical compu-
tations. We also thank the anonymous referee, Michel Mandjes and Thomas Taimre
for their comments.

References

1. R. Aguero, M. Garcia, and L. Munoz. BEAR: A bursty error auto-regressive model for indoor
wireless environments. In 18th International Symposium on Personal, Indoor and Mobile
Radio Communications (PIMRC), pages 1–5. IEEE, 2007.

2. S. H. A. Ahmad and M. Liu. Multi-channel opportunistic access: A case of restless bandits
with multiple plays. In 47th Annual Allerton Conference on Communication, Control, and
Computing, pages 1361–1368. IEEE, 2009.

3. T. W. Archibald, D. Black, and K. D. Glazebrook. Indexability and index heuristics for a
simple class of inventory routing problems. Operations research, 57(2):314–326, 2009.

4. K. Avrachenkov, L. Cottatellucci, and L. Maggi. Slow fading channel selection: A restless
multi-armed bandit formulation. In International Symposium on Wireless Communication
Systems (ISWCS), pages 1083–1087. IEEE, 2012.

5. D. P. Bertsekas. Dynamic programming and optimal control, volume 1. Athena Scientific
Belmont, 1995.

6. C. R. Dance and T. Silander. When are kalman-filter restless bandits indexable? arXiv preprint
arXiv:1509.04541, 2015.

7. D. Duchamp and N. Reynolds. Measured performance of a wireless LAN. In 17th Conference
on Local Computer Networks, pages 494–499. IEEE Press, 1992.



22 Julia Kuhn and Yoni Nazarathy

8. E. N. Gilbert. Capacity of a burst-noise channel. Bell System Technical Journal, 39(5):1253–
1265, 1960.

9. J. Gittins, K. Glazebrook, and R. Weber. Multi-armed Bandit Allocation Indices. Wiley Online
Library, 2 edition, 2011.

10. J. C. Gittins. Bandit Processes and Dynamic Allocations. Journal of the Royal Statistical
Society. Series B (Methodological), 41(2):148–177, 1979.

11. S. Guha and K. Munagala. Approximation algorithms for partial-information based stochastic
control with Markovian rewards. In 48th Annual Symposium on Foundations of Computer
Science (FOCS’07), pages 483–493. IEEE, 2007.

12. S. Guha, K. Munagala, and P. Shi. Approximation algorithms for restless bandit problems. In
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2009.

13. S. Guha, K. Munagala, and P. Shi. Approximation algorithms for restless bandit problems.
Journal of the ACM (JACM), 58(1):3, 2010.

14. O. Hernández-Lerma and J. B. Lasserre. Discrete-time Markov control processes: basic opti-
mality criteria, volume 30. Springer Science & Business Media, 2012.

15. A. Itai and Z. Rosberg. A golden ratio control policy for a multiple-access channel. IEEE
Transactions on Automatic Control, 29(8):712–718, 1984.

16. T. Javidi, B. Krishnamachari, Q. Zhao, and M. Liu. Optimality of myopic sensing in multi-
channel opportunistic access. In International Conference on Communications (ICC’08),
pages 2107–2112. IEEE, 2008.

17. L. A. Johnston and V. Krishnamurthy. Opportunistic file transfer over a fading channel: A
POMDP search theory formulation with optimal threshold policies. IEEE Transactions on
Wireless Communications, 5(2):394–405, 2006.

18. R. Knopp and P. A. Humblet. Information capacity and power control in single-cell multiuser
communications. In International Conference on Communications (ICC’95), volume 1, pages
331–335. IEEE, 1995.

19. G. Koole, Z. Liu, and R. Righter. Optimal transmission policies for noisy channels. Operations
Research, 49(6):892–899, 2001.

20. J. Kuhn, M. Mandjes, and Y. Nazarathy. Exploration vs exploitation with partially observable
Gaussian autoregressive arms. In 8th International Conference on Performance Evaluation
Methodologies and Tools (Valuetools), 2014.

21. K. Liu and Q. Zhao. Channel probing for opportunistic access with multi-channel sensing. In
Asilomar Conference on Signals, Systems and Computers. IEEE, 2008.

22. K. Liu and Q. Zhao. Indexability of restless bandit problems and optimality of Whittle index
for dynamic multichannel access. IEEE Transactions on Information Theory, 56(11):5547–
5567, 2010.

23. K. Liu, Q. Zhao, and B. Krishnamachari. Dynamic multichannel access with imperfect chan-
nel state detection. IEEE Transactions on Signal Processing, 58(5):2795–2808, 2010.

24. Y. Liu, M. Liu, and S. H. A. Ahmad. Sufficient conditions on the optimality of myopic sensing
in opportunistic channel access: A unifying framework. IEEE Transactions on Information
Theory, 60(8):4922–4940, 2014.

25. S. Murugesan, P. Schniter, and N. B. Shroff. Multiuser scheduling in a Markov-modeled
downlink using randomly delayed arq feedback. IEEE Transactions on Information Theory,
58(2):1025–1042, 2012.

26. Y. Nazarathy, T. Taimre, A. Asanjarani, J. Kuhn, P. Brendan, and A. Vuorinen. The challenge
of stabilizing control for queueing systems with unobservable server states. In Australian
Control Conference, AUCC, to appear, 2015.

27. J. Niño-Mora. Dynamic priority allocation via restless bandit marginal productivity indices.
Top, 15(2):161–198, 2007.

28. J. Niño-Mora. An index policy for dynamic fading-channel allocation to heterogeneous mobile
users with partial observations. In Next Generation Internet Networks (NGI), pages 231–238.
IEEE, 2008.

29. J. Niño-Mora. A restless bandit marginal productivity index for opportunistic spectrum access
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