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Abstract— We address the problem of stabilizing control for
complex queueing systems where servers follow unobservable
Markovian environments. The controller needs to assign servers
to queues without full information about the servers’ states. A
control challenge is to devise a policy that matches servers to
queues in a way that takes state estimates into account and
updates these estimates in the best way possible. Maximally
attainable stability regions are non-trivial.

We present the model, the control problem, and some
preliminary methods for analysis and control. We illustrate
basic phenomena and then focus on the simplest possible model
having a single queue, a fixed state server, and a two state
server. For this case, we begin analysis of a partially observable
Markov decision process (POMDP) hinting at some structural
properties. We also show how to use a quasi-birth–death (QBD)
process for analysis and control.

I. INTRODUCTION

Methods for design and analysis of stabilizing controllers
for queueing systems are widely studied with respect to
applications in telecommunications, engineering, and oper-
ations research (e.g. [13]). The main theme is the sequential
allocation of resources or servers (e.g. communication chan-
nels, transmitters, manufacturing machines) in an efficient
manner to units requiring processing (e.g. file transfers,
widgets). A primary goal, referred to as stability, is to ensure
the quantity of units requiring processing remains finite.

In this paper we take first steps towards the study of a
multi-server multi-queue system where the servers’ states
vary in a Markovian fashion and are not explicitly observed.
Such a scenario has only been partially addressed in the
literature. In [18] the stability region of a single-server multi-
queue system with a fully observed server state that varies
in an i.i.d. fashion is studied. In [6] this work is extended
in the multi-server multi-queue context to the case where
queue lengths and server states are infrequently observed.
More recently, in [3] the stability region of a multi-server
multi-queue fully observed system was characterised using
a finite set of linear inequalities. In [10] a single-queue (of
infinite size) multi-server system similar to ours was studied.
Other related work arises, for example, in the context of
(nearly) optimal opportunistic spectrum access in cognitive
radio networks. Such problems have been considered in [11],
[14], [15]; see also the survey [1] and the references therein.
However, none of these models capture the same phenomena
which we illustrate in this paper.

A key theme to consider is exploration vs. exploitation. A
sensible controller must strike a trade-off between exploring

servers about which there is little information and exploiting
servers that are believed to be in a good state; see for
example [8] for a survey. Devising such controllers is not
a straightforward task. Our goal in this paper is to introduce
some methodology that can potentially be used for the design
and analysis of such controllers. We introduce a general
model for which we illustrate some key phenomena; we also
specialize to the simplest non-trivial model and analyze it in
further detail using a partially observable Markov decision
process (POMDP) approach [17] so as to obtain the maximal
stability region. For this simple model, we also discuss how
to analyze controller behavior with a finite-state controller
modeled as a quasi-birth–death (QBD) process [9]. This way,
one can further analyze and optimize controllers.

The remainder of this paper is structured as follows. In
Section II we introduce our general system model as well as
the simplest non-trivial model. In Section III we show key
phenomena using simulation. In Section IV we introduce
the POMDP associated with this model and hint on some
structural properties. Then in Section V we show how a finite
state controller (possibly approximating the POMDP based
controller) can be analyzed using matrix analytic Markov
methods. We conclude with an outlook in Section VI.
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Fig. 1. A controller allocates K servers to L queues. Server states vary
according to two state Markov chains and influence the service success
probabilities. Server states are not directly observable.

II. SYSTEM MODEL

Consider a situation as depicted in Fig. 1. Jobs arrive into
one of L queues and are potentially served by one of K
servers, according to some control policy. In each discrete
time step t ∈ {0,1, . . .} the probability of a job arriving to



Queue i is λi, independent of all other events. After the
potential arrivals, the controller allocates each non-empty
queue a server at which to attempt service. Service of a
job from Queue i by Server j at time t succeeds with a
probability µi, j

(
X j(t)

)
that depends only on the state of the

server, X j(t). The latter evolves on {1,2} according to a
Markov chain, independently of all other events.

The two-state Markov chain is sometimes referred to as a
Gilbert–Elliot (GE) Channel [16] having a transition matrix:

P j
GE =

[
p p
q q

]
=

[
1− γ ρ γ ρ

γ ρ 1− γ ρ

]
,

where we denote x := 1− x. A standard parametrization of
this Markov chain uses transition probabilities p,q ∈ [0,1].
Alternatively we may specify the stationary probability of be-
ing in state 2, denoted by γ ∈ [0,1], together with the second
eigenvalue of P j

GE, denoted by ρ ∈
[
1−min(γ−1, γ

−1), 1
]
.

Then ρ quantifies the time-dependence of the chain —
when ρ = 0 the chain is i.i.d., otherwise there is memory.
The relationship between these parameterisations is given by
p = γ ρ , q = γ ρ , γ = p/(p+q), and ρ = 1− p−q.

The key feature of our model is that the controller does
not generally observe X j(t) directly. Instead, the controller
is only aware whether a failure or a success of the service
has taken place. This is represented by a random variable
I j(t) the realization of which is equal to 0 in case of failure
and equal to 1 in case of success. If at time t no queue
was allocated to server j, then I j(t) is not available to
the controller. The matter of stabilizing control when X j
is directly observed has been studied in [3]; however, their
analysis does not apply to our case where server states are
not observed explicitly.

In this paper, we call a control policy stabilizing if
the associated Markov chain of the system (including the
queues) is positive recurrent. For example, if L ·maxi λi <
K ·mini, j µi, j, then any control policy that arbitrarily allocates
servers to queues is stabilizing. But in general, as we
illustrate in the paper, stability regions are non-trivial.

A key component used by the controller is the belief state
for server j. For the two state Markov chain, this is denoted
by ω j(t) = P

(
X j(t) = 2 |Prior knowledge to time t

)
. In our

case, the prior knowledge relevant for decision making is
given by the sequence of random variables I j(t) for times t
during which server j was selected. As we describe now, it
is a simple matter to recursively update this sequence in a
Bayesian manner. Given that ω j(t) = ω , the believed chance
of having success from the queue–server pair i, j at time t
is ri, j(ω) := ωµi, j(1)+ωµi, j(2) . Now it is easy to construct
τ j, τ

j
0 , τ

j
1 which denote the belief updating operators given

no observation, observation with I j = 0, or observation with
I j = 1, respectively. Omitting subscripts i and j, and denoting
µ` = µi, j(`) for `= 1,2, these operators are:

τ(ω) = qω + pω = ωρ + γ(1−ρ),

τ0(ω) =
qµ2ω + pµ1ω

r(ω)
, τ1(ω) =

qµ2ω + pµ1ω

r(ω)
.

Observe that the fixed point of τ is the stationary probability
γ . The fixed points of τ0 and τ1 are also of interest. When
ρ 6= 0 and µ1 6= µ2, τ0 and τ1 are (real) hyperbolic Möbius
transformations of the form (aω+b)/(cω+d) for ω ∈ [0,1].
As such, they each have two distinct fixed points, one stable
and one unstable. Here, excluding trivialities where p,q ∈
{0,1}, the stable fixed point of each lies in (0,1) and is of the
form

(
a− d +

√
(a−d)2 +4bc

)
/2c (see also [12, Lemmas

2, 3]). For τ0 we have a = qµ2− pµ1, b = pµ1, c = µ2−µ1,
and d = µ1; similarly for τ1 with µ` replaced by µ`. Denote
by ω` the stable fixed point of τ`.

Define now for the queue–server pair, i, j, the interval

Ω = Ωi, j = [min(ω i, j
0 ,ω i, j

1 ), max(ω i, j
0 ,ω i, j

1 )]⊂ [0,1].

where the fixed points ω
i, j
` are the stable fixed points of τ`

for ` ∈ {0,1} using the parameters µi, j and P j
GE.

Proposition 1: Apply any arbitrary infinite sequence of
the mappings τ , τ0, τ1 to ω ∈ [0,1]. Then the limit of any
subsequence lies within Ω.
To see this we note that for any ω (and excluding trivialities
by ensuring ρ 6= 0, and p,q 6∈ {0,1}) τ` is a contraction
mapping on [0,1] for ` ∈ {0,1}. Moreover, γ ∈Ω.

Proposition 1 gives us a range Ω in which the belief states
are ultimately contained. This range is useful for finding a
corresponding range within which the throughput lies. We
denote the throughput range of the queue–server pair i, j by
Ω

µ

i, j = {ri, j(ω) : ω ∈Ωi, j}. Knowledge of Ω
µ

i, j is useful for
obtaining rough rules for maximally stabilizing policies.
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Fig. 2. The simplest (specialized) queueing system analyzed throughout
this paper with the exception of Section III.

Consider the simplest non-trivial example of our model
as in Fig. 2. In this case, there is only one queue (hence
we omit the subscript i) and the server is either j =‘s’, with
guaranteed success probability µs (a ‘Safe Server’) or j =‘b’,
with state evolving according to PGE (omitting the superscript
j for readability; a ‘Bandit Server’, in reference to the GE
Channel being a restless two-armed bandit). The parameters
of this model are µs, µ1, µ2, and the two parameters of PGE

as well as the arrival rate λ . Assume w.l.o.g. that µ1 < µ2.
The control problem is non-trivial when µ1 < µs < µ2.

This can be seen as follows. The throughput range for ‘s’ is
trivially Ω

µ

1,s = {µs} but Ω
µ

1,b is a range that depends on µ1,
µ2, and PGE. When Ω

µ

1,b lies entirely below µs, any sensible



control policy will only choose ‘s’. Similarly when Ω
µ

1,b lies
entirely above µs any policy will only choose ‘b’.

The interesting case is when µs ∈ Ω
µ

1,b. In this case, it
is plausible that a stabilizing policy will utilize the channel
history and sometimes choose ‘b’ (hoping to get µ2 and gain
further information about the bandit) and sometimes choose
‘s’ (believing that a choice of ‘b’ would yield µ1 and should
thus be avoided).

As an example, consider µ1 = 0.2, µs = 0.5, and µ2 =
0.8. Note that for these values, if γ = 0.5, without further
information, both servers are equally attractive. If ρ = 0.4
it turns out that for γ 6∈ [0.3,0.7] any sensible policy is
degenerate (it always chooses ‘s’ or always chooses ‘b’).
In this degenerate situation, the stability region is either
λ < µs (if the policy always chooses ‘s’) or λ < r(γ) (if
the policy always chooses ‘b’). However, for γ ∈ [0.3,0.7] it
is possible that the stability region is increased to λ < µ∗

with µ∗ > max
(
µs, r(γ)

)
. For example for γ = 0.5 we find

that µ∗ = 0.5212.
We elaborate more on this simple example in the sections

that follow but first we return to the more general model and
illustrate some further phenomena that may occur.

III. SOME KEY PHENOMENA

To illustrate some key behaviors exhibited by our model
consider an example with L = 2 and K = 3 where, for all
three servers, P j

GE is set with γ = 0.5 and we vary ρ . Further,
for each server j,

µ1, j(1)= 0.95 , µ1, j(2)= 0.05 , µ2, j(1)= 0.4 , µ2, j(2)= 0.6 .

We also fix λ2 = 0.525 and vary λ1.
To develop some intuition for the behavior of the system

under these parameters, first assume that ρ = 0 and further
set λ1 = 0. In this case the system cannot be stabilized since
ω j(t) = γ for all t and

µ
∗ = r2, j(γ) = 0.5 < 0.525 = λ2 .

That is, since there is no memory, the controller cannot use
any past information to choose a good allocation.

At the other extreme, assume momentarily the controller
is able to view the states of the servers. In this case an
optimal selection may always be made. Now since the long
term proportion of servers which are in state 2 follows a
binomial distribution with parameters 3 and 0.5, the long
term proportion of time during which a good selection is not
possible (only µ2, j(1) is available for all j) is 1/8 and the
complement of that is the long term proportion of time during
which a good selection is possible (µ2, j(2) is available for
some j). Hence in this case

µ
∗ = 0.4/8+0.6×7/8 = 0.575 > 0.525 = λ2 .

That is, with full information the system can be stabilised.
Even though in practice the controller is not able to view the
states of the servers, when |ρ| → 1 the controller behaves
as though this were the case since the server state changes
sufficiently slowly that highly accurate state estimates can
be found. The above discussion hints that the stability region

depends on the switching speed of the server states. That is,
fast changing server states can sometimes not be stabilized
while slowly changing server states can be stabilized.

We now introduce another phenomenon associated with
Queue 1 and set λ1 > 0. Attempting service of jobs from
this queue is more informative about server states than
attempting service of jobs from Queue 2 since the failure and
success probabilities are much closer to 0 and 1 respectively.
Hence, by occasionally allocating this queue to a server the
controller may be able to improve the quality of available
information and ultimately make better choices.

We illustrate these behaviors through Monte Carlo sim-
ulation experiments. As a policy, we use an adaptation of
Max-Weight (see [7]). At each time slot each queue is
allocated to a unique server j ∈ {1,2,3} so as to maximise
E
[
∑

2
i=1 µi, j(X j(t))Qi(t)

]
, where Qi(t) is the size of queue

i∈{1,2} and the expected values are based on state estimates
as described in the previous section. This is by no means a
maximally stabilizing policy (finding such a policy remains
an open question), yet by performing simulations using this
policy we illustrate the key phenomena described above.

When performing Monte Carlo simulation of stability, a
crucial quantity to examine (estimated from simulation runs)
is the drift limt→∞ Qi(t)/t. The latter is 0 (almost surely) for
stable or critical systems and is positive otherwise. In this
example, using a binomial distribution argument as above
and denoting [x]+ = max(x,0), we believe that for i = 1 the
drift is

[λ1−
1
8
(µ1, j(1)+µ1, j(2))−

6
8
(α1µ1, j(1)+α1µ1, j(2))]+

=

[
λ1−

13
80

α1−
27
40

]+
,

where αi is the long run proportion of time that Queue i
attempts service at a server in state i (“good state” for that
queue) out of the total time that some of the servers are in
different states. A similar expression holds for the drift of
Queue 2, and upon combining these expressions we obtain:

lim
t→∞

Q1(t)+Q2(t)
t

=

[
λ1−

13
80

α1−
27
40

]+
+

[
1

10
− 3

20
α2

]+
.

Note that if we employ a random policy then αi = 1/2 and
if we can observe server states then αi = 1. In our Max-
Weight based policy, αi is not available analytically but
is directly tied to stability through the equation above. In
fact, through simulation experiments we verified the stated
relationship between αi and the drift in this equation for
ρ ∈ {−0.99,−0.98, . . . ,0.99} and λ1 = 0.1,0.45.

For λ1 < 0.6750 we believe the total drift is [0.1 −
0.15α2]

+, all of which is contributed from Queue 2, regard-
less of what α1 is. This implies that we need α2 > 2/3 for
stability. Figure 3 (a) shows that for ρ = 0 and λ1 = 0.1,0.45
the Max-Weight based policy appears to obtain α2 = 1/2,
identical to the random policy. As |ρ| → 1, however, we see
that the policy starts to behave as though it is fully observing
the states, obtaining an α2 closer to 1. As expected, for
λ1 = 0.45 this occurs faster than for λ1 = 0.1. For example,
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Fig. 3. (a) Estimated α2 for ρ ∈ (−1,1) with λ1 = 0.45 (dashed) or λ1 = 0.1
(solid); (b) Estimated drift for λ1 ∈ (0,0.8) with ρ =−0.75, t = 200,000.

for ρ = −0.75 we obtain α2 < 2/3 when λ1 = 0.1 and
α2 > 2/3 for λ1 = 0.45, thus suggesting that for ρ =−0.75
there exists a critical value of λ1 for which stability occurs.
This is supported by Fig. 3 (b), where we see that the drift
is only estimated to be 0 for midrange values of λ1. For high
values of λ1 there is a large amount of drift contributed from
Queue 1. Of interest is the drift contributed from Queue 2
for low values of λ1 — it is not commonly found that a
system becomes more stable when some of the arrival rates
are increased.

IV. MAXIMALLY STABILIZING CONTROL
FOR THE SIMPLEST EXAMPLE

Having shown some of the phenomena that may occur in
our system model, we now return to focus on the simpler
example of Fig. 2. It is plausible that this system is stable
only when λ < µ∗, where µ∗ is the throughput attained by a
system without a queue but rather with an infinite supply of
jobs. Hence the maximal stability region (the largest set of
λ which can be stabilized) is dictated by the aforementioned
maximal throughput µ∗. In contrast with the example of the
previous section, the queues do not play a key role here.

Such a throughput optimizing problem has been studied
for the degenerate case in which µ1 = 0 and µ2 = 1 (obser-
vation of I yields direct observation of X). This degenerate
case is the so called one-armed subsidy problem associated
with the Whittle index [19]. For this problem, [11] have
shown that an optimal policy is a threshold policy where ‘s’
is selected when ω(t) < ω∗, and otherwise ‘b’ is selected.
This motivates the question whether our problem may also
be solved by a threshold policy.

It is well-known that the optimal policy that maximizes
the throughput follows from the average reward Bellman
equation [4], µ∗+ h(ω) = max

{
hs(ω), hb(ω)} , where h is

the relative value function, and

hs(ω) := µ +h
(
τ(ω)

)
,

hb(ω) := r(ω)+
[
r(ω)h

(
τ0(ω)

)
+ r(ω)h

(
τ1(ω)

)]
.

The optimal decision is then to choose ‘s’ if and only if
hs(ω) ≥ hb(ω). We can approximately compute h numeri-
cally by relative value iteration, on a grid on [0,1]. Extensive
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numerical experiments with a variety of different parameter
choices suggest that the optimal policy is indeed threshold
in nature (for an example see Fig. 4).

We now comment on why this should be true. Note that
τ(0) = τ0(0) = τ1(0) = p and thus,

µ
∗+h(0) = max

{
µs +h(p), µ1 +

[
µ1h(p)+µ1h(p)

]}
;

implying that ‘s’ is optimal. Similarly, we have τ(1) =
τ0(1) = τ1(1) = q, whence ‘b’ is optimal. It is intuitive that
hb increases faster in ω than hs — the larger ω the more
weight is given to µ2. (This is confirmed by Fig. 4; in fact
it turns out that generally hs is even decreasing for small ω

when ρ < 0.) Then, because hs(0)> hb(0) and hs(1)< hb(1),
there must be a single point (or interval) of intersection of
hb and hs. Then (the smallest) ω such that hb(ω) = hs(ω) is
the threshold ω∗.

Proving that a threshold policy is optimal for similar
problems has been of great interest in the stochastic optimal
control community because it simplifies the finding of an
approximate or even exact representation of the optimal
policy. Besides [11] relevant work was done in [12], where a
Markovian search problem is considered. The problem is of
similar nature because the updating rules for the underlying
Markov chain are Möbius transformations similar to ours;
consequently, the Bellman equation takes a similar shape.
However, the simplifying feature for the search problem is
that the search ends once the target has been found, and
thus, the random variable I does not play a role. Proving
the threshold property remains an open challenge for now.
Further related and relevant work is [5].

It is of interest to also consider the myopic threshold
policy based on threshold ωm = (µs−µ1)/(µ2−µ1), which
only maximises the immediate expected reward and gives
no priority to exploration. Assuming that the relative value
function is convex (as can be seen in Fig. 4 and similar
experiments), we establish the following intuitive relation
between the optimal and the myopic policy.

Proposition 2: Assume h is convex. Then an optimal
policy, π∗, chooses the bandit server no later than the myopic
policy, πm. That is,

{
ω |πm(ω) = ‘b’

}
⊆
{

ω |π∗(ω) = ‘b’
}

.
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Proof: By convexity of the relative value function:

(ωµ2 +ω µ1)h
(
τ0(ω)

)
+(ωµ2 +ωµ1)h

(
τ1(ω)

)
≥ h(qµ2ω + pµ1ω +qµ2ω + pµ1ω)

= h(ω q+ω p) = h
(
τ(ω)

)
.

This implies that hb(ω) ≥ hs(ω) if ωµ1 +ωµ0 ≥ µs. Thus,
the bandit server is the optimal choice for all ω > ωm.

From Proposition 2 we have that if the optimal policy is
indeed threshold in nature, then that threshold is no larger
than ωm. It can further be seen from figures such as Fig. 5
that indeed for γ ∈Ωµ exploration pays off. Outside of Ωµ

we see that the optimal threshold is ωm (since the policy is
degenerate). We believe that when γ ∈ Ωµ the threshold is
never myopic, that is, ω∗ < ωm.

V. QBD MODELING OF A FINITE STATE CONTROLLER

We now illustrate how matrix-analytic modeling (MAM)
can be used to analyze a finite state controller that approx-
imates an optimal controller. Assume the controller state at
time t is ψ(t) and takes values in the finite set {1, . . . ,M}.
The controller action is (potentially) randomized based on a
vector of probabilities c so that ‘b’ is chosen with probability
cψ(t) and otherwise the choice is ‘s’. The controller state
is updated in a (potentially) randomized manner based on
the M ×M stochastic matrices S,P, and Q as follows: if
‘b’ was not selected (either because there were no jobs in
the queue, or because ‘s’ was selected), the distribution of
the new state is

(
Sψ(t),1, . . . ,Sψ(t),M

)
. Similarly, if ‘b’ was

chosen and service was successful (I = 1), the distribution
of the new state is

(
Pψ(t),1, . . . ,Pψ(t),M

)
. Finally, if ‘b’ was

chosen and the service failed (I = 0), the distribution of the
new state is

(
Qψ(t),1, . . . ,Qψ(t),M

)
. That is, the rows of S,P,

and Q indicate how to (potentially randomly) choose the next
controller state.

Now, given such a controller (S, P, Q, and c), we construct
a Markovian model of the system. The state of this model
at time t is given by the queue length, bandit state, and
controller state as follows:

Z(t) =
(

Q(t)︸︷︷︸
Level

,
(Bandit︷︸︸︷

B(t) ,

Controller︷︸︸︷
ψ(t)

)︸ ︷︷ ︸
Phase

)
∈ {0,1, . . .}×{1,2}×{1, . . . ,M}.

When the states are lexicographically ordered, with first
component countably infinite (levels) and the other compo-
nents finite (phases), the resulting transition matrix is of the
QBD form (see [9]):

S0 S1 0 · · · · · · · · · · · ·
P−1 P0 P1 0 · · · · · · · · ·
0 P−1 P0 P1 0 · · · · · ·
... 0 P−1 P0 P1 0 · · ·
...

...
. . . . . . . . . . . . . . .

 , (1)

where S0, S1, P−1, P0, and P1 are blocks of size 2M×2M as
we construct now. For ` ∈ {1,2}, denote

P̃̀ = µ` diag(c)P+µs diag(c)S ,
Q̃` = µ` diag(c)Q+µs diag(c)S .

Here P̃̀ (i, j) is the probability of updating controller state
from i to j when the server state is ` and transmission
was successful. Similarly, Q̃`(i, j) is the probability of doing
so when transmission was unsuccessful. Recall that in both
cases ‘b’ is used for service with probability ci, and otherwise
‘s’ is used. Now define the 2M×2M matrices,

P̃ =

[
pP̃1 pP̃1
qP̃2 qP̃2

]
, Q̃ =

[
pQ̃1 pQ̃1
qQ̃2 qQ̃2

]
, S̃ =

[
pS pS
qS qS

]
.

These are combined to form the basic elements of the QBD
transition probability matrix (1) of the (complicated) Markov
chain Z as: S0 = λ S̃, S1 = λ S̃, P−1 = λ P̃, P0 = λ Q̃+ λ P̃,
P1 = λ Q̃.

The virtue of modeling the system as a QBD is that we can
use the body of knowledge and exploit existing algorithms
in MAM (e.g. [2]), for analyzing the system and ultimately
optimizing controllers. We now briefly outline some useful
results for QBDs.

A key object for QBDs is the G-matrix, where the entry
Gi j is the probability of first hitting phase j in level n− 1
after starting at phase i in level n. This matrix is the
minimal non-negative solution to the matrix equation G =
P−1 + P0G+ P1G2. Much of QBD theory, algorithms, and
software, deals with solving such a matrix equation, see
for instance [2]. Another key related object is the matrix
R = P1(I−P0−P1G)−1. Positive recurrence (stability) and
the stationary distribution of the QBD is directly linked to
R. In particular, the QBD is positive recurrent if and only
if the spectral radius of R is less than 1 (Corollary 6.2.4
of [9]). Further, assuming positive recurrence, the stationary
distribution is of the so-called matrix-geometric form: πn =
π0Rn, for n≥ 0. Here πn is a row vector of length 2M giving
the stationary distribution over the phases when the level is n.
Hence solving the matrix quadratic equation for G essentially
gives the stationary distribution (the normalizing vector π0
can also be easily obtained).

A sufficient condition for stability (positive recurrence)
is that, π∞

(
P1 − P−1

)
1 < 0, where π∞ is the stationary

distribution of the (finite) stochastic matrix P−1 +P0 +P1.
This is also the stationary distribution of P̃+ Q̃+ S̃ which
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Fig. 6. Stability region achieved by finite state controllers for increasing
M. The limiting horizontal lines are at µ∗ as computed by means of relative
valuate iteration of Section IV.

does not depend on λ . This property of our QBD allows us
to represent the stability criterion as,

λ < µ
∗ =

(
π∞Q̃1
π∞P̃1

+1

)−1

,

with µ∗ depending on the controller and system parameters
but not depending on λ .

We now treat {1, . . . ,M} as a discretization of the belief
state space Ω and encode discretized versions of the belief
state updating operators τ , τ0, and τ1 in the matrices S, Q,
and P respectively. To ensure irreducibility of the QBD, we
add a small (ε = 0.001/M) probability component to each
entry of S, Q and P and renormalize. We also set the elements
of c to be ci = I{ i

M ≥ ω∗} (a thresholding), where I{A} is
the usual indicator function of an event A.

This structure allows us to maximise µ∗ by optimizing
ω∗ (over the M possibilities) so as to find the maximally
stabilising controller with M controller states (and 2M QBD
states). Indeed, as we show in Fig. 6, as M grows, this
controller achieves the same stability region as the maximally
stabilising controller of the previous section. In this figure
we consider µ1 = 0.2, µs = 0.5, µ2 = 0.8, and γ = 0.5, for
ρ = 0.2, 0.4, 0.6, and 0.8. The optimal µ∗ based on relative
value iteration of the Bellman equation are 0.5110, 0.5212,
0.5335, and 0.5545, respectively.

The virtue of the QBD based controller is that only
M states are needed (as opposed to the continuum [0,1]).
Further, by exploiting the QBD structure of the discretized
system, we may analyze its performance under such a
controller. For example, by computing the matrix G for a
given arrival rate λ we can examine the steady-state (matrix-
geometric) distribution of the queue length based on πn and
may further optimize the controller.

VI. OUTLOOK

We introduced a general model framework for studying
control of queueing systems with partial observations of
Markovian environments. Even the simplest possible model

in our framework has non-trivial behavior which can poten-
tially be rigorously analyzed in a POMDP setting. Proving
structural properties remains an open challenge. In tackling
the problem using a Markovian modeling framework, we
illustrated the usefulness of the QBD process viewpoint.

For more complicated examples we showed through sim-
ulation that several interesting phenomena may occur. Deter-
mining the maximally stabilizing region and policy remains
an open question in general. This preliminary work has
illustrated some of the interesting behavior that arises when
studying questions of stability and control for our model, the
answers to which remain fruitful topics for further research.
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