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Abstract

We consider open multi-class queueing networks with general arrival processes, gen-
eral processing time sequences and Bernoulli routing. The network is assumed to be
operating under an arbitrary work-conserving scheduling policy that makes the system
stable. An example is a generalized Jackson network with load less than unity and any
work conserving policy. We find a simple diffusion limit for the inter-queue flows with
an explicit computable expression for the covariance matrix. Specifically, we present a
simple computable expression for the asymptotic variance of arrivals (or departures) of
each of the individual queues and each of the flows in the network.

Keywords: Queueing Networks, Diffusion Limits, Asymptotic Variance.

1 Introduction

The study of explicit performance measures of stable queueing networks has been at the
heart of applied probability and operations research for the past half century. Initial results
such as Burke’s Theorem [4], indicating that the output of a stationary M/M/1 queue is
a Poisson process have motivated the study of queueing output processes with the aim of
using the output characteristics of one queue as the input characteristics of a downstream
queue. While landmark results such as the product form solution of Jackson networks (c.f.
[17] or [19]) have given much hope and practical utility, in the 1960’s and 1970’s it was well
understood that explicit exact queueing network decomposition is in general not attainable.
See for example [9], [10] or [11] for classic surveys of queueing networks and their traffic
processes.

The lack of explicit solutions in general cases as well as the inability to exactly decouple
most networks has motivated the development and study of heuristic queueing network
decomposition schemes such as the Queueing Network Analyzer (QNA) [27] (see also [22]),
and many subsequent approximation methods (see for example the recent heuristics in
[21]). The typical approximating assumption made in such schemes is that each queue in
isolation is a G/G/1 queue which can be analysed independently of the other queues. The
input process is then approximated by taking into consideration both exogenous arrivals
and departures from other upstream queues.
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Some of the key ingredients needed for a network decomposition (such as QNA) are
based on

νk := lim
t→∞

E[Ek(t)]

t
, and σ2k = lim

t→∞

Var
(
Ek(t)

)
t

,

where Ek(t) is the arrival counting process into queue k:

Ek(t) := Ak(t) +
∑
i

Di,k(t),

with Ak(t) representing the exogenous arrival counting process to that queue and Di,j(t)
the number of items that have departed from queue i and immediately arrived to queue j
during the time interval [0, t]. We refer to the latter counting process as flow i → j. The
summation in Ek(t) is over all flows i→ k.

Finding νk exactly is typically a trivial matter based on the network routing matrix
and exogenous arrival rates. As opposed to that, σ2k is more complex. In fact, all of the
proposed methods to date, only approximate σ2k heuristically by taking into consideration
the variability of service times in immediate upstream queues, but most often do not con-
sider dependencies between flows and even when these are considered, the methods are still
heuristic, c.f. [21] and references there-in.

Our key contribution in this paper is a simple exact computable expressions for σ2k as
well as, related asymptotic covariance terms:

σi,j := lim
t→∞

Cov
(
Ei(t), Ej(t)

)
t

, (1)

and the asymptotic variability parameters of flows:

σ2i→j := lim
t→∞

Var
(
Di,j(t)

)
t

, σi1→j1,i2→j2 := lim
t→∞

Cov
(
Di1,j1(t), Di2,j2(t)

)
t

. (2)

Our formulas hold for a wide class of stable networks including multi-class queueing
networks (of which generalized Jackson networks are a special case). These results may
be invaluable in refining queueing network decomposition schemes since the underlying
assumption in most schemes is that of renewal inter-queue flows and in this case the squared
coefficient of variation (SCV) of the inter-renewal times, c2, is the asymptotic variance
divided by the mean squared. Our results thus guarantee finding an exact SCV in cases
where the renewal assumption is valid.

Besides their possible (futuristic) applicability to network decomposition schemes (per-
haps being involved in heuristics that also incorporate other characteristics), our current
contribution allows to understand the correlation structure between flows. As we demon-
strate in an example, there are situations where the sign of the correlation is influenced by
the variability of arrival processes and we are able to determine this explicitly.

Our main result, Theorem 1, is formulated as a simple functional central limit the-
orem (FCLT) and assumes that the network processes satisfy a functional strong law of
large numbers (FSLL) and the primitive processes satisfy FCLTs. In dealing with a stable
queueing network, this could be viewed as a “fundamental” diffusion limit result similar to
some of the results summarized in [7]. To the best of our knowledge this result has been
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overlooked by previous authors working on basic diffusion limits of queueing networks. This
is probably due to the fact that most of the exciting research in the field of diffusion approx-
imations of queueing networks in the past three decades, has focused on critically loaded
networks (c.f. [3], [8], [26] [29], as well as many other key references summarized in [7], [12]
[23] and [28]). The seminal paper [6], does consider diffusion approximations for queueing
networks in all regimes (under-loaded, balanced and over-loaded), yet the inter-queue flows
are not considered in that paper.

As described in our main diffusion result, the asymptotic variability of flows is driven
by two components: (i) The variability of the arrival flows. (ii) The variability resulting
from the Bernoulli routing. In stable networks, the variability of queue sizes (related also
to service time distributions) does not play a role.

Since asymptotic variability of flows only depends on the interplay of the arrival process
variability and the Bernoulli routing, we are also motivated to present an alternative way
for quantifying the asymptotic variability parameters: networks with zero service times.
In such networks, jobs that arrive to the network traverse instantaneously through the
classes/queues until they depart, and hence the total count of jobs passing on flow i→ j is

∑
k

Ak(t)∑
`=1

Ni,j|k(`),

where the outer sum is over all queues and Ni,j|k(`) are counts of the number of passes on
i → j for the `’th job arriving exogenously to k. Using elementary calculations, we find
the asymptotic variances and covariances of such processes and prove they are the same as
those originating from the diffusion parameters. Relating the diffusion limit parameters to
the actual asymptotic variability values of the flows requires uniform integrability (UI). In
addition to the diffusion limits, we establish this UI. It is the zero service time view which
allows us to establish UI and related the diffusion parameters to asymptotic variability
parameters.

The structure of the sequel is as follows: in Section 2 we summarize our results in a
main theorem together with the notation and assumptions of the model. The following
three sections constitute the proof. In Section 3 we present the calculation of the diffusion
parameters and diffusion limit. In Section 4 we present the alternative view of the network
based on zero service times. In Section 5 we relate the diffusion parameters to asymptotic
variance and establish the required UI. We then follow with Section 6 where we present
a numerical example. Readers are encouraged to read this section in conjunction with
Section 2. Closing remarks are in Section 7.

2 Model and Main Result

We consider open networks subject to Bernoulli routing. These can either be the gen-
eralized Jackson queueing networks as described in [7] or more generally, open multi-class
queueing networks (MCQN) operating under an arbitrary policy. See for example [2] for
an extensive overview of the various models. We now outline the notation and assumptions
of our network, followed by the main result.

Denote the classes/queues as k = 1, . . . ,K and use the index 0 to denote the outside
world. Let Tk(t) denote the work (in units of time) allocated towards serving class k during

3



the time interval [0, t]. Further assume counting processes, Ak(t) and Sk(t) representing the
number of exogenous arrivals to class k during [0, t] and the number of jobs served during
uninterrupted service in class k during [0, t] respectively. The actual number of jobs served
during [0, t] is Sk

(
Tk(t)

)
. For i = 1, . . . ,K and j = 0, . . . ,K, let Φi,j(`) denote the number

of items routed from class i to class j out of the first ` items served at i, with,

K∑
j=0

Φi,j(`) = `, i = 1, . . . ,K. (3)

Our inter-queue flows are the following counting processes,

Di,j(t) = Φi,j

(
Si
(
Ti(t)

))
, i = 1, . . . ,K, j = 0, . . . ,K. (4)

Let Qk(t) denote the number of items in the queue of class k at time t. We assume Qk(0) = 0
and have,

Qk(t) = Ek(t)−
K∑
j=0

Dk,j(t), (5)

where the (total) arrival process to queue k is,

Ek(t) = Ak(t) +

K∑
i=1

Di,k(t). (6)

In the treatment below, the vectors Q,T,A,E and S (and their ”bar”, ”hat” and ”tilde”
versions as defined below) are treated as K-dimensional column vectors. Further, let Φ
and D be K2 dimensional column vectors with the elements ordered in lexicographic order
with the elements Dk,0 omitted. For example,

D =
(
D1,1, . . . , D1,K , D2,1, . . . , D2,K , . . . . . . . . . . . . , DK,1, . . . , DK,K

)′
.

Scaling Limits

For n = 1, 2, . . . and a function U(t), denote Ūn(t) = U(nt)/n. We say that a fluid limit
of U exists if limn→∞ Ū

n(t) = Ū(t) exists uniformly on compact sets (u.o.c) almost surely.
Further, when the limit Ū(t) exists, denote,

Ûn(t) =
U(nt)− Ū(nt)√

n
, n = 1, 2, . . . .

In cases where the above sequence converges weakly on Skorohod J1 topology to a limiting
process, Û(t), we denote,

Ûn ⇒ Û .

For discrete time processes replace U(nt) by U(bntc). See [7], Ch. 5 for brief background of
weak convergence in the context of queueing networks. An extensive treatment is in [28].
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Using these scaling definitions and assuming that the fluid limits exist, equations (3),
(5) and (6) are easily manipulated to yield for all n,

0 =
K∑
j=0

Φ̂n
i,j(`), ` = 1, 2, . . . , (7)

Q̂nk(t) = Ânk(t) +
K∑
j=1

D̂n
j,k(t)−

K∑
j=0

D̂n
k,j(t), t ≥ 0, (8)

Ênk (t) = Ânk(t) +
K∑
i=1

D̂n
i,k(t), t ≥ 0. (9)

Probabilistic Assumptions

The primitive processes of our network model are A(t), S(t) and Φ(`). By this we
mean that these processes are used to construct the probability space on which further
network processes are defined. For simplicity we assume that Ak(t), Sk(t) and Φk,·(`) are
independent processes. This can be easily relaxed to allow correlations between different
arrivals, services and routing but we do not do so here.

We assume that the primitive processes satisfy a functional strong law of large numbers
(FSLL) yielding fluid limits,

Āi(t) = αit, S̄i(t) = µit, Φ̄i,j(`) = pi,j`,

with αi > 0, µi > 0, pi,j ≥ 0, and pi,0 = (1 −
∑N

j=1 pi,j) ≥ 0. We denote by P the K ×K
matrix of the pi,j , i, j = 1, . . . ,K. We assume throughout that P has spectral radius less
than 1 so that I−P ′ is non-singular and the network is open. Denote ν = (I−P ′)−1α and
νi,j := νi pi,j .

We also assume that the primitive processes satisfy functional central limit theorems
(FCLT) laws. Specifically we assume Âi(t) are Brownian motions with diffusion coeffi-
cients vi ≥ 0, and that,

Φ̂k,·(t) =
(

Φ̂k,1(t), . . . , Φ̂k,K(t)
)′
, k = 1, . . . ,K,

are K-dimensional Brownian motions with covariance matrices Γk, having the i, j’th entry
pk,i(δi,j − pk,j), where δi,j is the Kronecker delta.

In addition to the FCLT laws we assume that the squares of the diffusion scalings of the
arrival processes are uniformly integrable (UI). Namely we assume that for i = 1, . . . ,K
and some t0 > 0, {(Ai(t)− αit)2

t
, t ≥ t0

}
is UI. (10)

Note that in the case of renewal arrival processes this UI property holds (c.f. [15]). The
assumptions on Āi(t) and Âi(t) above are then satisfied when the inter-arrival times have
finite second moments α−3i v2i + α−2i . In the case of Bernoulli routing, the existence of Φ̄(·)
and Φ̂(·) as specified above follows from the standard FSSLN and FCLT.

As it turns out, the service processes do not play a role in our limiting results and thus
we do not impose FCLT or UI assumptions on S.
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Stability Assumptions

The evolution of the system depends on a scheduling policy through T (t). Different
variations of this model imply different restrictions on T (t) (single-class, multi-class, pre-
emptive, non-preemptive, etc...). We assume the network is operated by a policy such that
the resulting processes exhibit the following three assumptions:

(A1) Fluid limits for work allocations exist and satisfy: T̄k(t) = νk
µk
t.

(A2) Queues are stable in the sense that Q̂n ⇒ 0.

(A3) Queue moment assumption: E[
(
Qk(t)

)2
] = o(t) as t→∞.

Such policies are known to exist for a variety of models and variations. Extensive treatment
is in [2]. Specifically in the single class cases, also known as generalized Jackson networks,
(c.f. [7], Ch 7. and references there-in), any work conserving policy achieves (A1) and (A2)
if we assume that for all queues, νk < µk. In multi-class networks, the necessary stability
condition is, ∑

k∈Ci

νk
µk

< 1, for every server i.

Here Ci is the set of queues served by server i. Although not every work conserving policy
is stable, it is know that stable policies exist. See [2] for an extensive treatment of this
subject.

The final assumption (A3) is needed to establish UI. In its own right, it is not easily
established for arbitrary models and policies. Nevertheless, it is a very sensible assumption.
In fact, for many stable networks it holds that E[

(
Qk(t)

)2
] < C for some C <∞ for all t.

Observe that, assumption (A1) implies,

lim
n→∞

D̄n
i,j(t) := D̄i,j(t) = Φ̄i,j(S̄i(T̄i(t))) = pi,jνit, u.o.c.. (11)

Main Result

We now set up some matrices and vectors used in our main theorem. Use 1 to denote
the vector of ones and define the K × K2 matrix B := 1′ ⊗ I where ⊗ is the Kronecker
product. Further denote the K2 ×K matrix,

Pc :=


P ′ e1,1
P ′ e2,2

...
P ′ eK,K

 ,
where ei,j is a K ×K matrix with all entry’s 0 except for the i, j’th entry being 1. Now
define the K2 × (K +K2) matrix H as,

H :=
[
Pc(I − P ′)−1 IK2 + Pc(I − P ′)−1B

]
,
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as well as the (K +K2)× (K +K2) covariance matrix for the exogenous arrival processes
and the routing processes,

Σ(P ) :=


diag(v2k) 0

ν1Γ1

. . .

0 νKΓK

 ,
where diag(v2k) is a diagonal matrix with elements v2k. Further, for any i, j ∈ {1, . . . ,K}
define the K dimensional vector m(i, j) as follows:

m(i, j) := (I − P )−1ei,iP·,j , (12)

where P·,j is the j’th column of P . As further elaborated on in Section 4, the k’th entry of
the column vector m(i, j) is the expected number of transitions from state i to state j in a
Markov chain whose transient component is specified by P and initial state is set to k.

We now present our main result.

Theorem 1. Consider queueing networks described by equations (3)–(6) operating under
some well defined scheduling policy.

(i) If assumptions (A1) and (A2) hold then the sequences D̂n and Ên converge weakly
to drift-less Brownian motion processes with covariance matrices,

Σ(D) := H Σ(P )H ′, and Σ(E) :=
(
BH + [IK 0]

)
Σ(P )

(
BH + [IK 0]

)′
, (13)

respectively.

(ii) If in addition to (A1) and (A2), assumption (A3) holds, then the asymptotic vari-
ability parameters, as defined in (1) and (2), can be read off from the diffusion parameters.
Namely,

σi1→j1,i2→j2 = Σ
(D)
(i1−1)K+j1, (i2−1)K+j2

, σi,j = Σ
(E)
i,j .

(iii) An alternative calculation for the asymptotic variability parameters that is valid if
assumptions (A1)–(A3) hold is the following:

σi1→j1,i2→j2 = mj1(i2, j2)α
′m(i1, j1) +mj2(i1, j1)α

′m(i2, j2) (14)

+(v2 − α)′
(
m(i1, j1) •m(i2, j2)

)
,

σi→j,i→j = (1 + 2mj(i, j))α
′m(i, j) + (v2 − α)′

(
m(i, j) •m(i, j)

)
, (15)

σj1,j2 = v2j1

K∑
i2=1

mj1(i2, j2) + v2j2

K∑
i1=1

mj2(i1, j1) +

K∑
i1=1

K∑
i2=1

σi1→j1,i2→j2 (16)

where mk(i, j) is the k’th entry of the vector m(i, j) and (x•y) signifies the vector resulting
from element-wise product of the vectors x and y.

Proof. The remainder of the paper establishes the proof. (i) is established in Section 3.
(iii) is established in Section 4. (ii) relies on the development of (iii) and is established in
Section 5.

We demonstrate the applicability of our result on a specific network example in Sec-
tion 6.
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3 The Diffusion Parameters

Lemmas 1–4 below summarize straight forward algebraic manipulations of the network
equations. These then lead to a simple diffusion limit that follows from Donsker’s theorem
(see [7], Ch. 5-7 or [12] for background). Techniques similar to those employed here are
also in [25], applied to queueing networks that generate their own input. The basic idea
is to represent the diffusion scaled processes, D̂n and T̂n in-terms of the following ”tilde”
processes,

Φ̃n
i,j(t) := Φ̂n

i,j

(
S̄ni
(
T̄ni (t)

))
, and S̃nk (t) := Ŝnk (T̄nk (t)),

which in-turn have diffusion limits based on the primitive processes.

Lemma 1. For i = 1, . . . ,K and j = 0, . . . ,K,

D̂n
i,j(t) = Φ̃n

i,j(t) + pi,jS̃
n
i (t) + pi,jµiT̂

n
i (t). (17)

Proof. Use, Di,j(nt) = Φi,j(Si(Ti(nt))) = Φi,j(nS̄
n
i (T̄ni (t))) and (11) to get,

D̂n
i,j(t) =

Φi,j(nS̄
n
i (T̄i

n
(t)))− pi,jνint√
n

=
Φi,j(nS̄

n
i (T̄i

n
(t)))− pi,jnS̄ni (T̄ni (t))√

n
+
pi,jnS̄

n
i (T̄ni (t))− pi,jµinT̄ni (t)√

n

+
pi,jµinT̄

n
i (t)− pi,jνint√

n
.

Now, (17) follows.

Denote by M the diagonal matrix with diagonal elements µ−1k . We now have,

Lemma 2. The diffusion scaled time allocation can be written as:

T̂n(t) = M(I − P ′)−1
(
Ân(t) +BΦ̃n(t)− (I − P ′)S̃n(t)

)
−M(I − P ′)−1Q̂n(t). (18)

Proof. Substituting (17) into (8) we have:

Q̂nk(t) = Ânk(t) +

K∑
j=1

(
Φ̃n
j,k(t) + pj,kS̃

n
j (t) + pj,kµj T̂

n
j (t)

)

−
K∑
j=0

(
Φ̃n
k,j(t) + pk,jS̃

n
k (t) + pk,jµkT̂

n
k (t)

)

= Ânk(t) +

K∑
j=1

(
Φ̃n
j,k(t) + pj,kS̃

n
j (t) + pj,kµj T̂

n
j (t)

)
− S̃nk (t)− µkT̂nk (t)

= Ânk(t) +

K∑
j=1

Φ̃n
j,k(t)−

(
S̃nk (t)−

K∑
j=1

pj,kS̃
n
j (t)

)
−
(
µkT̂

n
k (t)−

K∑
j=1

pj,kµkT̂
n
j (t)

)
,

where in the second step we used (7) and
∑K

j=0 pi,j = 1. In vector/matrix form this reads:

Q̂n(t) = Ân(t) +BΦ̃n(t)− (I − P ′)S̃n(t)− (I − P ′)M−1T̂n(t).

Now (18) follows by multiplying both sides by M(I − P ′)−1.
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We now have,

Lemma 3.

D̂n(t) =
[
H 0K×K

]  Ân(t)

Φ̃n(t)

Ŝn(t)

− Pc(I − P ′)−1Q̂n(t).

Proof. Equations (17) are,

D̂n(t) = Φ̃n(t) + Pc

(
S̃n(t) +M−1T̂n(t)

)
.

Substituting (18) in the above, S̃n(t) drops out of the equation, and we obtain,

D̂n(t) =
(
IK2 + Pc(I − P ′)−1B

)
Φ̃n(t) + Pc(I − P ′)−1Ân(t)− Pc(I − P ′)−1Q̂n(t).

Observe from Lemma 3 that D̂n depends on Ŝn only through the queue. We may now
represent the analogous result for Ên, this time omitting the primitive sequence Ŝn from
the representation.

Lemma 4.

Ên(t) =
(
BH + [IK 0]

)[
Ân(t)

Φ̃n(t)

]
−BPc(I − P ′)−1Q̂n(t),

Proof. We use (9) and the previous lemma:

Ên(t) = BD̂n(t) + Ân(t)

= BH

[
Ân(t)

Φ̃n(t)

]
−BPc(I − P ′)−1Q̂n(t) + [IK 0]

[
Ân(t)

Φ̃n(t)

]
.

We can now establish the diffusion limit in our main theorem:
Proof of Theorem 1, (i): The FCLT assumptions together with applications of the

continuous mapping theorem and assumption (A1) imply that Φ̃n
k.(t) converge weakly to K-

dimensional Brownian motions with covariance matrices µk
νk
µk

Γk. Since by assumption Â(t)

is Brownian motion, independent of the routing, the covariance matrix of

[
Ân(t)

Φ̃n(t)

]
is Σ(P ).

The result then follows from the representation in Lemmas 3 and 4 and assumption (A2). 2

We note that Lemma 2 above can also yield diffusion limits for rate allocations. This
appears (7.89), pp.189 in [7]. In fact, there the authors handle a much wider case in which
some queues may be critical and/or overloaded. This is originally from [6] (6.14), pg 1498.
As stated at the introduction the diffusion limit for D and E did not appear in [6] and
subsequent literature. It is insightful to know that we may also obtain joint diffusion limits
for T and D or E, yet we do not peruse this here. Further, handling the case of overloaded
queues does also not pose any additional technical difficulty. The case of critical queues is
in general an open question. It was handled in [1] for the single station queue.
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4 The Zero Service Time View

In this section we refer to the queues as nodes to make it clear that there is actually no
queueing taking place. For the `’th customer arriving exogenously first to node k, denote
Nj|k(`) as the number of times that the customer visits node j, and denote Ni,j|k(`) as
the number of times that the customer traverses on the flow i → j. Thus, Nj|k(`) =∑K

i=1Ni,j|k(`). Define now,

D̆i,j(t) :=

K∑
k=1

Ak(t)∑
`=1

Ni,j|k(`), and Ĕk(t) := Ak(t)+

K∑
i=1

D̆i,k(t) = Ak(t)+

K∑
k′=1

Ak(t)∑
`=1

Nk|k′(`).

The process D̆i,j(t) is a count of the number of items passing from node i to node j up
to time t as if service times are 0. In particular, the `’th customer who arrives at node
k by time t (` = 1, . . . , Ak(t)) makes an “instantaneous tour” through the nodes, passing
Ni,j|k(`) times on the flow i→ j. Similarly, Ĕk(t) is the count of the number of jobs arriving
to queue k either exogenously or passing through the network assuming that service times
are 0.

By considering both D(·) and D̆(·) on the same probability space, we have that a.s.,

Di,j(t) ≤ D̆i,j(t).

Denote now,
N̆i,j(t) := D̆i,j(t)−Di,j(t).

This is the number of future passes on i→ j by customers that are currently in the system
(where service times are generally non-zero) at time t. It is obvious from the Markovian
nature of the routing that,

N̆i,j(t) =d
K∑
k=1

Qk(t)∑
`=1

Ni,j|k(`), (19)

where the equality is in distribution and for given k,{(
Ni,j|k(`), i, j ∈ {1, . . . ,K}, i 6= j

)
, ` = 1, 2, . . .

}
,

is an i.i.d. sequence (of K2 dimensional random vectors) whose distribution is induced by
a discrete time Markov chain on state space {0, 1, . . . ,K} with transition matrix,

P̃ =

[
1 0′

1− P1 P

]
.

To construct Ni,j|k(`), denote by {Xk
n} a sequence of states generated by the above Markov

chain with P (X0 = k) = 1 for k ∈ {1, . . . ,K}. Then for i 6= j, Ni,j|k(`) is distributed as,

Ni,j|k :=
∞∑
n=1

1{Xk
n−1 = i,Xk

n = j},
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and thus Nj|k(`) is distributed as,

Nj|k :=
∞∑
n=0

1{Xk
n = j}.

Since the queueing network is open (P is sub-stochastic), the only recurrent class in this
Markov chain is {0} and thus the random variables Ni,j|k are proper. It is also a standard
exercise to show that they have finite mean and variance.

Denote now,

σ̆i,j := lim
t→∞

Cov
(
Ĕi(t), Ĕj(t)

)
t

, and σ̆i1→j1,i2→j2 := lim
t→∞

Cov
(
D̆i1,j1(t), D̆i2,j2(t)

)
t

.

As we show now, under assumption (A3), these variability parameters (of the zero-service
time flows), are the same as the variability parameters of the system with queueing:

Proposition 1. Assume assumption (A3) holds. Then,

σ̆2i,j = σ2i,j , and σ̆i1→j1,i2→j2 = σi1→j1,i2→j2 . (20)

Proof. We present the proof for the asymptotic variability of D, the case of E is similar
and is omitted. We have,∣∣∣Cov

(
D̆i1,j1(t), D̆i2,j2(t)

)
− Cov

(
Di1,j1(t), Di2,j2(t)

)∣∣∣ (21)

≤
∣∣∣Cov

(
Di1,j1(t), N̆i2,j2(t)

)∣∣∣+
∣∣∣Cov

(
Di2,j2(t), N̆i1,j1(t)

)∣∣∣+
∣∣∣Cov

(
N̆i1,j1(t), N̆i2,j2(t)

)∣∣∣
≤
√

Var
(
Di1,j1(t)

)
Var
(
N̆i2,j2(t)

)
+

√
Var
(
Di2,j2(t)

)
Var
(
N̆i1,j1(t)

)
+

√
Var
(
N̆i1,j1(t)

)
Var
(
N̆i2,j2(t)

)
.

For any (i, j) we have that both Var(Di,j(t))/t and Var(N̆i,j(t)) are bounded from above
uniformly in t; for the latter this is a consequence of Assumption (A3). Dividing (21) by t
and taking t→∞ we get the result.

Note: a version of the above result also exists for the mean rates, ν. In this case all
that is required is finiteness of the first moments of the queues.

We now express the components of σ̆ in terms of E[Ni,j|k] and Cov(Ni1,j1|k, Ni2,j2|k).

Proposition 2.

σ̆i1→j1,i2→j2 =
K∑
k=1

αkCov(Ni1,j1|k, Ni2,j2|k) +
K∑
k=1

v2kE[Ni1,j1|k]E[Ni2,j2|k],

σ̆j1,j2 = v2j1E[Nj2|j1 ] + v2j2E[Nj1|j2 ]

+

K∑
k=1

αkCov
(
Nj1|k, Nj2|k

)
+

K∑
k=1

v2k E[Nj1|k]E[Nj2|k]

= v2j1E[Nj2|j1 ] + v2j2E[Nj1|j2 ] +

K∑
i1=1

K∑
i2=1

σ̆i1→j1,i2→j2 .

11



Proof. We begin with the asymptotic variability of D̆, namely σ̆i1→j1,i2→j2 . For illustration
we begin with the variance (even though it is a special case of the covariance calculation
that follows). Using the conditional variance rule we get,

Var
(
D̆i,j(t)

)
=

K∑
k=1

Var
(Ak(t)∑

`=1

Ni,j|k(`)
)

=
K∑
k=1

(
E[Ak(t)] Var(Ni,j|k)+Var(Ak(t))E[Ni,j|k]

2
)
.

Moving onto the covariance, observe that Ni1,j1|k(`) and Ni2,j2|k′(`) are independent when-
ever k 6= k′, hence,

Cov
(
D̆i1,j1(t), D̆i2,j2(t)

)
=

K∑
k=1

Cov
(Ak(t)∑

`=1

Ni1,j1|k(`),

Ak(t)∑
`=1

Ni2,j2|k(`)
)

=

K∑
k=1

(
E[Ak(t)] Cov(Ni1,j1|k, Ni2,j2|k) + Var

(
Ak(t)

)
E[Ni1,j1|k]E[Ni2,j2|k]

)
where in the second step we use the conditional covariance rule,

Cov(X,Y ) = E
[
Cov(X,Y |Z)

]
+ Cov

(
E[X|Z],E[Y |Z]

)
.

Dividing by t and taking t→∞ yields the result.
Moving onto the asymptotic variability of Ĕ (this time treating the variance and the

other covariance terms together) we expand and get:

Cov
(
Ĕj1(t), Ĕj2(t)

)
=

K∑
i2=1

Cov
(
Aj1(t), D̆i2,j2(t)

)
+

K∑
i1=1

Cov
(
Aj2(t), D̆i1,j1(t)

)
+

K∑
i1=1

K∑
i2=1

Cov
(
D̆i1,j1(t), D̆i2,j2(t)

)
(22)

To rewrite the first sum on the righthand side we can use

Cov
(
Aj1(t), D̆i2,j2(t)

)
=

K∑
k=1

Cov
(
Aj1(t),

Ak(t)∑
`=1

Ni2,j2|k(`)
)

= Cov
(
Aj1(t),

Aj1
(t)∑

`=1

Ni2,j2|j1(`)
)

= E[Cov
(
Aj1(t),

Aj1
(t)∑

`=1

Ni2,j2|j1(`)
∣∣ Aj1(t)

)
+Cov

(
E[Aj1(t) | Aj1(t)],E[

Aj1
(t)∑

`=1

Ni2,j2|j1(`)
∣∣ Aj1(t)]

)
= Cov

(
Aj1(t), Aj1(t)E[Ni2,j2|j1(`)]

)
= Var

(
Aj1(t)

)
E[Ni2,j2|j1(`)]

12



with a similar expression holding for the second term, while the third term on the right
hand side of (22) can be rewritten using

Cov
(
D̆i1,j1(t), D̆i2,j2(t)

)
=

K∑
k1=1

K∑
k2=1

Cov
(Ak1

(t)∑
`1=1

Ni1,j1|k1(`1),

Ak2
(t)∑

`2=1

Ni2,j2|k2(`2),
)

=
K∑
k=1

Cov
(Ak(t)∑
`1=1

Ni1,j1|k(`1),

Ak(t)∑
`2=1

Ni2,j2|k(`2)
)

=
K∑
k=1

EAk(t) Cov
(Ak(t)∑
`1=1

Ni1,j1|k(`1),

Ak(t)∑
`2=1

Ni2,j2|k(`2)
∣∣ Ak(t))

+

K∑
k=1

Cov
(
E[

Ak(t)∑
`1=1

Ni1,j1|k(`1)|Ak(t)],E[

Ak(t)∑
`2=1

Ni2,j2|k(`2)
∣∣ Ak(t)])

=

K∑
k=1

EAk(t)

Ak(t)∑
`=1

Cov
(
Ni1,j1|k(`), Ni2,j2|k(`)

)
+

K∑
k=1

Cov
(
Ak(t) E[Ni1,j1|k(`)], Ak(t) E[Ni2,j2|k(`)]

)
=

K∑
k=1

E[Ak(t)]Cov
(
Ni1,j1|k(`), Ni2,j2|k(`)

)
+Var

(
Ak(t)

)
E[Ni1,j1|k(`)] E[Ni2,j2|k(`)].

where the second and fourth equalities are due do independence of different customers in
the absence of queuing, while the third equality is again the conditional covariance formula.

Substituting in (22) and using
∑K

i=1Ni,j|k(`) = Nj|k(`) we arrive at

Cov
(
Ĕj1(t), Ĕj2(t)

)
= Var

(
Aj1(t)

)
E[Nj2|j1(`)] + Var

(
Aj2(t)

)
E[Nj1|j2(`)]

+
K∑
k=1

E[Ak(t)] Cov
(
Nj1|k(`), Nj2|k(`)

)
+Var

(
Ak(t)

)
E[Nj1|k(`)]E[Nj2|k(`)].

Now dividing by t and letting t→∞, the result is immediate.

We now represent E[Ni,j|k] and Cov(Ni1,j1|k, Ni2,j2|k) in terms of the routing matrix P .
It is an elementary application of “first step analysis” to calculate the desired moments
(c.f. [18] and/or [20]), yet we have not seen this specific calculation elsewhere, so we spell
out the details. Define:

m(i, j) :=

 E[Ni,j|1]
...

E[Ni,j|K ]

 , m(i1, j1, i2, j2) :=

 E[Ni1,j1|1Ni2,j2|1]
...

E[Ni1,j1|K Ni2,j2|K ]

 ,
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c(i1, j1, i2, j2) :=

 Cov
(
Ni1,j1|1, Ni2,j2|1

)
...

Cov
(
Ni1,j1|K , Ni2,j2|K

)
 .

Lemma 5. The definition of m(i, j) in (12) agrees with the above, namely

m(i, j) = (I − P )−1ei,iP·,j .

Further, let i1 → j1 and i2 → j2 be distinct flows (i.e., i1 6= i2, or j1 6= j2, or both), then

m(i1, j1, i2, j2) = m(i1, j1)mj1(i2, j2) +m(i2, j2)mj2(i1, j1), (23)

m(i, j, i, j) = m(i, j)
(
1 + 2mj(i, j)

)
,

and thus,

c(i1, j1, i2, j2) = m(i1, j1)mj1(i2, j2) +m(i2, j2)mj2(i1, j1)−m(i1, j1) •m(i2, j2),(24)

c(i, j, i, j) = m(i, j)
(
1 + 2mj(i, j)

)
−m(i, j) •m(i, j).

Proof. It is well-known that E[Ni|k] is the (k, i)th element of (I − P )−1, and clearly
E[Ni,j|k] = E[Ni|k] pi,j , from which the first statement follows. For E[Ni1,j1|kNi2,j2|k] we
condition on the first transition from the initial node k, as follows (let i1 6= i2, and/or
j1 6= j2).

E[Ni1,j1|k Ni2,j2|k] =

K∑
k′=1,k′ 6∈{j1,j2}

pk,k′ E[Ni1,j1|k′Ni2,j2|k′ ] +

pk,j1E[(δk,i1 +Ni1,j1|j1)Ni2,j2|j1 ] + pk,j2E[Ni1,j1|j2(δk,i2 +Ni2,j2|j2)]

=
K∑
k′=1

pk,k′ E[Ni1,j1|k′ Ni2,j2|k′ ] +

pk,j1δk,i1E[Ni2,j2|j1 ] + pk,j2δk,i2E[Ni1,j2|j2 ]. (25)

The equations (25) can be represented as,

m(i1, j1, i2, j2) = P m(i1, j1, i2, j2) + ei1,i1P·,j1 mj1(i2, j2) + ei2,i2P·,j2 mj2(i1, j1).

or rearranged to,

m(i1, j1, i2, j2) = (I − P )−1
(
ei1,i1 P·,j1 mj1(i2, j2) + ei2,i2 P·,j2 mj2(i1, j1)

)
,

which yields (23). In a similar way, we can show that

E[N2
i,j|k] =

K∑
k′=1

pk,k′ E[N2
i,j|k′ ] + pk,jδk,i

(
1 + 2E[Ni,j|j ]

)
,

which gives

m(i, j, i, j) = (I − P )−1ei,iP·,j
(
1 + 2mj(i, j)

)
.

Proof of Theorem 1, (iii): Proposition 1 indicates that under assumption (A3), the
variability parameters are the same as those of the zero service time processes. Now the
combination of Proposition 2 and Lemma 5 yield the result. 2
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5 Asymptotic Variance and Uniform Integrability

As stated at onset our original goal is to obtain expressions for σi,j and σi1→j1,i2→j2 .
As we state in Theorem 1, (ii) these can now be read off from the matrices Σ(E) and Σ(D)

respectively. The presentation in this section is for the σi1→j1,i2→j2 terms; analogous results
for the terms associated with E(·) can be proved in the exact same manner.

Proving Theorem 1, (ii) requires establishing suitable uniform integrability (UI) condi-
tions for the following families:

D(1)
i,j =

{Di,j(t)− νi,jt√
t

, t ≥ t0
}
,

D(2)
i,j =

{(Di,j(t)− νi,jt
)2

t
, t ≥ t0

}
,

D(i1,j1),(i2,j2) =
{(Di1,j1(t)− νi1,j1t

)(
Di2,j2(t)− νi2,j2t

)
t

, t ≥ t0
}
,

where t0 > 0 is arbitrary. Note that while each of the families D(2)
i,j is a special case of

D(i1,j1),(i2,j2), we treat it separately in this section for clarity. See for example [14] for
properties of UI sequences and families, and relations to weak convergence.

The following proposition relates the diffusion parameters to the asymptotic variance
parameters.

Proposition 3. If D(1)
i,j and D(2)

i,j are UI then,

σ2i→j = Σ
(D)
(i−1)K+j, (i−1)K+j .

If D(1)
i,j and D(i1,j1),(i2,j2) are UI then,

σi1→j1,i2→j2 = Σ
(D)
(i1−1)K+j1,(i2−1)K+j2

.

Proof. By the projection map at time t = 1 (c.f. [28]) we have the convergence in distribu-
tion:

Di,j(t)− νi,jt√
t

⇒ D̂i,j(1).

Further, using the continuous mapping theorem we obtain,(
Di,j(t)− νi,jt

)2
t

⇒
(
D̂i,j(1)

)2
.

Similarly we have the convergence in distribution on R2:[Di1,j1(t)− νi1,j1t√
t

,
Di2,j2(t)− νi2,j2t√

t

]
⇒
[
D̂i1,j1(1), D̂i2,j2(1)

]
,

and thus using the continuous mapping theorem,

Di1,j1(t)− νi1,j1t√
t

· Di2,j2(t)− νi2,j2t√
t

⇒ D̂i1,j1(1) · D̂i2,j2(1).
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Under the UI conditions established below the above weak convergences in distribution
imply that,

lim
t→∞

E
[Di,j(t)− νi,jt√

t

]
= E

[
D̂i,j(1)

]
,

lim
t→∞

E
[(Di,j(t)− νi,jt)2

t

]
= E

[(
D̂i,j(1)

)2]
,

as well as,

lim
t→∞

E
[(Di1,j1(t)− νi1,j1t

)
√
t

·
(
Di2,j2(t)− νi2,j2t

)
√
t

]
= E[D̂i1,j1(1) · D̂i2,j2(1)].

Combining this implies that,

σ2i→j = lim
t→∞

Var
(
Di,j(t)

)
t

= lim
t→∞

Var
(
Di,j(t)− νi,jt

)
t

= lim
t→∞

E[(Di,j(t)− νi,jt)2]
t

−
(

lim
t→∞

E[Di,j(t)− νi,jt]√
t

)2
= E[

(
D̂i,j(1)

)2
]−
(
E[D̂i,j(1)]

)2
= Var

(
D̂i,j(1)

)
= Σ

(D)
(i−1)K+j, (i−1)K+j .

Similarly,

σi1→j1,i2→j2 = lim
t→∞

Cov
(
Di1,j1(t), Di2,j2(t)

)
t

= lim
t→∞

Cov
(
Di1,j1(t)− νi1,j1t,Di2,j2(t)− νi2,j2t

)
t

= lim
t→∞

E[(Di1,j1(t)− νi1,j1t)(Di2,j2(t)− νi2,j2t)]
t

−
(

lim
t→∞

E[Di1,j1(t)− νi1,j1t]√
t

)(
lim
t→∞

E[Di2,j2(t)− νi2,j2t]√
t

)
= E[D̂i1,j1(1) D̂i2,j2(1)]− E[D̂i1,j1(1)]E[D̂i2,j2(1)]

= Cov
(
D̂i1,j1(1), D̂i2,j2(1)

)
= Σ

(D)
(i1−1)K+j1, (i2−1)K+j2

.

In establishing the UI, we make use of the following useful inequality:

Lemma 6. For r > 1 and arbitrary real values z1, . . . , zK ,

∣∣∣ K∑
k=1

zk

∣∣∣r ≤ Kr−1
K∑
k=1

∣∣zk∣∣r. (26)

Proof. For positive zk the function f , defined by f(z1, . . . , zK) = (
∑K

k=1 zk)
r/
∑K

k=1 z
r
k, has

a maximum Kr−1 at z1 = . . . = zK =
(∑K

k=1 z
r
k/
∑K

k=1 zk
)1/(r−1)

. So for general real zk
we have ∣∣ K∑

k=1

zk
∣∣r ≤ ( K∑

k=1

|zk|
)r ≤ Kr−1

K∑
k=1

|zk|r.
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We now establish the required UI.

Proposition 4. If assumption (A1) holds then the families of random variables D(1)
i,j , D(2)

i,j

and D(i1,j1),(i2,j2) are UI.

Proof. We first note that UI of D(2)
i,j implies UI of the other two types of families as well,

due to Theorem 4.7 (with p = q = 2) in Chapter 5 of [14]. To establish UI of D(2)
i,j , recall

from the previous section the representation Di,j(t) = D̆i,j(t)− N̆i,j(t), where D̆i,j(t) is the
number of instantaneous passes on flow i → j, and N̆i,j(t) is the number of future passes
on that flow. Together with the triangle inequality and Lemma 6 we have:∣∣∣Di,j(t)− νi,jt√

t

∣∣∣ ≤ ∣∣∣D̆i,j(t)− νi,jt√
t

∣∣∣+
∣∣∣N̆i,j(t)√

t

∣∣∣,
∣∣∣(Di,j(t)− νi,jt

)2
t

∣∣∣ =
∣∣∣Di,j(t)− νi,jt√

t

∣∣∣2 ≤ 2
(∣∣∣D̆i,j(t)− νi,jt√

t

∣∣∣2 +
∣∣∣N̆i,j(t)√

t

∣∣∣2).
It thus suffices to show that,

D̆(2)
i,j :=

{(D̆i,j(t)− νi,jt
)2

t
, t ≥ t0

}
, and N̆ (2)

i,j :=
{(N̆i,j(t)

)2
t

, t ≥ t0
}
,

are UI.
To see D̆(2)

i,j is UI it is useful to denote,

D̆i,j|k(t) :=

Ak(t)∑
`=1

Ni,j|k(`) and νi,j|k := αkE[Ni,j|k].

Note that since, D̆i,j(t) =
∑K

k=1 D̆i,j|k(t), we have
∑K

k=1 νi,j|k = νi,j . We now get,

∣∣∣(D̆i,j(t)− νi,jt
)2

t

∣∣∣ =
∣∣∣(∑K

k=1 D̆i,j|k(t)− (
∑K

k=1 νi,j|k)t
)2

t

∣∣∣
=
(∣∣∑K

k=1

(
D̆i,j|k(t)− νi,j|kt

)∣∣
√
t

)2
≤ K

K∑
k=1

∣∣∣D̆i,j|k(t)− νi,j|kt√
t

∣∣∣2.
In the above we again used the triangle inequality and Lemma 6. We now need to show
that the families {(D̆i,j|k(t)− νi,j|kt

)2
t

, t ≥ t0
}
,
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are UI:(
D̆i,j|k(t)− νi,j|kt

)2
t

=

(∑Ak(t)
`=1 Ni,j|k(`)− νi,j|kt

)2
t

=

(∑Ak(t)+1
`=1 Ni,j|k(`)− νi,j|kt−Ni,j|k(Ak(t) + 1)

)2
t

=

(∑Ak(t)+1
`=1

(
Ni,j|k(`)− νi,j|k

αk

)
+ (Ak(t) + 1)

νi,j|k
αk
− νi,j|kt−Ni,j|k(Ak(t) + 1)

)2
t

=

(∑Ak(t)+1
`=1

(
Ni,j|k(`)− νi,j|k

αk

)
+ ((Ak(t) + 1)− αkt)

νi,j|k
αk
−Ni,j|k(Ak(t) + 1)

)2
t

≤ 3
((∑Ak(t)+1

`=1

(
Ni,j|k(`)− νi,j|k

αk

))2
t

+

(
((Ak(t) + 1)− αkt)

νi,j|k
αk

)2
t

+

(
Ni,j|k(Ak(t) + 1)

)2
t

)

The first term is a stopped random walk with zero mean increments where Ak(t) + 1 is
UI by (10). Thus due to Theorems 6.1–6.3 in [15], the first term is UI. The second term is
UI again by (10). The third term is obviously UI since the family Ni,j|k(·) is i.i.d.

To show that N̆ (2)
i,j is UI, we need to show that the second moment of N̆i,j(t)/

√
t con-

verges (to zero). This ‘reverse approach’ is due to Remark 5.4 in Chapter 5 of [14]. Define

N̆Q
i,j|k(t) :=

∑Qk(t)
`=1 Ni,j|k(`), where Qk(t) is the queue length at node k at time t. Then the

expectation and variance of the random sums N̆Q
i,j|k(t), and hence also (by (19)) of N̆i,j(t),

can be expressed in the expectations and variances of Qk(t) and Ni,j|k(`), all of which are
o(t) (by Assumption (A3)) and finite respectively. Thus the result follows.

Proof of Theorem 1, (ii): Proposition 4 establishes UI of the families needed for
Proposition 3. 2

6 A Numerical Example

Consider the 6 node network illustrated on Figure 1 with parameters,

P =



0 0 1/2 1/2 0 0
1/2 0 0 1/2 0 0
1/2 0 0 0 0 0
0 0 0 0 1/2 1/2
0 0 0 1 0 0
0 0 0 0 0 0

 , µ =



8.25
8.25

5
8.25

5
5

 ,

α =



1
4
0
0
0
0

 , v2 =



2
2
0
0
0
0

 . (27)
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For this network,

ν = (I − P ′)−1α =
[
4 4 2 8 4 4

]′
< µ,

hence there exist settings under which it can be stabilized and thus assumptions (A1)–(A3)
hold (for example a generalized Jackson network with a non-idling policy and light-tailed
inter-arrival and service times). Note that besides verification of the above inequality,
the values of µ do not play a further role in the calculation of the variability parameters.
Nevertheless, we use them in a simulated example below.

1

2

3

4

5

6

(α1, v1)

(α2, v2)

Figure 1: An example network.

It is now a straight forward matter to use (13) (or alternatively (14)–(16)) from our main
theorem to obtain variability parameters. Note that in this process, the only matrix that
requires inversion is (I − P ′). The rest of the calculations follow from matrix composition,
addition and multiplication operations.

The resulting matrix Σ(D) is of dimension 36 × 36. We present the diagonals of this
matrix (which are σ2i→j) in the following table:

i\j 1 2 3 4 5 6

1 0 0 32/9 20/9 0 0
2 3/2 0 0 3/2 0 0
3 31/18 0 0 0 0 0
4 0 0 0 0 199/18 55/18
5 0 0 0 199/18 0 0
6 0 0 0 0 0 0

As a further illustration we present a few selected non-diagonal elements of Σ(D):

σ2→1,2→4 = −1/2, σ4→5,5→4 = 199/18, σ1→3,4→6 = 5/19, σ1→3,2→4 = −1/3.

In discussing these values, it is good to consider the asymptotic correlation coefficient:

ρi1→i2,j1→j2 :=
σi1→i2,j1→j2√
σ2i1→i2σ

2
j1→j2

.

For these selected flow pairs it evaluates to

ρ2→1,2→4 = −1

3
, ρ4→5,5→4 = 1, ρ1→3,4→6 ≈ 0.16856, ρ1→3,2→4 ≈ −0.14434.
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The first two values are easily explained in our example, the other two are not. For
ρ2→1,2→4 consider the Bernoulli splitting at the output of queue 2 and the fact there is no
feedback to this queue. Recall that in this case σ2→1,2→4 = (v22 − α2)/4 for v22 = 2, α2 = 4.
In this case the asymptotic correlation coefficient is (v22 − α2)/(v

2
2 + α2). In considering

ρ4→5,5→4 observe that there is no random routing in this part of the network: All jobs that
enter 5 come from 4 and then return to 5.

We are not aware of an “easy” explanation of the values of ρ1→3,4→6 and ρ1→3,2→4. It
is insightful to see that as in this case, some correlations between flows are positive while
others are negative. We do not know of an a priori way of finding out the sign of these
correlations without using our main result. In fact, evaluating Σ(D) with v2 as free variable,
we get,

ρ1→3,2→4 =
v22 − 4√

(v22 + 4)(v22 + 30)
.

We thus see that the sign of the correlation between those two flows depends on the vari-
ability of the arrival process into 2. Observe that in the asymptotically uncorrelated case
(i.e. when v2 = 4),

lim
t→∞

Var
(
A2(t)

)
E[A2(t)]

= 1,

as is for a Poisson process. This is consistent with the fact that in the case of a classic
Jackson network (Poisson arrival process and exponential processing times) case, since node
2 has no feedback its output is a Poisson process and splitting of departures from node 2
results in two independent Poisson flows, 2→ 1 and 2→ 4. The first of these flows affects
1→ 3 but not the second. Hence in such a case it is expected that ρ1→3,2→4 = 0.

Arrivals to Individual Queues

Moving onto arrival processes into individual queues, application of our main result
yields:

Σ(E) =



68/9 4/3 40/9 44/9 22/9 22/9
2 2/3 10/3 5/3 5/3

32/9 10/9 5/9 5/9
182/9 127/9 55/9

199/18 55/18
55/18

 .

Observe that σ22 = 2 as expected since there are only exogenous arrivals to this queue.
Further since all jobs that pass through queue 5 eventually also pass through queue 6 we
have,

σk,5 = σk,6, k = 1, 2, 3, 6.

It is the diagonal elements of Σ(E) that may be useful for network decomposition ap-
proximations (which we do not explore further in this paper). Normalizing the diagonals
by ν we get,

c2 =
[

1.89 0.5 1.78 2.53 2.76 0.76
]′
. (28)
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Simulation Results

To further illustrate our result and explore the effect of different policies and constraints
on the variance of flows, we carried out a Monte-Carlo simulation of the example network.

In the simulation we set the service distributions of queue k to be distributed as a sum of
two i.i.d. exponential random variables, each with mean (2µk)

−1. This results in a so-called
Erlang 2 distribution (having a squared coefficient of variation of 1/2) with mean µ−1k .

The arrival process, A1(·), is the more variable of the two arrival processes. It is
taken to be a renewal process of inter-arrival times that are distributed as a mixture of
two independent exponential random variables (hyper-exponential): w.p. 1/3 a mean 2
exponential and w.p. 2/3 a mean 1/2 exponential. This distribution has mean 1 and
squared coefficient of variation 2 agreeing with α1 and v21 as specified in (27).

The arrival process, A2(·), is less variable. It is taken to be a renewal process with inter-
arrival times that are Erlang 2 distributed this time with mean 1/4. This is in agreement
with α2 and v22 as specified in (27).

We consider two settings:

Single-class: Each queue has a dedicated (separate) server. This is a generalized Jackson
network.

Multi-class: Queues 1 and 2 are served by the same server under a non-pre-emptive
priority policy giving priority to queue 1. All other queues have their own server. Note
that in this case the load on the server of queues 1 and 2 is ν1/µ1 +ν2/µ2 ≈ 0.97 < 1.
I.e. it is quite heavily loaded but is still stable. Note in general having a load of less
than unity does not immediately imply that the system is stable yet for this simple
case it can be shown that stability holds under such a priority policy (c.f. [2]).

Besides exemplifying the correctness of our theoretical results, the goal in this simulation
set-up is to illustrate that while the asymptotic variability parameters do not depend on
service times and scheduling policies, the shape of the variance curve is in general influenced
by such factors.

We ran 2×105 simulation runs of each case (single-class and multi-class) each for 1, 000
time units, starting at time t = 0 with the system empty1. We then estimated Var

(
D5→4(t)

)
for each run over a grid of time points t = 20, 40, 60, . . . , 1000, by taking the sample variance
at each time point over 2×105 observations. Note that we purposely observe the flow 5→ 4
which is not directly adjacent to the multi-class server serving 1 and 2.

Our main theorem applied to this example implies that in both the single-class and
multi-class case, for non-small t,

Var
(
D5→4(t)

)
≈ σ25→4t =

199

18
t = 11.055 t.

This is illustrated in Figure 2 (top) where we plot the variance curves versus the approxi-
mation σ25→4t. To take a closer look at the effect of single-class vs. multi-class we then plot
the bias, σ25→4t − Var

(
D5→4(t)

)
on Figure 2 (bottom). It is indeed evident that different

system characteristics yield different variance curves.

1The simulation was carried out using a simulation package written in C++: PRONETSIM. See [24],
Appendix A, for details about this software.
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Figure 2: Simulation estimates of Var
(
D5→4(t)

)
for two cases: single-class (1 and 2 on

separate servers) and multi-class (1 and 2 on same server with a priority policy). The top
graph illustrates the variance curve estimates (dotted) vs. the solid line σ25→4t. The bottom
graph shows the bias: σ25→4t−Var

(
D5→4(t)

)
. As is illustrated, both systems have the same

asymptotic variance for D5→4(t), yet their variance curves differ for finite t.

It is somewhat expected that the multi-class case will have a higher bias, since in this
case the server of 1 and 2 is under a heavier load (0.97). Further, in that case one can
expect more “bursts” on the flow 2 → 4 since queue 2 is served with low-priority. These
bursts perhaps “propagate” to flow 4 → 5 and ultimately to the flow which we measure:
5→ 4. Nevertheless, such phenomena are not captured by the asymptotic quantities found
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in the current paper. It should be noted that in [16] second order properties of this sort
are explored for elementary queueing systems such as the stable M/G/1 queue. It is not
clear how to extend such an investigation to networks.

7 Conclusion

While stable queueing networks have been analysed for decades, up to now, exact ex-
pressions for the asymptotic variability of flows have not been known. In this paper we put
forward easy computable expressions together with a simple diffusion limit theorem for the
flows. It is interesting to see if and how the manufacturing queueing modeling (c.f. [5]) and
queueing network decomposition community will adopt our results and incorporate them
in heuristic decomposition schemes.

The queueing networks we considered in this paper are assumed to be open and stable.
This stands in contrast with the more general case handled in [6] (where nodes are allowed
to be either under-loaded, over-loaded or critical). It should be mentioned that our results
easily carry over to the case where some nodes are over-loaded. In this case, the service times
of over-loaded nodes contributes to the exogenous arrivals in a straightforward manner (see
for example [13] for an early treatment of this idea). On the contrary, the case in which
some nodes are critical is more challenging. In that case, the single-server queue was
only recently handled with some difficulty in [1]. There the authors observed a BRAVO
effect (Balancing Reduces Asymptotic Variance of Outputs). We do not handle this in the
network context. Thus the challenge of finding the asymptotic variability of flows in critical
queueing networks remains.
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