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Abstract We consider the variability of queueing departure processes. Previous re-
sults have shown the so-called BRAVO effect occurring in M/M/1/K and GI/G/1
queues: Balancing Reduces Asymptotic Variance of Outputs. A factor of (1 − 2/π)

appears in GI/G/1 and a factor of 1/3 appears in M/M/1/K, for large K . A missing
piece in the puzzle is the GI/G/1/K queue: Is there a BRAVO effect? If so, what is the
variability? Does 1/3 play a role?

This open problem paper addresses these questions by means of numeric and sim-
ulation results. We conjecture that at least for the case of light tailed distributions,
the variability parameter is 1/3 multiplied by the sum of the squared coefficients of
variations of the inter-arrival and service times.
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1 Introduction

Departure processes of queues have received considerable attention in the literature.
A classic result is Burke’s theorem from the 1950s, stating that departures of the
stationary M/M/1 follow a Poisson process [6]. Following this result, the 1960s and
1970s have witnessed dozens of studies, analyzing various attributes of the departure
stream. Quite comprehensive surveys are in [8] and [11]. During the 1980s and 1990s,
more research has focused on departure processes, mostly due to the emergence of
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queueing network decomposition schemes [16]. In addition, a variety of studies tak-
ing the viewpoint of manufacturing, have analyzed the output variance of stochastic
production lines; cf. [15] and references therein.

Some more recent studies ([2, 12] and [13]) have brought back attention to el-
ementary models. In this respect, the asymptotics of the variance curve have been
analyzed. Rather surprising results have shown that when the service capacity is set
to match the arrival rate, there is a significant decrease in the departure variance. This
type of phenomena has been termed BRAVO (Balancing Reduces Asymptotic Vari-
ance of Outputs). It was first observed for M/M/1/K in [13], and has recently been
established for GI/G/1 queues under quite general conditions [2].

The purpose of this note is to augment the known BRAVO results by presenting
numerical and simulation results for the GI/G/1/K queue (with K finite). In this re-
spect, we formulate a conjecture and highlight some of the puzzling behavior and
open problems.

The GI/G/1/K queue is a single server queue operating under a work conserv-
ing service discipline, having a renewal arrival stream and i.i.d. service times. There
are K − 1 waiting positions, customers who arrive at a full system do not enter and
leave for ever. We assume finite second moments of the inter-arrival and service times
with means and squared coefficient of variations (the variance divided by the mean
squared), λ−1, μ−1, c2

a and c2
s , respectively. In the cases where a stationary distribu-

tion exists, we may assume the system is stationary, otherwise, begin with an empty
system. In the discussion below we will also treat cases where K = ∞ (no buffer
limit) and in these cases denote the corresponding systems using the usual notation
(i.e., M/M/1, GI/G/1, etc.).

Denote the departure process by D(t). This is a count of the number of completed
services during [0, t]. The following basic quantities are typically of interest:

λ∗ = lim
t→∞

E[D(t)]
t

, v∗ = lim
t→∞

Var[D(t)]
t

, γ ∗ = v∗

λ∗ .

We shall assume throughout that these limits exist and are finite (see [10] for an ex-
ample of some GI/G/1 queues where v∗ is not finite). We refer to v∗ as the asymptotic
variance. The ratio γ ∗ is sometimes referred to as the index of dispersion of counts
(cf. [7] or [9]), in this paper we simplify refer to it as the variability parameter.1 It
is a rough measure of the long term variability of the point process. The variability
parameter of a Poisson process is 1 and sometimes serves as a reference point. More
generally, the variability parameter of a renewal process equals the squared coeffi-
cient of variation of the inter-renewal times.

It is quite straightforward to establish that

λ∗ = min{λ,μ} + oK(1),

where oK(1) vanishes as K → ∞. It is further quite evident that

v∗ =
{

λc2
a + oK(1) if λ < μ,

μc2
s + oK(1) if λ > μ,

and thus

1In our simulation results we shall also plot the transient γ ∗(t) = Var(D(t))/E[D(t)].
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γ ∗ =
{

c2
a + oK(1) if λ < μ,

c2
s + oK(1) if λ > μ.

To argue the above heuristically, consider first the case where K = ∞. If λ < μ, the
queue is stable and thus the departure process is a random translation of the renewal
arrival process. It is thus easy to show that the departure process possesses many of
the asymptotic characteristics of the arrival process (cf. [17, Theorem 1.1]). In the
λ > μ case, the argument is different: after a finite time, the system remains non-
empty for ever and from this time on, the departures are a renewal process of the
services. For finite K , the same approximately holds for λ � μ or λ � μ and holds
asymptotically as K → ∞, when λ �= μ.2

Summarizing the above, we see that for λ �= μ, the variability parameter is either
determined by the arrival or by the service process, but not both (when K < ∞, this
is approximately true, i.e., up to the oK(1) term). For the critically loaded case, one
may expect both the arrival and service processes to play a role. Perhaps the most
straightforward guess is:

(Wrong guess) γ ∗ = 1

2

(
c2
a + c2

s

) + oK(1). (1)

This is especially sensible in the M/M/1 or M/M/1/K queues, as it would imply that
γ ∗ = 1 everywhere. Quite surprisingly (1) is not the correct guess. The following has
been shown in [13] for M/M/1/K and related birth death queues and later in [2] for
the M/M/1:

γ ∗ =
{

2(1 − 2
π
) for M/M/1 with λ = μ,

2
3 − 1

3K
+ 1

3K(K+1)
for M/M/1/K with λ = μ.

(2)

Thus in the critical M/M/1, the variability parameter is approximately 0.72 and in
the M/M/1/K it is approximately 2/3 for large K. Put differently, the naive guess (1)
should be reduced by a factor of either 0.72 or 2/3 depending on the model, infinite
buffer or finite buffer. It has been further established in [2] that for a wide class of
GI/G/1 systems with λ = μ:

(GI/G/1) γ ∗ = (
c2
a + c2

s

)(
1 − 2

π

)
. (3)

The case that is still an open problem is GI/G/1/K. Combining the known results (2)
and (3), a sensible guess is:

(Conjecture for GI/G/1/K) γ ∗ = (
c2
a + c2

s

)1

3
+ oK(1). (4)

2Making the arguments of this paragraph precise is quite simple for the λ < μ case, yet it is not clear what
are the minimal assumptions that are required of the initial distribution and inter-arrival time and service
moments. For the λ > μ case, it is less trivial, since the variance of the number of departures up to the final
finite busy period may be infinite in certain cases. We are not aware of a proof.
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Fig. 1 Simulation estimates of γ ∗(t) for GI/G/1/200 queues with λ = μ = 1 and c2
a = c2

s = 2. The top
curves are of systems driven by either Pareto (solid curve) or Lognormal (dashed curve) distributions.
These do not appear to converge to 4/3. The bottom curves are of systems driven by either Bimodal
distributions (dashed curve), phase-type distributions (dotted curve) or heavy-tailed Weibull distributions
(solid curve). These appear to converge to the conjectured value

Our main contribution is to supply supporting numerical evidence which indicates
that (4) is indeed correct, at least for light-tailed inter-arrival and service distribu-
tions.3 We are not sure about heavy-tailed distributions or about systems that incor-
porate both light and heavy tails.

The remainder of the paper is organized as follows: Sect. 2 states our conjecture
and highlights some puzzling subtleties. Section 3 outlines the supporting numerical
computations that we have done for PH/PH/1/K example cases. Section 4 outlines
details regarding simulation runs that we have performed. We conclude in Sect. 5.

2 A conjecture

The following conjecture constitutes the main open problem of this paper:

Conjecture 1 For the GI/G/1/K queue with λ = μ and light-tailed inter-arrival and
service times,

γ ∗ = 1

3

(
c2
a + c2

s

) + O

(
1

K

)
.

3We refer to a distribution of a random variable X as light-tailed if E[eXθ ] < ∞ for some θ > 0, otherwise
we denote it as heavy-tailed.
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Note that while the above conjecture is formulated for light-tailed service times,
our simulations indicate that this is not a necessary condition. Figure 1 presents es-
timates of γ ∗(t) for some GI/G/1/200 systems with c2

a = c2
s = 2. The figure indi-

cates that Lognormal and Pareto distributions exhibit one type of behavior (having a
BRAVO effect but possibly not with a factor of 1/3) and in contrast the heavy-tailed
Weibull exhibits behaviors similar to light-tailed distributions as in Conjecture 1. We
are thus quite confident that the exponential moments condition of our conjecture is
too strong, yet we are not sure what the minimal condition is.

A first guess (paralleling the GI/G/1 analysis of [2]) is the existence of 2 + ε

moments, for ε > 0, but the simulation results indicate differently since this condition
is met by all the distributions which we chose. Note also that it is possible that for the
Lognormal and the Pareto distributions which we simulate, either the convergence of
γ ∗(t) to γ ∗ is very slow as t → ∞, or perhaps the oK(1) term which we conjecture to
be O(1/K) for light-tailed distributions, vanishes at a much slower rate as K → ∞,
with these distributions.

Further details of the simulation are presented in Sect. 4.

3 Numerical computations for PH/PH/1/K examples

PH/PH/1/K queues are GI/G/1/K queues with phase-type distributions (cf. [5]). The
variability parameter of some special cases with c2

a = c2
s has already been considered

in [13] and presented in Fig. 9 of that paper. Those results already hint that Conjec-
ture 1 holds when c2

a = c2
s . We now extend the computations to cases where c2

a �= c2
s

using a similar framework. The analysis uses a matrix-analytic framework to repre-
sent the departure process of PH/PH/1/K queues as a MAP (Markov Arrival Process).
We do not repeat the technicalities of MAPs, but rather point the reader to Sect. 2 of
[13] and more generally to Chap. XI, Sect. 1a of [3].

Our computations are for PH/PH/1/K queues with the inter-arrival and service
time distributions having mean 1 and parameterized by their squared coefficient of
variation, which we denote by c2. In the case of 0 < c2 < 1, we use a distribution that
is a sum of n = � 1

c2 	 independent exponential random variables. The first random

variable has mean μ−1
1 , the remaining n − 1 random variables have mean μ−1

2 with

μ1 = n

1 + √
(n − 1)(nc2 − 1)

, μ2 = μ1
n − 1

μ1 − 1
.

In the case of c2 ≥ 1, we use a hyper-exponential distribution (a mixture of two expo-
nential random variables): With probability p = (c − 1)/(c + 1), it is an exponential
random variable having mean 2. With probability 1−p it is exponential having mean
(1 − 2p)/(1 − p).

Table 1 contains results evaluated for 16 systems with various c2
a and c2

s . Observe
that as K grows the results converge to 1

3 (c2
a +c2

s ) which is presented in the right most
column. To understand the computation involved in generating this table, consider for
example the third row, (0.15,1.5). In this case, the inter-arrival distribution is a sum
of 7 phases and the service distribution is hyper-exponential with 2 phases. Thus the
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Table 1 Values of γ ∗ , of some PH/PH/1/K queues for increasing K . The right most column is for
limK→∞ γ ∗ as in Conjecture 1, observe that it matches the column of K = 100 quite well

(c2
a, c2

s ) K = 10 K = 20 K = 30 K = 40 K = 50 K = 75 K = 100 1
3 (c2

a + c2
s )

(0.15,0.15)

(0.15,1.00)

(0.15,1.50)

(0.25,0.80)

(0.40,0.20)

(0.50,0.50)

(0.60,1.00)

(0.75,0.75)

(0.75,1.50)

(1.00,0.15)

(1.00,1.00)

(1.20,0.60)

(1.25,1.25)

(1.50,0.15)

(1.50,0.75)

(1.50,1.50)

0.100

0.379

0.576

0.348

0.199

0.325

0.519

0.493

0.770

0.378

0.636

0.608

0.857

0.577

0.772

1.045

0.100

0.381

0.564

0.349

0.200

0.329

0.526

0.497

0.763

0.381

0.651

0.606

0.852

0.564

0.764

1.032

0.100

0.382

0.559

0.349

0.200

0.331

0.528

0.498

0.759

0.382

0.656

0.604

0.847

0.560

0.760

1.024

0.100

0.382

0.557

0.349

0.200

0.331

0.530

0.498

0.757

0.382

0.659

0.603

0.844

0.557

0.758

1.019

0.100

0.382

0.556

0.349

0.200

0.332

0.530

0.499

0.756

0.382

0.660

0.603

0.842

0.556

0.756

1.015

0.100

0.383

0.554

0.350

0.200

0.332

0.531

0.499

0.754

0.383

0.662

0.602

0.840

0.554

0.754

1.011

0.100

0.383

0.553

0.350

0.200

0.333

0.532

0.499

0.753

0.383

0.663

0.601

0.838

0.553

0.753

1.008

1/10

23/60

11/20

7/20

1/5

1/3

8/15

1/2

3/4

23/60

2/3

3/5

5/6

11/20

3/4

1

Table 2 Evaluation of the sequence (5). Since the values appear to converge as K grows, we conjecture
that the oK(1) error term is O(1/K)

(c2
a, c2

s ) K = 50 K = 100 K = 150 K = 200 K = 250 K = 300

(0.4,0.7) −0.015098 −0.0150129 −0.0149844 −0.0149702 −0.0149616 −0.0149559

(0.4,1.5) 0.315844 0.324518 0.32743 0.32889 0.329767 0.330352

(1.0,1.0) −0.326797 −0.330033 −0.331126 −0.331675 −0.332005 −0.332226

(1.3,1.5) 0.658669 0.700843 0.715234 0.722493 0.726868 0.729794

state space of the PH/PH/1/K queue involves 7 + (7 + 2)K states (over 900 states
for K = 100). The MAP specification labels certain transitions (service completions)
and allows evaluating v∗ and λ∗ for the corresponding point process. The major part
of the computation is inversion of a matrix of a dimension equaling the number of
states. Examples with K = 300 can still be solved in fair time, but as K grows or c2

approaches 0, the computation time grows cubically with K or c−2.
Conjecture 1 also states that the oK(1) error term for finite K is O(1/K). Note

that this is in agreement with the explicit M/M/1/K result (2). We can further verify
this for PH/PH/1/K queues by observing that the sequence,

K

(
γ ∗ − 1

3

(
c2
a + c2

s

))
, K = 1,2, . . . , (5)
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Fig. 2 Simulation estimates of γ ∗(t) for PH/PH/1/K queues with c2
a = 0.6 and c2

s = 1.2 for
K = 25,50,100, μ = λ = 1

converges to a constant. We do so for a few examples. The results are displayed in
Table 2. We believe that the values in the right most column estimate B , where

γ ∗ = 1

3

(
c2
a + c2

s

) + B

K
+ o

(
1

K

)
.

Indeed, for the M/M/1/K case, the B that appears from the matrix-analytic computa-
tion agrees with B = −1/3 which appears in (2).

4 Simulation runs

In addition to the PH/PH/1/K numerics, we also performed simulations. For this we
used a simple discrete event simulation of the queue, generating many independent
realizations of D(t). We use λ = μ = 1 in all simulations and run each realization
for a long time horizon: T = 0.5 × 106, sampling the mean and the variance every
103 time units.4 Observe first Fig. 2 where we plot estimates of γ ∗(t) for PH/PH/1/K
queues with c2

a = 0.6 and c2
s = 1.2 for K = 25,50,100. These curves were obtained

using approximately 0.4 × 106 runs for each K . It should be noted that we can essen-
tially compute γ ∗(t) for PH/PH/1/K numerically (for every t). This involves matrix-
exponential computations (cf. formula (10) of [13]).

4In an attempt to obtain the curves relating to a steady-state system, we ‘warm up’ the queue, for a duration

of 0.2 × 106 before beginning the run of duration T , our warm up begins with �K/2� customers in the
queue.
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Fig. 3 The distribution of the estimators of γ ∗(0.2 × 106). 50 estimators, each using 20,000 realizations,
were obtained for each of the 3 service time distributions. The vertical lines signify the location of the
means

Our conjecture for K → ∞ states that γ ∗ = γ ∗(∞) = 0.6, we indeed see that the
curves approach this for increasing K . Further note that it appears that for larger K

the convergence of γ ∗(t) to γ ∗ is slower. This was also observed for the M/M/1/K
queue in [13] (see Fig. 6 of that paper).

Our real interest in performing the simulations is to analyze distributions that can-
not be represented as phase-type (with a finite number of phases). For this we tested
a limited number of cases with λ = μ = 1 and c2

a = c2
s = 2:

• Bimodal distribution, having a mass at 1/2 w.p. 8/9 and a mass at 5 w.p. 1/9.

• Heavy-tailed Weibull distribution. P(X > x) = e
−( x

β
)α with β = 	(1 + 1

α
)−1 and

α being the positive solution of 	(1 + 2
α
) = 3	(1 + 1

α
)2 where 	(·) is the gamma

function. This implies that α ≈ 0.7209 and β ≈ 0.81179.
• Lognormal distribution with paraments m = log(3−1/2) and σ 2 = log(3), i.e.,

X = eY , where Y is normally distributed with mean m and variance σ 2.
• Pareto(3) distribution with support [0,∞). P(X > x) = (1 + x/3)−4.

The results are presented in Fig. 1. Each curve was obtained by running 0.5 × 105

realizations. The main point of this figure was already discussed in the beginning of
Sect. 2:

Open Problem Heavy-tailed Weibull and light-tailed distributions exhibit one type
of behavior, in agreement with Conjecture 1. Lognormal and Pareto exhibit a different
behavior.

To be sure that the difference between the two groups of curves is not a matter of
statistical error, we also plot the distributions of the estimators of γ ∗(t). For this, we
ran 50 repetitions of 20,000 runs, each for a duration of 0.2 × 106 time units. Each
repetition resulted in a sample variance and a sample mean of the random variable
D(0.2 × 106). The resulting estimators of γ ∗(t) are plotted in Fig. 3. As is implied
by the figure, there is indeed a clear difference between the Weibull and the other two
heavy-tailed cases, similarly to Fig. 1.5

5Note that Fig. 1 used 25 times more samples. Had we used this amount of samples for the runs of Fig. 3,
the distributions of the estimators would have been even tighter.
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5 Conclusion

We have presented a conjecture regarding GI/G/1/K queues along with some nu-
merical evidence. Proving our conjecture will complete the picture of the variability
parameter and the BRAVO effect for the basic single server queues. Proper (minimal)
conditions on the inter-arrival and service time distributions are yet to be determined.

In general, the BRAVO phenomena is quite puzzling and somewhat counter intu-
itive.

Open Problem A complete intuitive explanation is still lacking, and we pose this as
a general open question.

We point out that the factor 2/3 arises in the asymptotic variance parameter of the
local time at a barrier of driftless reflected Brownian motion with two barriers (see
[4] and [19]). With the proper scaling, this should constitute the asymptotic variance
of the idle time process which also equals the asymptotic variance of the busy time
process. Further, we may possibly be able to make use of the following equality (cf.
the proof of Theorem 3 in [14]):

D̂n(t) = Ŝn
(
T̄ n(t)

) + μT̂ n(t). (6)

Here S(t) is the renewal service process, T (t) is the busy time, and the bar (fluid
scaling) and hat (diffusion scaling) notation has the following meaning for a process
Z(t):

Z̄n(t) = Z(nt)

n
, Z̄(t) = lim

t→∞ Z̄n(t), Ẑn(t) = Z(nt) − Z̄(nt)√
n

.

It is possible that (6) along with the results of [4, 19] (see also [18]) will yield the
proper insight and possibly lead the way to a proof of our conjecture.

Following the diffusion approximation framework of above, perhaps a more gen-
eral formulation of Conjecture 1 can be formulated in terms of assumptions on the
existence functional central limit theorems for the arrival and service processes. In
fact, we believe that the BRAVO phenomena does not heavily depend on the i.i.d.
assumptions of the inter-arrival and service sequences. In the other direction, an al-
ternative more analytic approach, may be to use regenerative arguments to evaluate
the asymptotic variance rate of say M/PH/1/K, M/G/1/K, PH/M/1/K or GI/M/1/K
queues. Such an analysis can perhaps follow the renewal reward approach used in
[14, Sect. 6.5] along with explicit results for joint distribution of the busy period and
number of customers served in such queues (cf. [1] and references therein).
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