The BRAVO Effect in Queues (and more stuff about variance of output counts)

Yoni Nazarathy The University of Queensland

Presented in the Statistical Laboratory, Cambridge, May 20, 2014

Variance Collaborators

Daryl Daley Johan van Leeuwaarden

Ahmad Al-Hanbali Michel Mandjes

Sophie Hautphenne Yoav Kerner Peter

Werner Scheinhardt Brendan Patch Thomas Taimre

Gideon Weiss

M/M/1, M/M/1/K, M/M/s/K, M/M/s/K+M, GI/G/1, GI/G/1/K, ...

Basic conservation equation for a single queue

$$Q(t) = Q(0) + \left(A(t) - L(t)\right) - \left(R(t) + D(t)\right)$$

$$D(t) = Q(0) + \left(A(t) - L(t) - R(t)\right) - Q(t)$$

$$D(t) = Q(0) + \left(A(t) - L(t) - R(t)\right) - Q(t)$$

Why analyse $\{D(t), t \ge 0\}$?

- Orders
- Production
- Arrival process to a downstream queueing system

$$D(t) = Q(0) + \left(A(t) - L(t) - R(t)\right) - Q(t)$$

Why analyse $\{D(t), t \ge 0\}$?

- Orders
- Production
- Arrival process to a downstream queueing system

$$D(t) = Q(0) + \left(A(t) - L(t) - R(t)\right) - Q(t)$$

Why analyse $\{D(t), t \ge 0\}$?

- Orders
- Production
- Arrival process to a downstream queueing system

Some performance measures of interest

- The law of $\{D(t), t \ge 0\}$
- $\mathbb{E}[D(t)]$, Var(D(t))
- $\lambda^* := \lim_{t \to \infty} \frac{\mathbb{E}[D(t)]}{t}, \quad \overline{V} := \lim_{t \to \infty} \frac{\mathsf{Var}(D(t))}{t}, \quad \mathcal{D} := \frac{\overline{V}}{\lambda^*}$
- Asymptotic normality: $D(t) \sim \mathcal{N}(\lambda^* t, \ \overline{V}t)$, large t
- Second order approximations, e.g., $\operatorname{Var}ig(D(t)ig) = \overline{V}t + \overline{b} + o(1)$
- Asymptotic covariances, etc...

• Reminder: Poisson processes:

$$\mathbb{E}[D(t)] = \mathsf{Var}ig(D(t)ig) = \lambda t$$

• Reminder: Poisson processes:

$$\mathbb{E}[D(t)] = \mathsf{Var}ig(D(t)ig) = \lambda t$$

• Reminder: Renewal processes:

$$\mathbb{E}[D(t)] \sim \lambda t$$
 $Var(D(t)) \sim \lambda c^2 t$

• Reminder: Poisson processes:

$$\mathbb{E}[D(t)] = \mathsf{Var}ig(D(t)ig) = \lambda t$$

• Reminder: Renewal processes:

$$\mathbb{E}[D(t)] \sim \lambda t$$
 $Var(D(t)) \sim \lambda c^2 t$

• What is $\mathcal{D} = \lim_{t \to \infty} \frac{\mathsf{Var}(D(t))}{\mathbb{E}[D(t)]}$ for queues?

• Reminder: Poisson processes:

$$\mathbb{E}[D(t)] = \mathsf{Var}ig(D(t)ig) = \lambda t$$

• Reminder: Renewal processes:

$$\mathbb{E}[D(t)] \sim \lambda t$$
 $Var(D(t)) \sim \lambda c^2 t$

• What is
$$\mathcal{D} = \lim_{t \to \infty} \frac{\mathsf{Var}(D(t))}{\mathbb{E}[D(t)]}$$
 for queues?

 \bullet E.g. in stationary (and thus stable M/M/1): $\mathcal{D}=1$

• Let K be not so small, e.g. K = 40

- Let K be not so small, e.g. K = 40
- Consider now $\lambda \ll \mu$, e.g. $\lambda = 0.5$, $\mu = 1$. What is \mathcal{D} ?

- Let K be not so small, e.g. K = 40
- Consider now $\lambda \ll \mu$, e.g. $\lambda = 0.5$, $\mu = 1$. What is \mathcal{D} ?
- Consider now $\lambda \gg \mu$ e.g. $\lambda = 2.0$, $\mu = 1$. What is \mathcal{D} ?

- Let K be not so small, e.g. K = 40
- Consider now $\lambda \ll \mu$, e.g. $\lambda = 0.5$, $\mu = 1$. What is \mathcal{D} ?
- Consider now $\lambda \gg \mu$ e.g. $\lambda = 2.0$, $\mu = 1$. What is \mathcal{D} ?
- So how about $\mathcal D$ when $\lambda = \mu$ (e.g. = 1)?

- Let K be not so small, e.g. K = 40
- Consider now $\lambda \ll \mu$, e.g. $\lambda = 0.5$, $\mu = 1$. What is \mathcal{D} ?
- Consider now $\lambda \gg \mu$ e.g. $\lambda = 2.0$, $\mu = 1$. What is \mathcal{D} ?
- So how about ${\mathcal D}$ when $\lambda = \mu$ (e.g. = 1)?

- Let K be not so small, e.g. K = 40
- Consider now $\lambda \ll \mu$, e.g. $\lambda = 0.5$, $\mu = 1$. What is \mathcal{D} ?
- Consider now $\lambda \gg \mu$ e.g. $\lambda = 2.0$, $\mu = 1$. What is \mathcal{D} ?

• So how about ${\mathcal D}$ when $\lambda = \mu$ (e.g. = 1)?

We call this **BRAVO**:

Balancing Reduces Asymptotic Variance of Outputs

Finite Birth-Death Asymptotic Variance (and BRAVO)

Finite Birth-Death Setting

- Irreducible birth-death process on finite state space
- Birth rates: $\lambda_0, \ldots, \lambda_{J-1}$
- Death rates: μ_1, \ldots, μ_J
- Stationary distribution: π_0, \ldots, π_J
- D(t) is number of downward transitions (deaths) during [0, t], each "filtered" independently with state-dependent probabilities, q₁,..., q_J.
- $\bullet\,$ e.g. The output process (served customers) in M/M/s/K+M :

$$\lambda_i = \lambda, \quad \mu_i = \mu (i \wedge s) + \gamma (i - s)^+, \qquad q_i = \frac{\mu (i \wedge s)}{\mu (i \wedge s) + \gamma (i - s)^+}, \quad i = 0, 1, \dots, s + K$$

Of interest:

$$\mathcal{D} = rac{\overline{V}}{\lambda^*} = \lim_{t o \infty} rac{\mathsf{Var}ig(D(t)ig)}{\mathbb{E}[D(t)]}$$

Finite Birth-Death Asymptotic Variance Formula

Theorem: Daryl Daley, Johan van Leeuwaarden, Y.N. 2014

$$\mathcal{D} := \lim_{t \to \infty} \frac{\mathsf{Var}(D(t))}{\mathbb{E}[D(t)]} = 1 - 2\sum_{i=0}^{J} (P_i - \Lambda_i^*) \Big(q_{i+1} - \frac{\lambda^*}{\pi_i \lambda_i} (P_i - \Lambda_i^*) \Big),$$

with,

$$P_i := \sum_{j=0}^i \pi_j, \qquad \lambda^* := \sum_{j=1}^J \mu_j q_j \pi_j, \qquad \Lambda_i^* := \frac{\sum_{j=1}^i \mu_j q_j \pi_j}{\lambda^*}.$$

Note: In Y.N. and Weiss 2008, similar expression for case $q_i \equiv 1$

Note: In case $\lambda_i \equiv \lambda$, $q_i \equiv 1$:

$$\mathcal{D} = 1 - 2 \frac{\pi_J}{1 - \pi_J} \sum_{i=0}^J P_i \left(1 - \pi_J \frac{P_i}{\pi_i} \right)$$

Idea of Renewal Reward Derivation

"Embed" D(t) in a Renewal-Reward Process, C(t)

- (X_n, Y_n) \equiv (busy cycle, number served) in cycle *n*
- **3** $N(t) = \sup\{n : \sum_{i=1}^{n} X_i \le t\}, \ C(t) = \sum_{i=1}^{N(t)} Y_i$
- Solution Asymptotic variance rates of C(t) and D(t) are equal
- 4 Known:
 - Asymptotic variance rate of C(t) is $\frac{1}{\mathbb{E}[X]} \operatorname{Var}(Y \frac{\mathbb{E}[Y]}{\mathbb{E}[X]}X)$
 - Systems of equations for

1'st, 2'nd and cross moments of X and Y

Here π_i is truncated geometric distribution when $\lambda \neq \mu$ and a uniform distribution when $\lambda = \mu$

Using
$$\mathcal{D} = 1 - 2 \frac{\pi_J}{1 - \pi_J} \sum_{i=0}^{J} P_i \left(1 - \pi_J \frac{P_i}{\pi_i} \right)$$
:

Here π_i is truncated geometric distribution when $\lambda \neq \mu$ and a uniform distribution when $\lambda = \mu$

Using $D = 1 - 2 \frac{\pi_J}{1 - \pi_J} \sum_{i=0}^{J} P_i \left(1 - \pi_J \frac{P_i}{\pi_i} \right)$:

$$\mathcal{D} = \left\{ egin{array}{cc} 1 + o_{\mathcal{K}}(1), & \lambda
eq \mu, \ rac{2}{3} + o_{\mathcal{K}}(1), & \lambda = \mu. \end{array}
ight.$$

Here π_i is truncated geometric distribution when $\lambda \neq \mu$ and a uniform distribution when $\lambda = \mu$

Using
$$\mathcal{D} = 1 - 2 \frac{\pi_J}{1 - \pi_J} \sum_{i=0}^J P_i \left(1 - \pi_J \frac{P_i}{\pi_i} \right)$$
:

$$\mathcal{D} = \left\{ egin{array}{cc} 1 + o_{\mathcal{K}}(1), & \lambda
eq \mu, \ rac{2}{3} + o_{\mathcal{K}}(1), & \lambda = \mu. \end{array}
ight.$$

Here π_i is truncated geometric distribution when $\lambda \neq \mu$ and a uniform distribution when $\lambda = \mu$

Using
$$\mathcal{D} = 1 - 2 \frac{\pi_J}{1 - \pi_J} \sum_{i=0}^J P_i \left(1 - \pi_J \frac{P_i}{\pi_i} \right)$$
:

$$\mathcal{D} = \left\{ egin{array}{cc} 1 + o_{\mathcal{K}}(1), & \lambda
eq \mu, \ rac{2}{3} + o_{\mathcal{K}}(1), & \lambda = \mu. \end{array}
ight.$$

In fact, for any λ , μ , we have an explicit expression for \mathcal{D} (alt. \overline{V} , λ^*) and even for \overline{b} in,

$$\mathsf{Var}ig(D(t)ig) = \overline{V}t + \overline{b} + o(1)$$

Multi-Server Systems in the Halfin-Whitt (QED) Regime

Quality and Efficiency Driven (QED) Scaling Regime

A sequence of systems

Consider a sequence of M/M/s/K queues with increasing s = 1, 2, ... and with $\rho_s := \frac{\lambda}{s\mu}$ and K_s such that,

$$(1 - \rho_s)\sqrt{s} \to \beta \in (-\infty, \infty)$$

 $\frac{K_s}{\sqrt{s}} \to \eta \in (0, \infty)$

So for large s:

$$ho_{s}pprox 1-eta/\sqrt{s}$$

 $K_{s}pprox \eta\sqrt{s}$

Halfin, Whitt, 1981, Garnett, Mandelbaum, Reiman 2002, Borst, Mandelbaum, Reiman, 2004, Whitt, 2004, Pang, Talreja, Whitt, 2007, Janssen, van Leeuwaarden, Zwart, 2011, Kaspi, Ramanan 2011...

- \bullet Probability of delay converges to a value $\in (0,1)$
- Mean waiting times are typically $O(s^{-1/2})$
- Large queue lengths almost never occur
- Quick mixing times
- In applications: Call-centers (etc...) describes behavior well and allows for asymptotic approximate optimization of staffing etc...
- How about BRAVO?

Theorem: Daryl Daley, Johan van Leeuwaarden, Y.N. 2013

Consider QED scaling with $\beta \neq 0$:

$$\mathcal{D}_{eta,\eta}:=\lim_{s,K o\infty}\lim_{t o\infty}rac{Varig(D(t)ig)}{\mathbb{E}ig(D(t)ig)},$$

$$\mathcal{D}_{\beta,\eta} = 1 - \frac{2\beta^2 e^{-\beta\eta} h^2}{\phi(\beta)} \int_{-\beta}^{\infty} \left(1 - \beta e^{-\beta\eta} h \frac{\Phi(-u)}{\phi(u)} \right) \Phi(-u) \, du$$
$$+ 2e^{-\beta\eta} h (1 + e^{-\beta\eta} h) \left(1 - \beta\eta - e^{-\beta\eta} + (1 - 2\beta\eta e^{-\beta\eta} - e^{-2\beta\eta}) h \right)$$

where

$$h = \lim_{s \to \infty} \frac{\mathbb{P}(Q_s \ge s)}{1 - e^{-\beta\eta}} = \frac{1}{1 - e^{-\beta\eta} + \frac{\beta \Phi(\beta)}{\phi(\beta)}}$$

BRAVO Viewed Through the QED Lens

M/M/s/K QED BRAVO with $\rho \equiv 1 \ (\beta = 0)$

Theorem: Daryl Daley, Johan van Leeuwaarden, Y.N. 2013 Assume $\rho \equiv 1$ and $\frac{K_s}{\sqrt{s}} \rightarrow \eta \in (0, \infty)$. Then $\mathcal{D}_{0,\eta} := \lim_{s,K \to \infty} \lim_{t \to \infty} \frac{Var(D(t))}{\mathbb{E}(D(t))},$ $\mathcal{D}_{0,\eta} = \frac{2}{3} - \frac{\left(6 - \frac{3\pi}{2}\right)\eta - \frac{1}{2}\pi\sqrt{\frac{\pi}{2}} + 3\sqrt{2\pi}(1 - \log 2)}{3\left(\eta + \sqrt{\frac{\pi}{2}}\right)^3}.$

$\mathsf{M}/\mathsf{M}/s/\lfloor\eta\sqrt{s} floor$ $s o\infty$ at $ho\equiv 1~(eta=0)$

Idea of BRAVO QED Derivations

Use

$$\mathcal{D} = 1 - 2 \frac{\pi_J}{1 - \pi_J} \sum_{i=0}^J P_i \Big(1 - \pi_J \frac{P_i}{\pi_i} \Big).$$

Using QED scaling:

$$(1-\rho_s)\sqrt{s} \to \beta, \qquad \qquad \frac{\kappa_s}{\sqrt{s}} \to \eta,$$

. .

evaluate the limit,

$$\lim_{s,K\to\infty}\frac{\pi_J^{(s,K)}}{1-\pi_J^{(s,K)}}\sum_{i=0}^J P_i^{(s,K)} \Big(1-\pi_J^{(s,K)}\frac{P_i^{(s,K)}}{\pi_i^{(s,K)}}\Big).$$

Beyond Finite Birth-Death Queues

M/M/1 Queue

When $K = \infty$, the birth-death \mathcal{D} formula, generally does not hold. In this case,

$$\mathcal{D} = \begin{cases} 1, & \lambda \neq \mu, \\ ?, & \lambda = \mu. \end{cases}$$

A guess is $rac{2}{3}$, since for $K < \infty$, $\mathcal{D} = rac{2}{3} + o_K(1)$. . .

M/M/1 Queue

When $K = \infty$, the birth-death $\mathcal D$ formula, generally does not hold. In this case,

$$\mathcal{D} = \begin{cases} 1, & \lambda \neq \mu, \\ ?, & \lambda = \mu. \end{cases}$$

A guess is $rac{2}{3},$ since for $K<\infty,$ $\mathcal{D}=rac{2}{3}+o_{\mathcal{K}}(1)$. . .

Theorem: Ahmad Al-Hanbali, Michel Mandjes, Y. N., Ward Whitt, 2011

For the M/M/1 queue with $\lambda = \mu$ and arbitrary initial conditions of Q(0) (with finite second moments),

$$\mathcal{D}=2\Big(1-\frac{2}{\pi}\Big)\approx 0.727.$$

Proof based on analysis of classic Laplace transform of the generating function of $D(\cdot)$

Var(D(t)) = horrible expression involving integrals of Bessel functions

From it:

$$\mathsf{Var}(D(t)) = \begin{cases} \lambda t - \frac{\rho}{(1-\rho)^2} + o(1), & \text{if } \lambda < \mu, \\ 2(1-\frac{2}{\pi})\lambda t - \sqrt{\frac{\lambda}{\pi}} t^{1/2} + \frac{\pi-2}{4\pi} + o(1), & \text{if } \lambda = \mu, \\ \mu t - \frac{\rho}{(1-\rho)^2} + o(1), & \text{if } \lambda > \mu, \end{cases}$$

The Stable M/G/1 Queue

Theorem: Sophie Hautphenne, Yoav Kerner, Y. N., Peter Taylor, 2013

Consider the stable M/G/1 queue with finite third service moment, parameterized by (arrival rate, load, scv, skewness) = $(\lambda, \rho, c^2, \gamma)$.

Stationary version:

$$Var(D(t)) = \lambda t + L_e \frac{\rho}{(1-\rho)^2} + o(1),$$

$$L_e = \frac{(3c^4 - 4\gamma c^3 + 6c^2 - 1)\rho^3 + (4\gamma c^3 - 12c^2 + 4)\rho^2 + (6c^2 - 6)\rho}{6}$$

Starting empty version:

$$\begin{aligned} \mathsf{Var}\big(D(t)\big) &= \lambda t - (1-L_0)\frac{\rho}{(1-\rho)^2} + o(1), \\ L_0 &= \frac{(3c^4 - 4\gamma c^3 + 6c^2 - 1)\rho^3 + (4\gamma c^3 - 6c^2 - 2)\rho^2 - (6c^2 - 6)\rho}{12}. \end{aligned}$$

M/M/1: $c^2 = 1, \gamma = 2$. $L_e = 0$, $L_0 = 0$.

${\rm GI}/{\rm G}/1$ Queue

Moving away from the memory-less assumptions,

$$\mathcal{D} = \begin{cases} c_a^2, & \lambda < \mu, \\ ?, & \lambda = \mu, \\ c_s^2, & \lambda > \mu. \end{cases}$$

For M/M/1 it was $2(1-\frac{2}{\pi})...$

GI/G/1 Queue

Moving away from the memory-less assumptions,

$$\mathcal{D} = \begin{cases} c_{\mathsf{a}}^2, & \lambda < \mu, \\ ?, & \lambda = \mu, \\ c_{\mathsf{s}}^2, & \lambda > \mu. \end{cases}$$

For M/M/1 it was $2(1-\frac{2}{\pi})...$

Theorem:

Ahmad Al-Hanbali, Michel Mandjes, Y.N., Ward Whitt, 2011

For the GI/G/1 queue with $\lambda = \mu$, arbitrary finite second moment initial conditions (Q(0), V(0), U(0)), finite fourth moments of the inter-arrival and service times, and $\mathbb{P}(B > x) \sim L(x)x^{-1/2}$, where *B* denotes the busy period and $L(\cdot)$ is a slowly varying function,

$$\mathcal{D} = (c_a^2 + c_s^2) \Big(1 - \frac{2}{\pi} \Big).$$

Proof using diffusion limit of $(D(n \cdot) - \lambda n \cdot) / \sqrt{\lambda n \cdot}$ as $n \to \infty$ (Iglehart and Whitt 1971).

GI/G/1/K Queue

$$\mathcal{D} = \left\{ egin{array}{ll} c_{a}^{2}+o_{\mathcal{K}}(1), & \lambda < \mu, \ ?, & \lambda = \mu, \ c_{s}^{2}+o_{\mathcal{K}}(1), & \lambda > \mu. \end{array}
ight.$$

For M/M/1/K it was $\frac{2}{3} + o_K(1)$, for GI/G/1 it was $(c_a^2 + c_s^2)(1 - \frac{2}{\pi})...$

GI/G/1/K Queue

$$\mathcal{D} = \left\{ egin{array}{ll} c_{s}^{2}+o_{\mathcal{K}}(1), & \lambda < \mu, \ ?, & \lambda = \mu, \ c_{s}^{2}+o_{\mathcal{K}}(1), & \lambda > \mu. \end{array}
ight.$$

For M/M/1/K it was $\frac{2}{3} + o_K(1)$, for GI/G/1 it was $(c_a^2 + c_s^2)(1 - \frac{2}{\pi})...$

Conjecture (numerically tested): Y.N., 2011

For the GI/G/1/K queue with $\lambda = \mu$ and arbitrary initial conditions and light-tailed service and inter-arrival times,

$$\mathcal{D}=(c_a^2+c_s^2)\frac{1}{3}+O(\frac{1}{K}).$$

Numerical verification done by representing the system as PH/PH/1/K MAPs

Wrap Up

Summary

Known BRAVO constants:

- Single server finite buffer: 2/3
- (for GI/G replace 2 by $c_a^2 + c_s^2$) • Single server infinite buffer $2(1 - 2/\pi)$:
 - (for GI/G replace 2 by $c_a^2 + c_s^2$)
- Memoryless many servers finite buffer: $\mathcal{D}_{0,\eta} \in [0.6,2/3]$

Not yet known:

- Formulas for asymptotic variance when ho
 eq 1 in other models
- Memoryless many servers infinite buffer (M/M/s)
- Many servers without memoryless assumptions (GI/G/s)
- Systems with reneging or other packet loss mechanisms (e.g. M/M/s/K+M in QED work in progress)

Other questions: How can BRAVO be harnessed in practice? Why does BRAVO occur?

References

- Brendan Patch, Thomas Taimre, Y.N., "A Correction Term for the Covariance of Renewal-Reward Processes with Multivariate Rewards", submitted.
- Sophie Hautphenne, Yoav Kerner, Y.N., Peter Taylor, "The Second Order Terms of the Variance Curves for Some Queueing Output Processes", submitted.
- Y. N., Werner Scheinhardt, "Diffusion Parameters of Flows in Stable Queueing Networks", submitted.
- Daryl J. Daley, Johan van Leeuwaarden and Y.N., "BRAVO for QED Finite Birth-Death Queues", Advances in Applied Probability, to appear.
- Y.N., "The variance of departure processes: puzzling behavior and open problems", Queueing Systems, 68, pp. 385–394, 2011.
- Ahmad Al-Hanbali, Michel Mandjes, Y.N. and Ward Whitt, "The asymptotic variance of departures in critically loaded queues", Advances in Applied Probability, 43, pp. 243–263, 2011.
- Y.N. and Gideon Weiss, "The asymptotic variance rate of the output process of finite capacity birth-death queues", Queueing Systems, 59, pp. 135–156, 2008.