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Queueing Models

M/M/1,  M/M/1/K,  M/M/s/K, — M/M/s/K+M,
GI/G/1,  GI/G/1/K,

Basic conservation equation for a single queue

Q(t) = Q(0) + (A(t) - L(t)) - (R(t) + D(t))
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The Output Process D(-)

@ Orders

@ Production

@ Arrival process to a downstream queueing system
@ The law of {D(t), t > 0}
e E[D(t)], Var(D(t))

EDW] v Var(p(1))

t 9 V.= ||mt—>oo t 9

e Asymptotic normality: D(t) ~N<)\*t, Vt), large t

o N = Ilimieo

Vv
D=5

@ Second order approximations, e.g.,
Var(D(t)) = Vt+ b+ o(1)

@ Asymptotic covariances, etc...
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Our Focus: Asymptotic Variance

@ Reminder: Poisson processes:

E[D(t)] = Var(D(t)) = At
@ Reminder: Renewal processes:
E[D(t)] ~ At Var(D(t)) ~ Ac*t

@ What is D = lim;_,o % for queues?

e E.g. in stationary (and thus stable M/M/1): D =1
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For illustration, consider M/M/1/K

@ Let K be not so small, e.g. K =40
o Consider now A < p, e.g. A =0.5, p =1. What is D?
o Consider now A > peg. A =20, =1 Whatis D?

@ So how about D when A\ =y (e.g. =1)?
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We call this BRAVO:

Balancing Reduces Asymptotic Variance of Outputs



Finite Birth-Death Asymptotic Variance (and BRAVO)



Finite Birth-Death Setting

Irreducible birth-death process on finite state space
Birth rates: Ag,...,Aj_1
Death rates: p1,..., 1y

Stationary distribution: mq, ...,y

D(t) is number of downward transitions (deaths) during [0, ],
each “filtered” independently with state-dependent
probabilities, q1,...,qy.

@ e.g. The output process (served customers) in M/M/s/K+M :

J— J— i i— J— ,u(i/\s) i =
Ai = i = p(ins)+y (i-s)", e wrver e e AL R
Of interest:
Vv Var(D(t
p-Y _ i VDO)
X 5% E[D(1)]



Finite Birth-Death Asymptotic Variance Formula

Theorem: Daryl Daley, Johan van Leeuwaarden, Y.N. 2014

L Var(D(t)) B A* x
D= lim sy = 1—ZZ:P A)(WH_WMKR_AJ»

with,

)\*

i J Zi [

=1 M 9T

P,' = E Tj, A= E Hiqimy, /\;|< = Ji.
j=0 j=1

Note: In Y.N. and Weiss 2008, similar expression for case g; = 1
Note: In case \; = )\, g = 1:

D=1-2

P,'(]_—ﬂ'_j&)
1—my
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Idea of Renewal Reward Derivation

"Embed" D(t) in a Renewal-Reward Process, C(t)

O (X, Ys) = (busy cycle, number served) in cycle n
@ N(t)=sup{n: >, X; < t}, C(t) =MDy,

© Asymptotic variance rates of C(t) and D(t) are equal
@ Known:
— Asymptotic variance rate of C(t) is ﬁVar(Y - %X)
— Systems of equations for
1'st, 2'nd and cross moments of X and Y
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Back to the M/M/1/K Queue

Here 7; is truncated geometric distribution when A\ # p and a
uniform distribution when A =

Using D =1 — 2™ Z,-JZOP,-<1—7TJ%):

1—my
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Back to the M/M/1/K Queue

Here ; is truncated geometric distribution when A # 1 and a
uniform distribution when A =

Using D =1 — 2™ Z,-JZOP,-<1—7TJ%):

1—my

1+OK(1)7 A#M?
D=4¢,
§+OK(1), )\:'U/
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Back to the M/M/1/K Queue

Here ; is truncated geometric distribution when A # 1 and a
uniform distribution when A =

Using D =1 — 2™ Z,-JZOP,-<1—7TJ%):

1—my

D:{ 1+ 0k(1), A#p, |

% + ok (1), A= p.

LV LV

M/M/L/K=40 1} mm/ak=100
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Back to the M/M/1/K Queue

Here ; is truncated geometric distribution when A # 1 and a
uniform distribution when A =

my J A1 _ - Pi).
jp—— Zi:o P; (1 Ty 77:)

D:{ 1+ 0k(1), A#p, |

UsingD=1-2

% + OK(].), A= M.

LV LV

M/M/L/K=40 1} mm/ak=100

23p-------f--- 2/3f---—-—- S

A
0.0 05 10 15 20 00 05 10 15 20

A

In fact, for any A, u1, we have an explicit expression for D (alt. vV, A*)
and even for b in,
Var(D(t)) = Vt+ b+ o(1)

11



Multi-Server Systems in the Halfin-Whitt (QED) Regime
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Quality and Efficiency Driven (QED) Scaling Regime

A sequence of systems

Consider a sequence of M/M/s/K queues with increasing
s=1,2,... and with ps := ﬁ and K; such that,

(1= ps)v/5 = B € (00, 0)

Ks
7S_>77€(0700)

7

So for large s:
ps~1—3/Vs
Ks ~ "7\/g

Halfin, Whitt, 1981, Garnett, Mandelbaum, Reiman 2002, Borst, Mandelbaum,
Reiman, 2004, Whitt, 2004, Pang, Talreja, Whitt, 2007, Janssen, van Leeuwaarden,
Zwart, 2011, Kaspi, Ramanan 2011...

13



Favorable QED Properties

Probability of delay converges to a value € (0,1)

Mean waiting times are typically O(s~1/?)

Large queue lengths almost never occur

Quick mixing times

In applications: Call-centers (etc...) describes behavior well

and allows for asymptotic approximate optimization of staffing
etc...

How about BRAVO?

14
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M/M/s/K QED BRAVO

Theorem: Daryl Daley, Johan van Leeuwaarden, Y.N. 2013

Consider QED scaling with g # 0:

B i " Var(D(t)
8= s K Dso thoe E(D(1)) E(D(t)) ’

Dﬁ,,,:1—2'82(;’(_;)"hz/_6 (1- Be=Ph (;(u)))cb( u) du

+2e7P1h(1 4 e Ph) (1 — By —e P14 (1 —28ne=P" — e_2ﬁ’7)h)

where
P(Qs > s) 1
p=m = = o+ B0
s—oo 1 — e~ =
1—e "+ S5




BRAVO Viewed Through the QED Lens
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M/M/s/K QED BRAVO with p =1 (3 = 0)

Theorem: Daryl Daley, Johan van Leeuwaarden, Y.N. 2013
Assume p =1 and % — n € (0,00). Then

L ) Var(D(t))
Pon = M % B (D))

(n+/3)°

2 (6= %)n—dry/F+3VER(0—og)
3 |

10



M/M/s/|nys] s—oo atp=1(3=0)
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Idea of BRAVO QED Derivations

Use
D—1-2-" iP-(l—w ﬂ)
N 1—my P ' J7T,' '
Using QED scaling:
Ks
(1_p5)\£_>ﬁa %éna

evaluate the limit,

(s Ky J (s,K)
(s,K) (s,K) P,'
smool sK)ZP ( M (s,K))'
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Beyond Finite Birth-Death Queues
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When K = oo, the birth-death D formula, generally does not hold.
In this case,
1, A
p_J b AFm
7 A= L.

A guess is 3, since for K < 00, D = 3 + ok (1) . . .
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When K = oo, the birth-death D formula, generally does not hold.
In this case,
1
D s AFE
7 A= L.
A guess is 3, since for K < 00, D = 3 + ok (1) . . .

Theorem:

Ahmad Al-Hanbali, Michel Mandjes, Y. N., Ward Whitt, 2011

For the M/M/1 queue with A\ = p and arbitrary initial conditions
of Q(0) (with finite second moments),

D:2@—3)zanr
v

Proof based on analysis of classic Laplace transform of the
generating function of D(-)

23



Var(D(t)) = horrible expression involving integrals of Bessel functions

From it:

Var(D(1)) =8 21— 2)At /22 4 T2 4 o(1), i A=p,

ut—ﬁ-ﬁ-o(l), it A>p,

24



The Stable M/G/1 Queue

Theorem: Sophie Hautphenne, Yoav Kerner, Y. N., Peter Taylor, 2013

Consider the stable M/G/1 queue with finite third service moment,
parameterized by (arrival rate, load, scv, skewness)= (), p, c?, 7).

Stationary version:

Var(D(t)) = At + Le + o(1),

()2

(3c* — 4yc® +6¢2 — 1)p3 + (4yc® — 12¢2 + 4)p? + (6¢® — 6)p
e :

L=
Starting empty version:

)
Var(D(t)) = A\t — (1 — Lg)—— + o(1),
(0(e) = 3= (1~ L)L +o()

(3c* — 43 +6¢2 — 1)p> + (4yc® — 6% — 2)p? — (6¢2 — 6)p

L:
0 12

M/M/1: 2=1,y=2. L. =0, Lo =0.

25



Var(D(t))
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Var(D(t))
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Var(D(t))
o =0.995
so0f e e 2
ettt Slope=2(1--)
"""""""" 2000 000 @000 w0000 t
——2__ 30800,
_sooool- 1-p)
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Var(D(t))
p =0.997 -
50000
i o o oo
-—L 10778,
1-p
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Moving away from the memory-less assumptions,

2, A< p,
D=4 7 A=u
2, A> .

For M/M/1 it was 2(1 — 2)...
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Moving away from the memory-less assumptions,

2, A<,
D=4 7 A=y,
2, A> .

For M/M/1 it was 2(1 — 2)...

Theorem:

Ahmad Al-Hanbali, Michel Mandjes, Y.N., Ward Whitt, 2011

For the GI/G/1 queue with A\ = p, arbitrary finite second moment
initial conditions (Q(0), V(0), U(0)), finite fourth moments of the

inter-arrival and service times, and P(B > x) ~ L(x)x~ /2, where
B denotes the busy period and L(-) is a slowly varying function,

Dzk}ﬂ@@—%)

Proof using diffusion limit of (D(n-) — An-)/vxn- as n — oo (Iglehart and Whitt 1971).
20



Gl/G/1/K Queue

C§+OK(1)7 )‘<M7
D= ? A=,

9

c2+ok(l), A>p.

For M/M/1/K it was %Jr ok(1), for GI/G/1 it was
(G +c)1-2)..
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Gl/G/1/K Queue

C§+OK(1)7 )‘<M7
D= ? A=,

9

c2+ok(l), A>p.

For M/M/1/K it was %Jr ok(1), for GI/G/1 it was
(G +c)1-2)..

Conjecture (numerically tested): Y.N., 2011

For the GI/G/1/K queue with A = p and arbitrary initial
conditions and light-tailed service and inter-arrival times,

(21t iol
D—(ca+c5)3+O(K).

Numerical verification done by representing the system as
PH/PH/1/K MAPs

21



Wrap Up
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Known BRAVO constants:

@ Single server finite buffer: 2/3

(for GI/G replace 2 by c2 + c2)
@ Single server infinite buffer 2(1 — 2/):

(for GI/G replace 2 by c2 + c2)
@ Memoryless many servers finite buffer: Dy, € [0.6,2/3]

Not yet known:

@ Formulas for asymptotic variance when p # 1 in other models
@ Memoryless many servers infinite buffer (M/M/s)
e Many servers without memoryless assumptions (GI/G/s)

@ Systems with reneging or other packet loss mechanisms
(e.g. M/M/s/K+M in QED — work in progress)

Other questions: How can BRAVO be harnessed in practice?
Why does BRAVO occur?

232
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