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Queueing Models

M/M/1, M/M/1/K , M/M/s/K , M/M/s/K+M ,

GI/G/1, GI/G/1/K , . . .

Basic conservation equation for a single queue

Q(t) = Q(0) +
(
A(t)− L(t)

)
−
(
R(t) + D(t)

)
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The Output Process D(·)

D(t) = Q(0) +
(
A(t)− L(t)− R(t)

)
− Q(t)

Why analyse {D(t), t ≥ 0}?
Orders

Production

Arrival process to a downstream queueing system

Some performance measures of interest

The law of {D(t), t ≥ 0}

E[D(t)], Var
(
D(t)

)
λ∗ := limt→∞

E[D(t)]
t , V := limt→∞

Var
(

D(t)
)

t , D := V
λ∗

Asymptotic normality: D(t) ∼ N
(
λ∗t, V t

)
, large t

Second order approximations, e.g.,

Var
(
D(t)

)
= V t + b + o(1)

Asymptotic covariances, etc...
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Our Focus: Asymptotic Variance

Reminder: Poisson processes:

E[D(t)] = Var
(
D(t)

)
= λt

Reminder: Renewal processes:

E[D(t)] ∼ λt Var
(
D(t)

)
∼ λc2t

What is D = limt→∞
Var
(

D(t)
)

E[D(t)] for queues?

E.g. in stationary (and thus stable M/M/1): D = 1
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For illustration, consider M/M/1/K

Let K be not so small, e.g. K = 40

Consider now λ� µ, e.g. λ = 0.5, µ = 1. What is D?

Consider now λ� µ e.g. λ = 2.0, µ = 1. What is D?

So how about D when λ = µ (e.g. = 1)?

Out[107]=

0.0 0.5 1.0 1.5 2.0
Λ

2�3

1

Λ
*,V D

0.0 0.5 1.0 1.5 2.0
Λ

2�3

1

D = V D�Λ
*

We call this BRAVO:

Balancing Reduces Asymptotic Variance of Outputs
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Finite Birth-Death Asymptotic Variance (and BRAVO)
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Finite Birth-Death Setting

Irreducible birth-death process on finite state space

Birth rates: λ0, . . . , λJ−1

Death rates: µ1, . . . , µJ

Stationary distribution: π0, . . . , πJ

D(t) is number of downward transitions (deaths) during [0, t],
each “filtered” independently with state-dependent
probabilities, q1, . . . , qJ .

e.g. The output process (served customers) in M/M/s/K+M :

λi = λ, µi = µ (i∧s)+γ (i−s)+, qi =
µ (i ∧ s)

µ (i ∧ s) + γ (i − s)+
, i = 0, 1, . . . , s+K

Of interest:

D =
V

λ∗
= lim

t→∞

Var
(
D(t)

)
E[D(t)]
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Finite Birth-Death Asymptotic Variance Formula

Theorem: Daryl Daley, Johan van Leeuwaarden, Y.N. 2014

D := lim
t→∞

Var
(
D(t)

)
E[D(t)]

= 1−2
J∑

i=0

(Pi −Λ∗i )
(
qi+1−

λ∗

πiλi
(Pi −Λ∗i )

)
,

with,

Pi :=
i∑

j=0

πj , λ∗ :=
J∑

j=1

µjqjπj , Λ∗i :=

∑i
j=1 µjqjπj

λ∗
.

Note: In Y.N. and Weiss 2008, similar expression for case qi ≡ 1

Note: In case λi ≡ λ, qi ≡ 1:

D = 1− 2
πJ

1− πJ

J∑
i=0

Pi

(
1− πJ

Pi

πi

)
9



Idea of Renewal Reward Derivation

”Embed” D(t) in a Renewal-Reward Process, C (t)

1 (Xn,Yn) ≡ (busy cycle, number served) in cycle n

2 N(t) = sup{n :
∑n

i=1 Xi ≤ t}, C (t) =
∑N(t)

i=1 Yi

3 Asymptotic variance rates of C (t) and D(t) are equal

4 Known:
– Asymptotic variance rate of C (t) is 1

E[X ] Var
(
Y − E[Y ]

E[X ]X
)

– Systems of equations for
1’st, 2’nd and cross moments of X and Y

X1

X2

X3

Y1

Y2

Y3

DHtL
CHtL

t
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Back to the M/M/1/K Queue

Here πi is truncated geometric distribution when λ 6= µ and a
uniform distribution when λ = µ

Using D = 1− 2 πJ
1−πJ

∑J
i=0 Pi

(
1− πJ

Pi
πi

)
:

D =

{
1 + oK (1), λ 6= µ,
2
3 + oK (1), λ = µ.

0.0 0.5 1.0 1.5 2.0
Λ

2�3

1

Λ
*, V

M�M�1�K=10

0.0 0.5 1.0 1.5 2.0
Λ

2�3

1

Λ
*, V

M�M�1�K=40

0.0 0.5 1.0 1.5 2.0
Λ

2�3

1

Λ
*, V

M�M�1�K=100

In fact, for any λ, µ, we have an explicit expression for D (alt. V , λ∗)
and even for b in,

Var
(
D(t)

)
= V t + b + o(1)
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Multi-Server Systems in the Halfin-Whitt (QED) Regime
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Quality and Efficiency Driven (QED) Scaling Regime

A sequence of systems

Consider a sequence of M/M/s/K queues with increasing
s = 1, 2, ... and with ρs := λ

sµ and Ks such that,

(1− ρs)
√
s → β ∈ (−∞,∞)

Ks√
s
→ η ∈ (0,∞)

So for large s:

ρs ≈ 1− β/
√
s

Ks ≈ η
√
s

Halfin, Whitt, 1981, Garnett, Mandelbaum, Reiman 2002, Borst, Mandelbaum,

Reiman, 2004, Whitt, 2004, Pang, Talreja, Whitt, 2007, Janssen, van Leeuwaarden,

Zwart, 2011, Kaspi, Ramanan 2011...
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Favorable QED Properties

Probability of delay converges to a value ∈ (0, 1)

Mean waiting times are typically O(s−1/2)

Large queue lengths almost never occur

Quick mixing times

In applications: Call-centers (etc...) describes behavior well
and allows for asymptotic approximate optimization of staffing
etc...

How about BRAVO?

14



M/M/s/b
√
sc

0.6 0.8 1.0 1.2 1.4 r

0.2

0.4

0.6

0.8

1.0
Dp

s=9

s=100

s=900
s=104

D0,1
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M/M/s/K QED BRAVO

Theorem: Daryl Daley, Johan van Leeuwaarden, Y.N. 2013

Consider QED scaling with β 6= 0:

Dβ,η := lim
s,K→∞

lim
t→∞

Var
(
D(t)

)
E
(
D(t)

) ,
Dβ,η = 1− 2β2e−βηh2

φ(β)

∫ ∞
−β

(
1− βe−βηhΦ(−u)

φ(u)

)
Φ(−u) du

+ 2e−βηh(1 + e−βηh)
(

1− βη − e−βη + (1− 2βηe−βη − e−2βη)h
)

where

h = lim
s→∞

P
(
Qs ≥ s)

1− e−βη
=

1

1− e−βη + βΦ(β)
φ(β)

16



BRAVO Viewed Through the QED Lens

-4 -2 0 2 4
Β

0.6

0.7

0.8

0.9

1.0

DΒ,Η

Η=0.232

Η=1

Η=2
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M/M/s/K QED BRAVO with ρ ≡ 1 (β = 0)

Theorem: Daryl Daley, Johan van Leeuwaarden, Y.N. 2013

Assume ρ ≡ 1 and Ks√
s
→ η ∈ (0,∞). Then

D0,η := lim
s,K→∞

lim
t→∞

Var
(
D(t)

)
E
(
D(t)

) ,
D0,η =

2

3
−
(
6− 3π

2

)
η − 1

2π
√

π
2 + 3

√
2π(1− log 2)

3
(
η +

√
π
2

)3
.
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M/M/s/bη
√
sc s →∞ at ρ ≡ 1 (β = 0)

0 2 4 6 8 10
Η

0.61

0.62

0.63

0.64

0.65

0.66

0.67
D
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Idea of BRAVO QED Derivations

Use

D = 1− 2
πJ

1− πJ

J∑
i=0

Pi

(
1− πJ

Pi

πi

)
.

Using QED scaling:

(1− ρs)
√
s → β,

Ks√
s
→ η,

evaluate the limit,

lim
s,K→∞

π
(s,K)
J

1− π(s,K)
J

J∑
i=0

P
(s,K)
i

(
1− π(s,K)

J

P
(s,K)
i

π
(s,K)
i

)
.
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Beyond Finite Birth-Death Queues
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M/M/1 Queue

When K =∞, the birth-death D formula, generally does not hold.
In this case,

D =

{
1, λ 6= µ,

?, λ = µ.

A guess is 2
3 , since for K <∞, D = 2

3 + oK (1) . . .

Theorem:
Ahmad Al-Hanbali, Michel Mandjes, Y. N., Ward Whitt, 2011

For the M/M/1 queue with λ = µ and arbitrary initial conditions
of Q(0) (with finite second moments),

D = 2
(

1− 2

π

)
≈ 0.727.

Proof based on analysis of classic Laplace transform of the
generating function of D(·)
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M/M/1 Queue

Var
(
D(t)

)
= horrible expression involving integrals of Bessel functions

From it:

Var
(
D(t)

)
=


λt − ρ

(1−ρ)2 + o(1), if λ < µ,

2(1− 2
π )λt −

√
λ
π t

1/2 + π−2
4π + o(1), if λ = µ,

µt − ρ
(1−ρ)2 + o(1), if λ > µ,

24



The Stable M/G/1 Queue

Theorem: Sophie Hautphenne, Yoav Kerner, Y. N., Peter Taylor, 2013

Consider the stable M/G/1 queue with finite third service moment,
parameterized by (arrival rate, load, scv, skewness)= (λ, ρ, c2, γ).

Stationary version:

Var
(
D(t)

)
= λt + Le

ρ

(1− ρ)2
+ o(1),

Le =
(3c4 − 4γc3 + 6c2 − 1)ρ3 + (4γc3 − 12c2 + 4)ρ2 + (6c2 − 6)ρ

6
.

Starting empty version:

Var
(
D(t)

)
= λt − (1− L0)

ρ

(1− ρ)2
+ o(1),

L0 =
(3c4 − 4γc3 + 6c2 − 1)ρ3 + (4γc3 − 6c2 − 2)ρ2 − (6c2 − 6)ρ

12
.

M/M/1: c2 = 1, γ = 2. Le = 0, L0 = 0.
25



M/M/1 Queue

20 000 40 000 60 000 80 000
t

-100 000

-50 000

0

50 000

VarHDHtLL

-
Ρ

H1 - ΡL2
=-12234.6

Slope = 2H1-
2
Π

L
Ρ = 0.991
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M/M/1 Queue

20 000 40 000 60 000 80 000
t

-100 000

-50 000

0

50 000

VarHDHtLL

-
Ρ

H1 - ΡL2
=-39800.

Slope = 2H1-
2
Π

L
Ρ = 0.995

28



M/M/1 Queue

20 000 40 000 60 000 80 000
t

-100 000
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0

50 000

VarHDHtLL

-
Ρ

H1 - ΡL2
=-110778.

Slope = 2H1-
2
Π

L
Ρ = 0.997
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GI/G/1 Queue

Moving away from the memory-less assumptions,

D =


c2

a , λ < µ,

?, λ = µ,

c2
s , λ > µ.

For M/M/1 it was 2(1− 2
π )...

Theorem:
Ahmad Al-Hanbali, Michel Mandjes, Y.N., Ward Whitt, 2011

For the GI/G/1 queue with λ = µ, arbitrary finite second moment
initial conditions

(
Q(0),V (0),U(0)

)
, finite fourth moments of the

inter-arrival and service times, and P(B > x) ∼ L(x)x−1/2, where
B denotes the busy period and L(·) is a slowly varying function,

D = (c2
a + c2

s )
(

1− 2

π

)
.

Proof using diffusion limit of (D(n·)− λn·)/
√
λn· as n→∞ (Iglehart and Whitt 1971).
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
c2

a , λ < µ,

?, λ = µ,

c2
s , λ > µ.

For M/M/1 it was 2(1− 2
π )...

Theorem:
Ahmad Al-Hanbali, Michel Mandjes, Y.N., Ward Whitt, 2011

For the GI/G/1 queue with λ = µ, arbitrary finite second moment
initial conditions

(
Q(0),V (0),U(0)

)
, finite fourth moments of the

inter-arrival and service times, and P(B > x) ∼ L(x)x−1/2, where
B denotes the busy period and L(·) is a slowly varying function,

D = (c2
a + c2

s )
(

1− 2

π

)
.

Proof using diffusion limit of (D(n·)− λn·)/
√
λn· as n→∞ (Iglehart and Whitt 1971).
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GI/G/1/K Queue

D =


c2

a + oK (1), λ < µ,

?, λ = µ,

c2
s + oK (1), λ > µ.

For M/M/1/K it was 2
3 + oK (1), for GI/G/1 it was

(c2
a + c2

s )(1− 2
π )...

Conjecture (numerically tested): Y.N., 2011

For the GI/G/1/K queue with λ = µ and arbitrary initial
conditions and light-tailed service and inter-arrival times,

D = (c2
a + c2

s )
1

3
+ O

( 1

K

)
.

Numerical verification done by representing the system as
PH/PH/1/K MAPs
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GI/G/1/K Queue

D =


c2

a + oK (1), λ < µ,

?, λ = µ,

c2
s + oK (1), λ > µ.

For M/M/1/K it was 2
3 + oK (1), for GI/G/1 it was

(c2
a + c2

s )(1− 2
π )...

Conjecture (numerically tested): Y.N., 2011

For the GI/G/1/K queue with λ = µ and arbitrary initial
conditions and light-tailed service and inter-arrival times,

D = (c2
a + c2

s )
1

3
+ O

( 1

K

)
.

Numerical verification done by representing the system as
PH/PH/1/K MAPs
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Wrap Up
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Summary

Known BRAVO constants:

Single server finite buffer: 2/3
(for GI/G replace 2 by c2

a + c2
s )

Single server infinite buffer 2(1− 2/π):
(for GI/G replace 2 by c2

a + c2
s )

Memoryless many servers finite buffer: D0,η ∈ [0.6, 2/3]

Not yet known:

Formulas for asymptotic variance when ρ 6= 1 in other models

Memoryless many servers infinite buffer (M/M/s)

Many servers without memoryless assumptions (GI/G/s)

Systems with reneging or other packet loss mechanisms
(e.g. M/M/s/K+M in QED – work in progress)

Other questions: How can BRAVO be harnessed in practice?
Why does BRAVO occur?
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