e APARI IR

T L e

bl L b S i

e e T o PP

Exploring juliﬁ :
A Statistical Perspective

Yoni Nazarathg,
The University of Queensland,
joint work with Hagclen Klok.

A

i 1 S g, :

Ak

B Sl i gl il

Analysis of Engineering & Scientific Data (STAT2201)

Course lev
Undergraduz
Faculty

Science

Exploring Julia: e
A Statistical Primer.

DRAFT

Probability, Statistics and Scientific Computing (CIVL2530)

Current course offerings

-

Hayden Klok, Yoni Nazarathy

) % June 4, 2018

NEWS OPINION BUSINESS REVIEW NATIONAL AFFAIRS SPORT LIFE TECH ARTS TRAVE

TECHNOLOGY

KRISHAN SHARMA
energy sector.

2 Springer

EE103/CME103: Introduction to Matrix Methods

Professors Stephen Boyd and David Tse, Stanford University

This is the website for EE103/CME103, Autumn quarter 2017-18. EE103/CME103 will next be taught in Sprir
Osgood.

= Software
Julia
Julia files

Course level
Unde
FactL
Engin
Techr { 3 Dr Dorival Pedroso
~— & %
. o
, 3 d.pedroso@ug.edu.a
F
THE AUSTRALIAN

Roames is game to boost STEM interest

The Australian 12:00AM March 8, 2016 @ @ save

Queensland geospatial company, Roames, is looking to tap into gamification as a
possible solution to the STEM skills shortage as it looks to ramp up operations in the

The Brisbane-based company began life as a business unit of state government-

=

BUSINESS REVIE'

julia

FOR DATA SCIENCE

pA(elKN@WR

Julia for
Data Science

-
G()ugle

_— ' jThe Go Programming Language

Swift is a general-purpose, multi-pal
language developed by Apple Ing

it Y

S S

A s AT

T TR o

B e

ate

B N S S e P e I RIS

A book about “basic statistics”
with Julia

M lntroducing Julia
(2) Basic Probabilitg

) Probabilit9 Distributions

(4) Processi ng and

Summarising Pata

(5) Statistical Inference Ideas

(6)Confidence Intervals
() ngothesis Testing

8) Regression Models

(9) Simulation of
Dgnamic Models

(10) A View Forward

e
)
)
o
n
=
D)
g
o
<
)
¢
)
A

Python, Matlab,
R, Mathematica

Run speed

x Julia

C/C++, Go,
Fortran

History |edit]

Work on Julia was started in 2009 by Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and Alan Edelman who set out to
create a language that was both high-level and fast. On 14 February 2012 the team launched!?3! a website with a blog
post explaining the language's mission. Since then, the Julia community has grown, with over 1,800,000 downloads as
of January 2018.124] |t has attracted some high-profile clients, from investment manager BlackRock, which uses it for
time-series analytics, to the British insurer Aviva, which uses it for risk calculations. In 2015, the Federal Reserve Bank
of New York used Julia to make models of the US economy, noting that the language made model estimation "about 10
times faster" than before (previously used MATLAB). Julia's co-founders established Julia Computing in 2015 to provide
paid support, training, and consulting services to clients, though Julia itself remains free to use. At the 2017 JuliaCon[2°!
conference, Jeff Reiger, Keno Fischer and others announced![28! that the Celeste project/2”! used Julia to achieve "peak
performance of 1.54 petaFLOPS using 1.3 million threads"[28! on 9300 Knights Landing (KNL) nodes of the Cori
supercomputer (the 5th fastest in the world at the time; 8th fastest as of November 2017). Julia thus joins C, C++, and
Fortran as high-level languages in which petaFLOPS computations have been written.

The JuliaCon!2®l academic conference for Julia users and developers has been held annually since 2014.

JaaLang i

<> Code @® Issues 2,057 '] Pull requests 516 lili Insights

0.7 S

A Past due by 6 months 99% complete

An intermediate release feature-equivalent to 1.0 but with deprecations.
® 20pen v 502 Closed

I WIP: RFC: Create type SecureString X strings |
#24738 opened on 24 Nov 2017 by omus

bump LLVM BB version and use assertion builds on CI X [&
#27182 opened 15 days ago by vchuravy « Approved

R b i <

Sl s & o I et ke

i P agiai .

Chapter I
lntrocluciﬂg Julia

Listing 1.1: Hello world and perfect squares

O o0 =W~

I I I i el e e B R O S
N = OO Ok WN —~O

println("There is more than one way to say hello:")

#This is an array consisting of three strings
helloArray = ["Hello", "G’day","Shalom"]

for i in 1:3
println("\t", helloArray[i], " World!")
end

println("\nThese squares are just perfect:")

#This construct is called a ‘comprehension’
squares = [1"2 for i in 0:10]

#You can loop on elements of arrays without having to use indexing
for s in squares

print (" ",s)
end

#The last line of every code snippet is also evaluated as output (in addition to
any figures and printing output generated previously).
sqrt (squares)

There is more than one way to say hello:
Hello World!
G’day World!
Shalom World!

These squares are just perfect:

0 1 4 9 16 25 36 49 64 81 100
ll-element Array{Float64,1}:

0.0

O W o Jo b WM
[eleNeoNeNeNoNoNoNe]

[y

S Al TP - r—a — < ~3 g

When exploring statistics and other forms of numerical computation, it is often useful to use a compre-
hension as a basic programming construct. As explained above, a typical form of a comprehension is,

[f(x) for x in aaa]

Here aaa is some array (or more generally, a collection of objects). Such a comprehension creates an array
of elements, where each element x of aaa is transformed via f (x). Comprehensions are ubiquitous in the
code examples we present in this book. We often use them due to their expressiveness and simplicity. We
now present a simple additional example:

Listing 1.2: Using a comprehension

arrayl [(2n+1) "2 for n in 1:5]

array2 = [sqrt (i) for i in arrayl]

println(typeof(1:5), " ", typeof (arrayl), " ", typeof (array2))
1:5, arrayl, array?2

UnitRange{Int64} Array{Int64,1} Array{Floaté64,1}
(1:5, [9, 25, 49, 81, 121], [3.0, 5.0, 7.0, 9.0, 11.0])

Line 1 creates an array, named arrayl, containing the elements of the mathematical set,
{@n+1)* : ne{l,...,5}},

in order. However, while mathematical sets are not ordered, arrays generated by Julia comprehensions
are ordered. Observe also the literal 2 in the multiplication 2n, without explicit use of the » symbol.

In line 2, array?2 is created.

In line 3, we print the typeof () three types of expressions. The type of 1:5 (used to create arrayl)
is a UnitRange of Int64. It is a special type of object which encodes “the integers 1,...,5” without
explicitly allocating memory for this. Then the type of both arrayl and array2 is Array, with
Int64 and Float64 as element type, respectively.

Line 4 creates a tuple by using the comma between arrayl and array2. As it is the last line of the
of the code it is printed as output. Note in the output that the values of the first array are printed as
integers (no decimal point) and the values in the second array are printed as floating point numbers
(hence the decimal point).

Julia has a powerful type system which allows for user defined types. One can check the type of a variable
using the typeof () function, while the functions subtype () and supertype () return the subtype and
supertype of a particular type respectively. As an example Bool is a subtype of Integer, while Real is
the supertype of Integer. This is illustrated in figure 1.4, which shows the type hierachy of numbers in Julia.

Number

ST
AN

AbstractFloat Integer Irrational

N N

BigFloat Float64 Float32 Float16 Biglnt Bool Signed Unsigned

Int128 Int64 Int32 Int16 Int8 Ulnt128 Ulnt64

Figure 1.4: Type Hierarchy for Julia Numbers.

s T e

1.2. SETUP AND INTERFACE

R PRI TN CRED S TS E S AR SRS e AL St

=7

/3 yoninazarathy — julia — 80x24

Last login: Sat Apr 7 19:39:19 on ttyseel
exec '/private/var/folders/7_/51ybj_vn35j7jgd3t0_nlglm000Ogn/T/AppTranslocation/
RF6F2D5F-A376-4FF6-8566-9FD71BCDD807/d/Julia-0.6.app/Contents/Resources/julia/bi

/julia’

onis-MacBook-Pro:~ yoninazarathy$ exec '/private/var/folders/7_/51ybj_vn35j7jgd
t0_nlglmo00Ogn/T/AppTranslocation/2F6F2D5F-A376-4FF6-8566-9FD71BCDD807/d/Julia-
P.6.app/Contents/Resources/julia/bin/julia’

A fresh approach to technical computing
Documentation: https://docs.julialang.org
Type "?help" for help.

Version 0.6.2 (2017-12-13 18:08 UTC)
Official http://julialang.org/ release
x86_64-apple-darwinl4.5.0

JuliaBox

Figure 1.6: The download page for the Julia Kernel a

An alternative to using the REPL is to use JuliaBoz, an on-line (currently free) product supplied by Julia
computing. At The University of Queensland, we have been using JuliaBox for a large engineering statistics

course serving 500 students per semester. It has worked reliability and efficiently. JuliaBox uses Jupyter

notebooks - this is a an easy to use web-interface that often serves other languages such as Python and R.
See Figure 1.7. Juliabox is available at https://juliabox.com/. To use it, one must first sign in using either

a LinkedIn, GitHub, or Google account.

® ® [uuisBox x JuliaBox File 3

C @ Secure https://www.juliabox.com

_ Jupyter JuliaBox File 3 Last Ceckpoint 4 hows

B 4+ % @B 4 ¢ MR B C » Code
plot(data_al,data_a2,".",color=
plot(data_bl,data_b2,".",color=
plot(data_cl,data_c2,".",color=

end

i : ipynt SR .
ago (autosaved) &
Not Trusted 2 O

a

"blue” ,ms=0.2);
"red",ms=0.2);

green” ,ms=0.2);

: doPlot (gemeric function with 1 method)

In [2]: using Distributions,PyPlot

doPlot()

50

O R o Tt et S 2

T . Ay IO T Vo

Listing 1.7: Steady state of a Markov chain in several ways

Transition probability matrix
= [0.5 0.4 0.1;
0.3 0.2 0.5;
0.5 0.8 0.2]

First way
P"100
piProbl = (P~100) [1, :]

1
2
3
4
5
6
7
8
9

Second way

A = vcat ((P’ - eye(3))[1:2,:],0ones(3)")
= [0 0 1]

piProb2 = A\b

Third way

eigVecs = eigvecs (P’)

highestVec = eigVecs|[:, findmax (abs (eigvals(P))) [2]]
piProb3 = Array{Float64} (highestVec) /norm(highestVec, 1) ;

Fourth way
using StatsBase
numInState = zeros(3)
state =1
= 1076
for t in 1:N
numInState[state] += 1
state = sample(1:3,weights(P[state, :]))
end
piProb4 = numInState/N

[piProbl piProb2 piProb3 piProb4]

0.2
Figure 1.10: Three state Markov chain of the weather.
Notice the sum of the arrows leaving each state is 1.

{
"words" : ["heaven", "hell" , "man"’ "woman", "bOy", "girl" , "king", "queen",
"prince", "sir","love", "hate", "knife", "english", "england", "god"],
"numToShow": 5

using HTTP, JSON

data = HTTP.request ("GET", "https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/
files/t8.shakespeare.txt");

shakespeare = convert (String, data.body)
shakespeareWords = split (shakespeare)

jsonWords = HTTP.request ("GET", "https://raw.githubusercontent.com/h-Klok/

StatsWithJuliaBook/master/1_chapter/jsonCode. json");
parsedJsonDict = JSON.parse(convert (String, jsonWords.body))

keywords = Array{String} (parsedJdsonDict ["words"])

numpberToShow = parsedJsonDict ["numToShow"]

wordCount = Dict ([(x,count (w —> lowercase (w) == lowercase (x), shakespeareWords))
for x in keywords])

sortedWordCount = sort (collect (wordCount) ,by=last, rev=true)
sortedWordCount [1:numberToShow]

5-element Array{Pair{String,Int64},1}:
"king"=>1698

"love"=>1279

"man"=>1033

"sir"=>721

"god"=>555

Listing 1.11: Histogram of hailstone sequence lengths

using PyPlot

—

function haillength(n::Int)
x =0
while n !
if

© 00~ O U = Wi

3n +1

— =
- O

x +=1
end
return x

end

— =
W N

—
=

—
Sy Ot

lengths = [haillength(n) for n in 2:1077]

—_ =
oo

plt[:hist] (lengths, 1000, normed="true")
xlabel ("Length")
ylabel ("Frequency")

—_
Ne]

o
o
=
o

DO
=

o

o

<]

®
1

Frequency

T
0 100 200 300 400 500 600 700
Length

Figure 1.12: Histogram of hailstone sequence lengths.

using PyPlot, PyCall
Cpyimport matplotlib.patches as patch

srand (1)

= 10"5
data = [[rand(),rand()] for _ in 1:N]
indata = filter ((x)-> (norm(x) <= 1), data)
outdata = filter ((x)-> (norm(x) > 1), data)
piApprox = 4xlength(indata) /N
println("Pi Estimate: ", piApprox)

fig = figure("Primitives", figsize=(5,5))

plot (first. (indata), last. (indata),".",ms=0.2);
plot (first. (outdata), last. (outdata),".",ms=0.2);
ax = fig[:add_subplot] (1,1,1)

ax[:set_aspect] ("equal")

rl = patch.Wedge([0,0],1,0, 90, fc="none",ec="red")
ax[:add_artist] (rl)

Pi Estimate: 3.14348

Figure 1.15: Estimating 7 via Monte-Carlo.

ARl i b S I i Y L

- FURENS S T e VS

e e agi

Chapter 2:
Basic Probabilitg

Lattice Paths

We now consider a 5 x 5 square grid on which an ant walks from the south west corner to the north east
corner, taking either a step north or a step east at each grid intersection. From figure 2.3, it is clear there
are many possible paths the ant could take. Let us set the sample space to be,

Q2 = All possible lattice paths,

where the term Lattice Path corresponds to a trajectory of the ant going from the south west point, (0,0)
to the north east point, (n,n). Since € is finite, we can consider the number of elements in it, denoted |€2|.
One question we may ask is what is this number? The answer for a general n x n grid is,

n-(2)- 3

For example if n = 5 then Q| = 252. The use of the binomial coefficient here is because out of the the 2n
steps that the ant needs to take (going from (0,0) to (n,n)), n steps need to be north and n need to be east.

Within this context of lattice paths there are a variety of questions. One common question has to do

with the event (or set): S

T 1
—— Upper lattice path

A = Lattice paths that stay above the diagonal the whole way from ~— Non-upper lattice path.

The question of the size of A, namely |A|, has interested many people in combinat

II—(Z:‘—n)

Cn+1

Model I - As in the previous examples, assume a symmetric probability space, i.e. each lattice path is
equally likely. For this model, obtaining probabilities is a question of counting and the result just
follows the combinatorial expressions above:

Pr(A) % = HLH (2.2)

Model II - We assume that at each grid intersection where the ant has an option of where to go (‘east’
or ‘north’), it chooses either east or north, both with equal probabiltiy 1/2. In the case where there is
no option for the ant (i.e. it hits the east or north border) then it simply continues along the border
to the final destination (n,n). For this model, it is as simple to obtain an expression for P(A). One
way to do it is by considering a recurrence relation for the probabilities (sometimes known as first step
analysis). We omit the details and present the result:

Figure 2.3: Example of two different Catalan Paths.

2.5. BAYES’ RULE

Listing 2.13: The Monty Hall problem

Door 1 Door 3

Figure 2.5: If the prize is behind Door 2 and Door 1 is chosen, the GSH must reveal
door 3.

function montyHall (switchPolicy)
prize = rand(1l:3)
choice = rand(1:3)

if prize == choice
revealed = rand(setdiff(1:3,choice))
else

revealed = rand(setdiff(1:3, [prize,choice]))

end

if switchPolicy

choice = setdiff(1:3, [revealed,choice]) [1]

end

return choice == prize
end
N = 1076

in 1:N])/N,
in 1:N])/N

sum ([montyHall (true) for _
sum ([montyHall (false) for

P(A; | Ba) =

P(A; | B2) =

s e —— 2L

1 1
P(By | A)P(4) 3 %3 1 :
= = - Policy I
P(B,) 1 3 (olicy)
2
1 x 1
P(By | A3)P(As3) 3 2 .
— = . Policy 11
B (By) T 3 (Policy II)
2

(0.666778, 0.33387)

Chapter A
Probabilitg Distributions

ey
o
1
=
o
1
(=
o
1

o
oo}
1
o
oo}
1
o
o
1

Probability
<)
o
Probability
o
o
Probability
o
o

o
>
1
o
>
1
o
>
1

0.2 1 0.2 A

Al T T T 0.0 Al Al Al T T 0-0 T T
0.0 0.5 1.0 1.5 2.0 -1.0 -05 0.0 0.5 1.0 -1.0 -05

X X

Figure 3.2: Three different examples of probability distributions.

Listing 3.3: Expectation via numerical integration

—

using QuadGK

sup =
f1(x)
£2 (x)

1,1)
3/4x%(1-x"2)
Xx <0 2?2 x+41 : 1-x

(_

expect (f, support) = quadgk((x) -> x*f(x),support[l],support(2]) [1]

O 00~ U =W

expect (f1, sup) , expect (£2, sup)

(0.0, -2.0816681711721685e-17)

Listing 3.11: Using rand with Distributions

using Distributions, StatsBase

distl = TriangularDist (0,10,5)
dist2 = DiscreteUniform(1l,5)
theorMeanl, theorMean2 = mean(distl), mean (dist2)

datal = rand(distl, N)
data2 = rand(dist2,N)
estMeanl, estMean2 = mean(datal), mean (data2)

println ("Symmetric Triangular Distiribution on [0,10] has mean $theorMeanl
(estimated: SestMeanl)")

println ("Discrete Uniform Distiribution on {1,2,3,4,5} has mean S$theorMean2
(estimated: SestMean2)")

Symmetric Triangular Distiribution on [0,10] has mean 5.0 (estimated: 4.998652531225146)
Discrete Uniform Distiribution on {1,2,3,4,5} has mean 3.0 (estimated: 2.998199)

it e s A — o

Listing 3.12: Inverse transform sampling

using Distributions, PyPlot

triangDist = TriangularDist (0,2,1)
xGrid = 0:0.1:2
= 1076
inverseSampledData = quantile. (triangDist, rand(N))

plt[:hist] (inverseSampledData, 50, normed = true,ec="k",
label="Inverse transform\n sampled data")

plot (xGrid, pdf (triangDist, xGrid),"r", label="PDF")

legend (loc="upper right")

© 00O Ot kW =~

e
- O

— PDF

Inverse transform
= sampled data

0.00 025 050 0.75 1.00 125 150 1.75 2.00

Figure 3.8: Histogram of data generated using inverse transform sampling.

using Distributions

dists = [
Uniform(10,20),
Exponential (3.5),
Gamma (0.5, 7),
Beta(10,0.5),
Weibull (10,0.5),
Normal (20, 3.5),
Rayleigh(2.4),
Cauchy (20,3.5)1;

println("Distribution \t\t\t\t\t\t Parameters \t Support")
reshape ([dists ; params. (dists) ;
((d)=>(minimum(d) ,maximum(d))) . (dists) 1,
length(dists), 3)

Distribution Parameters Support
8 3 Array{Any,2}:
Distributions.Uniform{Floaté64} (a=10.0, b=20.0) (10.0, 20.0) (10.0, 20.0)
Distributions.Exponential{Float64}(=3.5) (3.5,) (0.0, Inf)
Distributions.Gamma{Float64d} (=0.5, =7.0) (0.5, 7.0) (0.0, Inf)
Distributions.Beta{Float64} (=10.0, =0.5) (10.0, 0.5) (0.0, 1.0)
Distributions.Weibull{Float64}(=10.0, =0.5) (10.0, 0.5) (0.0, Inf)
Distributions.Normal{Float64}(=20.0, =3.5) (20.0, 3.5) (-Inf, Inf)
Distributions.Rayleigh{Float64} (=2.4) (2.4,) (0.0, Inf)
Distributions.Cauchy{Float64} (=20.0, =3.5) (20.0, 3.5) (-Inf, Inf)

using Distributions, Calculus ,PyPlot

xGrid = -5:0.01:5
sig = 1.5
normalDensity (z) = pdf (Normal (0,sig), z)

d0 = normalDensity. (xGrid)
dl derivative. (normalDensity, xGrid)
d2 second_derivative. (normalDensity, xGrid)

ax = gcaf()

plot (xGrid, d0, "b", label="f (x)")
plot (xGrid,dl,"r", label="f" (x)")
plot (xGrid, d2, "g", label="f"" (x)")
plot ([-5,5],[0,0],"k", 1lw=0.5)
xlabel ("x")

x1lim (=5,5)

legend (loc="upper right")

Listing 3.28: Alternative representations of Rayleigh random variables

using Distributions

N = 1076
sig = 1.7

datal sqrt. (= (2« sig”2)*log. (rand(N)))

distG = Normal (0,sig)
data2 sqrt. (rand (distG,N)."2 + rand(distG,N)."2)

distR = Rayleigh (sig)
data3 rand (distR, N)

mean. ([datal, data2, data3])

3-element Array{Float64,1}:
2.12994
2.12935
2.13188

s fory >0,

Faly) = B(VX <) = P(X <32) = Fx(s?) = 1 - exp (- 5.

g, we get the density,

Fal) = Yexp (- 13).

using Distributions, PyPlot
srand (1)

X () = sqgrt(-2xlog(rand())) *xcos (2xpixrand())
xGrid = -4:0.01:4

plt[:hist] ([X() for in 1:10°6], 50,

normed = true,ec="k",label="MC estimate")
plot (xGrid, pdf (Normal () , xGrid), "-r", label="PDF")
x1lim(-4,4)
xlabel (L"S$xS")
ylabel (L"f(x)")
legend(loc="upper right")

—— PDF
B MC estimate

r<-nj2,
Fx(z) =P(X < z) =P(tan(d) < z) = P(# < atan(z)) = Fy(atan(z)) = Latan(z) =€ [-7/2,7/2],
1 T/2 < x.

The density is the obtained by taking the derivative, which evaluates to,

1
(1 + 22)

fz) =

Listing 3.30: The law of large numbers breaks down with very heavy tails

using PyPlot

srand (4)
= 10"6

data = tan(rand(n)x*pi - pi/2)
averages = accumulate (+,data) ./collect (1:n)

plot (1:n,averages, "b")

plot ([1,n], [0,0],"k",1w=0.5)

xscale ("log")

x1im (0, n)

xlabel (L"S$nS")

ylabel ("Rolling \naverage",rotation=0, labelpad=20)

Cumulative moving average

using Distributions,PyPlot

SigY = [6 4 ; 4 9]

muY = [15 ; 20]

bruteCholFact (S) = Array(cholfact (S)[:L])
A = bruteCholFact (SigY)

N = 10°5

dist_a = Normal ()

rvX_a() = [rand(dist_a) ; rand(dist_a)]
rvY_a() = AxrvX_a() + muY

data_a = [rvY_a() for _ in 1:N]

data_al = first. (data_a)

data_a2 = last. (data_a)

dist_b = Uniform(-sqrt(3),sqrt(3))
rvX_b () = [rand(dist_b) ; rand(dist_b)]
rvY_b () = AxrvX_b() + muY

data_b = [rvY_b() for _ in 1:N]

data_bl = first. (data_b)

data_b2 = last. (data_b)

dist_c = Exponential ()

rvX_c() = [rand(dist_c) - 1; rand(dist_c) - 1]
rvY_c() = AxrvX_c() + muY

data_c = [rvY_c() for _ in 1:N]

data_cl = first. (data_c)

data_c2 = last. (data_c)

plot (data_al,data_a2,".",color="blue",ms=0.2);
plot (data_bl,data_b2,".",color="red",ms=0.2);
plot (data_cl,data_c2,".",color="green",ms=0.2);

Yy = AA.
as the desired py and Yy

find a matrix A that satisfies (3.19). For this the Cholesky de
assume we wish to generate a random vector Y with,

15 9 4
= and Yiv =
Y =19 4 16

f(x) = (2m) 72 X%,

The example below illustrates numerically that this is a valid pdf for n = 2 via numerical integration.

Listing 3.33: Multidimensional integration

using HCubature

M= 4

f(x) = (2+xpi) " (-length(x)) * exp(-(1/2)xx’'x)
hcubature (£, [-M,M], [-M, M])

B e T R ¥ % T e

M

Chapter 4

Processing and 5ummari5ing sk

o e Sy T e AT et ey a9y 75N e W AT BN L T Y AN NN o P gt Y

Listing 4.1: Creating a DataFrame

I using DataFrames
2

2 purchaseData = readtable ("purchaseData.csv");

R R R S S R S T A B A s P S D O R N D e G

Listing 4.2: Overview of a DataFrame

include ("dataframeCreation. j1")
println (head (purchaseData))
println (showcols (purchaseData))

14/09/2008
REBECCA 11/03/2008 : missing
ASHELY 5/08/2008 : E
KHADIJAH 2/09/2008 : missing
TANJA 1/12/2008 : 19859
JUDIE 17/05/2008 : 8033

Union{Missing, String} MARYAN...RIVA
Union{Missing, String} 14/09/2008...30/12/2008
Union{Missing, String} 12:21 AM...5:48 AM
Union{Missing, String} E...B

Union{Inté64, Missing} 8403...15432

Listing 4.3: Referencing data in a DataFrame

include ("dataframeCreation. j1")

println (purchaseData[13:17, [:Name]])

println (purchaseDatal[:Name] [13:17])
purchaseData[ismissing. (purchaseDatal[:Time]), :]

Listing 4.11: Kernel density estimation

1
2
3
4
5
6
7
8
9

using Distributions, KernelDensity, PyPlot
srand (1)

mul, sigmal = 10, 5
mu2, sigma2 = 40, 12
z1l = Normal (mul,sigmal)

z2

Normal (mu2, sigma2)
p = 0.3

function mixRv ()
(rand() <= p) ? rand(zl) : rand(z2)
end

function actualPDF (x)
p*pdf (z1,x) + (1-p)+pdf(z2,x)
end

numSamples = 100
data = [mixRv() for _ in 1l:numSamples]

xGrid = -20:0.1:80

pdfActual = actualPDF. (xGrid)
kdeDist = kde(data)

pdfKDE = pdf (kdeDist,xGrid)

plt[:hist] (data,20, histtype = "step", normed=true,
plot (xGrid, pdfActual,"-b", label="Underlying PDF")
plot (xGrid, pdfKDE, "-r", label="KDE PDF")

x1lim(-20,80)
ylim (0, 0.035)

xlabel (L"X")

legend (loc="upper right")

label="Sample data")

[— Underlying PDF
—— KDE PDF
[1 Sample data

using Distributions, StatsBase,PyPlot

srand (1)
underlyingDist = Normal (20,5)
data = rand(underlyingDist, 15)

empiricalDF = ecdf (data)

xGrid = 0:0.1:40

plot (xGrid, cdf (underlyingDist, xGrid), "-r", label="Underlying CDE")
plot (xGrid, empiricalDF (xGrid) , label="ECDF")

x1im (0, 40)

ylim (0, 1)

xlabel (L"x")

legend (loc="upper left")

—— Underlying CDF
—— ECDF

Al L b S I g

Chapter 5.

Statistical Inference Ideas

Listing 5.3: Are the sample mean and variance independent?

using Distributions,PyPlot

function statPair (dist,n)
sample = rand(dist,n)
[mean (sample) ,var (sample)]
end

stdUni = Uniform(-sqrt (3),sqrt(3))

n, N =2, 10°5

dataUni = [statPair(stdUni,n) for _ in 1:N]

dataUniInd = [[mean (rand(stdUni,n)),var(rand(stdUni,n))] for _ in 1:N]
dataNorm = [statPair (Normal(),n) for _ in 1:N]

dataNormInd = [[mean (rand(Normal(),n)),var(rand(Normal(),n))] for _ in 1:N]

figure("test", figsize=(10,5))
subplot (121)

plot (first. (dataUni),last. (dataUni),".b",ms="0.1", label="Same group")

plot (first. (dataUniInd), last. (dataUniInd),".r",ms="0.1", label="Separate group")
xlabel (L"$\overline{X}s$")

ylabel (L"$5728")

legend (markerscale=60, loc="upper right")
ylim(0,10)

Same group « Same group
Separate group « Separate group

subplot (122)

plot (first. (dataNorm), last. (dataNorm), ".b", ms=
plot (first. (dataNormInd),last. (dataNormInd),".
xlabel (L"\overline{X}")

ylabel (L"$S"2S")

legend (markerscale=60, loc="upper right")
ylim(0,10)

savefig("sampleStatInd.png")

-15 -1.0 -0.5 00 05
X

Figure 5.4: Pairs of X and S? for standard uniform (left) and standard normal
(right). Blue points indicate the statistics were calculated from the same sample, red
indicates the statistics were calcualted from separate sample groups.

Listing 5.8: Point estimation via method of moments using a numerical solver

using Distributions, NLsolve
srand (1)

a, b, c =3, 5, 4 —l(a+b+c),

dist = TriangularDist (a,b,c) 3
= 2000 R 1 9 9 9

samples = rand(dist,n) = E(a +b° + ¢© + ab+ ac + be),

. R 1
m_k (k,data) = 1/nxsum(data.’k) = —(a® + b* + ¢ + a®b + a’c + b%a + b*c + Pa + *b + abe).
mHats = [m_k (i,samples) for i in 1:3] 10

function equations(F, x)

F[1] = 1/3%(x[1] + x[2] + x[3]) - mHats[1]

F[2] 1/6%(x[1]7°2 + x[2]72 + x[3]72 + x[1]*x[2] + x[1]*xx[3] +
x[2]%x[3]) - mHats[2]

F[3] 1/10%x(x[1]°3 + x[2]7°3 + x[3]°3 + x[1]"2%x[2] + x[1] "2%x[3] +
x[2] "2xx[1] + x[2]72xx[3] + x[3]"2xx[1] + x[3]"2%x[2] +
x[1]*x[2]*x[3]) - mHats[3]

end

nlOutput = nlsolve(equations, [0.1; 0.1; 0.1])
println("Found estimates for (a,b,c) = ", nlOutput.zero)
println(nlOutput)

Found estimates for (a,b,c) = [3.98312, 3.01452, 5.00224)]
Results of Nonlinear Solver Algorithm
* Algorithm: Trust-region with dogleg and autoscaling
Starting Point: [0.1, 0.1, 0.1]
Zero: [3.98312, 3.01452, 5.00224)
Inf-norm of residuals: 0.000000
Iterations: 17
Convergence: true
* |x = x"| < 0.0e+00: false
* | f(x)| < 1.0e-08: true
Function Calls (f): 18
* Jacobian Calls (df/dx): 14

eq(alpha, xb, xbl) = log. (alpha) - digamma. (alpha) - log(xb) + xbl

actualAlpha, actuallambda = 2, 3
gammaDist = Gamma (actualAlpha,l/actualLambda)

function mle (sample)
alpha = fzero((a)->eq(a,mean(sample),mean (log(sample))), 1)
lambda = alpha/mean (sample)
return [alpha, lambda]

=104

mlesl0 = [mle(rand(gammaDist),10)) for _ in 1:N]

in 1:N]
in 1:N]

mlesl00 = [mle(rand(gammaDist,100)) for _
mlesl000 = [mle (rand(gammaDist),1000)) for _
plot (first. (mlesl0),last. (mlesl0),"b.",ms="0.3", label="n = 10")

plot (first. (mlesl100), last. (mlesl00),"r.",ms="0.3",label="n = 100")
plot (first. (mles1000), last. (mles1000),"g.",ms="0.3",label="n = 1000")
xlabel (L"αs")

ylabel (L"λ")

x1im (0, 8)

ylim (0, 8)

legend (markerscale=20, loc="upper right")

Listing 5.13: A simple CI in practice

using Distributions,
srand (2)

PyPlot

mu=5.57
alpha =
L (obs)
U (obs)

0.05
= obs - (l-sqgrt (alpha))
= obs + (l-sqgrt (alpha))

tDist =
= 100

TriangularDist (mu-1, mu+l,mu)

for k in 1:N
observation = rand(tDist)
LL,UU = L (observation), U(observation)
plt[:bar] (k,bottom = LL,UU-LL,color=
end

plot ([0,N+1], [mu,mu],c="k",label="Parameter value")
legend (loc="upper right")

ylabel ("Value")

xticks ([])

x1im (0, N+1)

ylim(3,8)

(LL < mu && mu < UU) ? "b"

"r")

Figure 5.11:

—— Parameter value

3

100 confidence intervals. The blue confidence interval bars contain our
unknown parameter, while the red ones do not.

Listing 5.16: Comparing receiver operating curves

using Distributions, StatsBase, PyPlot
mu0, mula, mulb, mulc, std = 15, 16, 18, 20, 2

dist0 = Normal (muO, std)

distla = Normal (mula, std)
distlb = Normal (mulb, std)
distlc = Normal (mulc, std)

tauGrid = 5:0.1:25

falsePositive = ccdf (dist0,tauGrid)
truePositiveA = ccdf (distla, tauGrid)
truePositiveB = ccdf (distlb, tauGrid)
truePositiveC = ccdf (distlc, tauGrid)

figure ("ROC", figsize=(6,6))

subplot (111)

plot([O0,1],([0,1],"--k", label="HO = H1 = 15")

plot (falsePositive, truePositiveA,"b", label=L"Hla: μ_1 =
plot (falsePositive, truePositiveB,"r", label=L"Hlb: μ_1 =
plot (falsePositive, truePositiveC,"g", label=L"Hlc: μ_1 =

PyPlot.legend()
x1im (0, 1)

ylim (0, 1)

xlabel (L"\alpha")
ylabel ("Power")

--- HO=H1=15
—— Hla: u; =16
—— Hlb: pyy; =18
—— Hlc: pu; =20

0.8 1.0

Al L b S I g

e e

IR T e T e T a

Chal:)ter 6:

Confidence Intervals

leviation s, then the probability statement (6.3) no longer holds. However,
Section 5.2) we are able to correct the confidence interval to,

Tt _a/2m-1 N

~is the 1 — a/2 quantile of a t-distribution with n — 1 degrees of freedom.
~ as quantile (TDist (n-1), 1l-alpha/2).

Listing 6.2: CI single sample population variance assumed unknown

using Distributions, HypothesisTests

data = readcsv("machinel.csv") [:,1]

xBar, n = mean(data), length (data)
= std(data)

alpha = 0.1

t = quantile (TDist (n-1),l-alpha/2)

println("Calculating formula: ", (xBar - txs/sqrt(n), xBar + t*s/sqrt(n)))
println ("Using confint () function: ", confint (OneSampleTTest (xBar,s,n),alpha))

1
2
3
4
5
6
7
8
9
0

—_

Calculating formula: (52.49989385779555, 53.412518384764276)
Using confint () function: (52.49989385779555, 53.412518384764276)

=212 PR

Listing 6.5: CI difference in population means variance unknown not assumed equal

using Distributions, HypothesisTests

datal = readcsv("machinel.csv") [:,1]
data2 = readcsv("machine2.csv") [:,1]
xBarl, xBar2 = mean (datal), mean (data2)
sl, s2 = std(datal), std(data2)

nl, n2 = length(datal), length(data2)
alpha = 0.05

v (s1°2/nl1 + s2°2/n2)"2 / ((s1°2/nl)"2 / (nl-1) + (s2°2/n2)°2 / (n2-1))
t quantile (TDist (v), 1l-alpha/2)
println("Calculating formula: ", (xBarl - xBar2 - txsqrt(sl”2/nl + s2°2/n2),

xBarl - xBar2 + t*sqrt(sl®2/nl + s2°2/n2)))
println("Using confint(): ", confint (UnequalVarianceTTest (datal,data2),alpha))

Calculating formula: (1.0960161148824918, 2.9216026983153505)
Using confint () : (1.0960161148824918, 2.9216026983153505)

Listing 6.6: QQ plot of t-statistics for v calculated by Satterthwaite vs constant v

using Distributions, PyPlot

mul, sigl, nl =0, 2, 8

mu2, sig2, n2 = 0, 30, 15
distl Normal (mul, sigl)
dist2 Normal (mu2, sig2)

= 10°6
tdArray = Array{Tuple{Float64,Floaté64}} (N)

df (sl,s2,nl,n2) =
(s1°2/nl + 82°2/n2)"2 / ((s1°2/nl)"2/(nl-1) + (82°2/n2)"2/(n2-1))

i in 1:N
x1lData = rand(distl, nl)
x2Data = rand(dist2, n2)

x1Bar, x2Bar = mean (xlData),mean (x2Data) | - Calcuated v
sl,s2 = std(xlData), std(x2Data) + Fixed v

tStat = (x1Bar - x2Bar) / sqrt(sl”2/nl + s2°2/n2)
tdArray[i] = (tStat , df(sl,s2,nl,n2))
end
tdArray = sort (tdArray, 1)
invval (data,i) = quantile(TDist (data),i/ (N+1))
xCoords = Array{Float64} (N)

yCoordsl Array{Float64} (N)
yCoords2 = Array{Float64} (N)

w0
2
=
c
[
3
o
c
5]
2
>
)
T
B
2
z
2
-
L
>
E
[

for i in 1:N
xCoords [i] = first (tdArray[i])
yCoordsl([i] invVal (last (tdArray(i]), 1)
yCoords2([i] invval (nl+n2-2,1)

end 5 0 2

Theoretical t-distribution quantiles

plot (xCoords, yCoordsl, label="Calcuated v","b.",ms="1.5")
plot (xCoords, yCoords2, label="Fixed v","r.",ms="1.5")
plot([-10,10], [-10,10],"k",1lw="0.3")

legend (loc="upper left")

x1lim(=7,7)

ylim(-7,7)

xlabel ("Theoretical t-distribution quantiles")
ylabel ("Simulated t-distribution quantiles")
savefig ("vDOF_comparions.pdf")

Listing 6.10: Actual alpha vs alpha used

I e e e —_
SO WO G Wi O O 00U W -

[l)
N =

BN N NN
N OO e W

using Distributions, PyPlot

n, N =15, 1074

alphaUsed = 0.001:0.001:0.1
dNormal = Normal (2, sqrt (2))
dLogistic = Logistic(2,0.88)

function alphaSimulator(dist, n, alpha)
popVar = var (dist)
coverageCount = 0
for i in 1:N

sVar = var (rand(dist, n))
L = (n - 1) x sVar / quantile(Chisq(n-1),1-alpha/2)
U= (n - 1) » sVar / quantile(Chisq(n-1),alpha/2)
coverageCount += L < popVar && popVar < U
end
1 - coverageCount/N
end

plot (alphaUsed, alphaSimulator. (dNormal,n,alphaUsed),".b", label="Normal")

plot (alphaUsed, alphaSimulator. (dLogistic, n, alphaUsed),".r",label="Logistic")
plot((0,0.1],(0,0.1],"k",1w=0.5)

xlabel ("alpha used")

ylabel ("alpha actual")

legend(loc="upper left")

x1im(0,0.1)

ylim(0,0.2)

Normal
Logistic

alpha actual
© © o © o o o o
o o o = = = - N
N w ~ o N w ~ o
w o w o w o (%) o

o
o
S
oS

0.04 0.06
alpha used

Al L b S I g

I S SIS

. B gt e -

Cha Pter L
ngothesis Testing

function powerEstimate (mu0,mul, sig,n,alpha, NN)
sampleHl = [tStat (muO,mul,sig,n) for _ in 1:NN]; #generate a whole lot of t-sfa
critVal = quantile(TDist (n-1),1l-alpha)
sum (sampleHl .>critVal)/length (sampleH1)

end

rangeMul = 16:0.1:30

powersNO5 = [powerEstimate (20,mul,5,5,0.05,10°5) for mul in rangeMul]
powersN10 [powerEstimate (20, mul, 5,10,0.05,10"5) for mul in rangeMul]
powersN20 [powerEstimate (20, mul, 5,20,0.05,10°5) for mul in rangeMul]
powersN30 [powerEstimate (20, mul, 5,30,0.05,10°5) for mul in rangeMul];

PyPlot.plot (rangeMul, powersN05, label="n = 5") # power curve for 5 samples
PyPlot.plot (rangeMul, powersN10, label="n = 10") # power curve for 10 samples
PyPlot.plot (rangeMul, powersN20, label="n = 20"); # power curve for 20 samples
PyPlot.plot (rangeMul, powersN30, label="n = 30") # power curve for 30 samples
PyPlot.legend()

x1im(16,30)

ylim(0,1.1)

xlabel ("mu")

ylabel ("Power")

title ("Power curves for one-sided t-test, alpha= 0.5, mu0 = 20");

savefig ("powercurves2.png")

Power curves for one-sided t-test, alpha= 0.5, mu0 = 20

R g - b

Sl s & o RN et ikt

. B gt e -

Chapter 8:

Regression Models

L1 cost

Listing 8.5: Logistic Regression

1 using PyPlot, DataFrames, Distributions
2
3 x=[0.50,0.75,1.00,1.25,1.50,1.75,1.75,2.00,2.25,2.50,2.75,3.00,3.25,3.50,4.00,4{25,4

CHAPTER 8. REGRESSION MODELS - SKELETON ONLY

y = (0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,1,1,1,1,1]

data = DataFrame(X = x, Y = y)

model = glm(Y “ X, data, Binomial(), LogitLink())

L L AL B L

Now verify using
Probability of passing exam = 1/ (l+exp(-(-4.0777+1.5046% Hours)))

C = coef (model)

Figure 8.5

xm = linspace (0,maximum(data(1]),100)
ym = 1./(l+exp(=(C[1]+C[2].%xm)))
x1lim = (0, maximum(x))
PyPlot.scatter (x,y)
PyPlot.plot (xm, ym, "r")

model

ARl it b S s i N 4

G B e e B g N e g e el gy S - . il B

C]’)al:)ter 9
Simulation of Dgnar

h
*

1ic Models

using DataStructures,Distributions using PyPlot

T = 50
function simulateMM1 (lambda,mu,Q0,T) Q0 = 0

t, 0 =0.0, Q0 queueTraj = simulateMM1(0.9,1.0,Q0,T);
tvalues = [0.0] ; times = queueTraj[l]
gValues = [Q0] qValues = queueTraj[2]
while t<T - temp = stichSteps(times,gValues)
if Q == 0 #arrival to an empty system : timesForPlot = temp[1]
t += rand(Exponential(1l/lambda)) ; gForPlot = temp[2]
Q=1 :
else #change of state.when system is not empty ::;xigledz;ssmpleo(times,anlues,delta)
t += rand(Exponential(1l/(lambda +mu))) plot (timesForPlot,gForPlot)
4 Q += 2(rand() < lambda/(lambda+mu)) -1 plot(0:delta:T,qgSampled,".",color="r")
en
push! (tvalues, t) arrDep = findArrDep(times,qValues)
push! (gvValues,Q) arrs = arrDep[l]
end deps = arrDep[2]
return[tValues, gValues] plot(arrs,-0.2*ones(length(arrs)), "x'

x")
vl plot(deps,-0.2*ones(length(deps)),"o");

B X0 XS0 X OB e0 0X @& 000 <80

SR et sl s B il Lt s S s i i

Al s & aign

B et i, el el

Chapter 10:
A View Forward

Chapter 10

A View Forward - Skeleton Only

This chapter is currently under construction.

10.1 Additional Language Features
10.2 A Variety of Julia Packages

10.3 R DataSets and using R Packages

Listing 10.1: Using

| using RDatasets
2 hair = dataset ("datasets","HairEyeColor")

10.4 Using and Calling Python Packages
10.5 Other Integrations

10.6 Further Reading

