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Reward Observing Restless .
Multi Armed Bandits

Yoni Nazarathg,
The University of Queensland
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How to balance
exploration and exploitation

for maximal througlnp




(State, Control, Observation) Model
X;(t) eR Citrc {1 o dd Yi(t) e R

Instantaneous Reward: Z r(X;(t)) —cU@)\UE)]

icU(t)
Constraint: IU ‘ —k < e(t) ~ N(0,1)
M (t) is Markov Chain
Chaﬂﬂél t—l—l _&M(t)(X(t) X(t— 1) ..... X(t—p—l—l)) —I—O'M(t)e(t)—l—CM(t)

(

Observation: v;(t) ~ - pil - | X(2), Fooiin

Control Policg: Cilt ) — w({Y(t), L e (—007?5)})

Objec‘mvcz Maximal Infinite Horizon Average Reward
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MDP/POMDP State

OPtion b Ny = (Xz'(t =7 Tz‘)

Option 2: F;(z) = P(X;(t) < z | observed history) |

OPtion 72 Find sufficient statistics, w;, for F;(-)

We use oPtion 2* hence: U(t) = W(w1(t), o 7wd(t))
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Restless Bandits: Activity Allocation in a Changing World
Author(s): P. Whittle

Source : Journa I of Applied Probability, Vol. 25, A Celebration of Applied Probability (1988),

pp. 287-298

Example: 1 Mother,Triplets to Feed

Can feed at most 2 at a time

SRRSO,

Triplets evolve between “sleeping”,”l:)laging ,

Cost: Num Being Fed + Num Crging

crgi ng”
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Reward Observiﬂg Restless Bandit

Belief State UPclate - ROt consiclering ¥ (L)

o

O;(X;(t)), ifieU(t), Xi(t)~ according to w;(t)

wit b=
xR <\7§(wi(t)), if ¢ € U(t).

Observation uPdate: O (t)
i ~~ Wi

(“active” in RMADB language)

Belief propagation operator:
o P Deterministic 7;(-)

(“Passive” in RMAB [anguage)
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GE and AR Channels

Gilbert Elliot Auto Regressive Gaussian |
(2 state MC) Process of Order 1

> o it 0 Oilz)=(0.e, 0,

Slow Fading Channel Selection: A Restless
Multi-Armed Bandit Formulation

; /I: (w ) v w p ,I: | w p ,I: Konstantin Avrachenkov Laura Cottatellucci, Lorenzo Maggi

INRIA, Maestro Team Eurecom
BP95, 06902 Sophia Antipolis, France Mobile Communications Department
Email: k.avrachenkov@sophia.inria.fr BP193, F-06560 Sophia Antipolis, France
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Indexability of Restless Bandit Problems and
Optimality of Whittle Index for Dynamic _ Exploration vs. Exploitation with :
Partially Observable Gaussian Autoregressive Arms :
Multichannel Access "
. re . Julia Kuh Michel Mandj Yoni N th t
chm Liu and ng Zhao The Univeiils of%urt]aensland, Univeln?sits of /Sn?stﬁgam The Uniovglrsityag?(g%ee&sland ,
University of Amsterdam m.r.h.mandjes@uva.nl y.nazarathy@uq.edu.au ¢
j.kuhn@ug.edu.au
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Index Policies

(because solving the POMDP is often hard)

L) = [ (o) [0 el L0

Myopiclnclex: il =K i X,

Index Consi&ering Variance:

filw) = B, 7:(X;) + 6; Var(X;) What is the best 0,7

whittle Index:

i (w) is the minimal subsiclg you pay to not select the channel

To calculate it - solve a Familg of “one armed subsiclg Problems”
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Wireless Channel Selection with Restless Bandits 10
Age

Julia Kuhn and Yoni Nazarath,
“ o d Fig. 6 Contour plot of %y (i,v) —r(1), the difference of Whittle and myopic indices, for an AR

channel with ¢ =0.8, 0 =2.
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Fig. 3 Comparison of Whittle and myopic index policies for increasing number of channels d
when half of the channels are GE and the other half is AR. For d = 2, the average reward ob-
tained under the optimal policy is indicated by a black dot. We compare to the average reward that
could be obtained if both arms were observed at each time point (that is in the fully observable or
“omniscient” setting).




Themes and Methods

s Structural Properties of OPtimal or Index Based Policies
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* Oliele Stabilitg and Observation Error

. Switching Costs

i » Use of regenerative structure

is » Measure Valued Asgmptotics for belief states

* In Progress: A computational framework and

Unknown Parameters (regret)




Exploration vs. Exploitation with

Partially Observable Gaussian Autoregressive Arms The Role of Information in System Stability with Partially

Julia Kuhn Michel Mandjes Yoni Nazarathy
Th% lJ_nive[Itsyityfo; Quteeergsland, Unir‘ersity %f_A%erdam I The Univertsity g Quee%nsland
niversity of Amsteraam m.r.n.man uva.n .nazaral ug.edu.au
j-kuhn@uq.edu.au . ¥ hy@uq
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Figure 1: Switching curves: below the curve the optimal
action is passive, above it is active. 8 = 0.8, ¢ = 0.9, 0 = 2.

Observable Servers

Azam Asanjarani’ Yoni Nazarathy!

Choose Server 1




The Challenge of Stabilizing Control for Queueing Systems
with Unobservable Server States

Yoni Nazarathy**, Thomas Taimre®, Azam Asanjarani®, Julia Kuhn"', Brendan Patch®”, and Aapeli Vuorinen®.
*School of Mathematics and Physics, The University of Queensland, Australia.
’m&vmmffumumdmmw
Email: y.nazarathy@ugq.cdu.au

— p=08 -<- p=06 - p=04 - p=02

Fig. 6. Stability region achieved by finite state controllers for increasing
M. The limiting horizontal lines are at u* as computed by means of relative
valuate iteration of Section IV.

7(0) =gqw+po = wp + (1 -p),

(W) =

G, @+ pl @
7(w)

b

71 (0) =

g0+ pil ®

r(o)




The Role of Information in System Stability with Partially
Observable Servers

Bandit Server ‘1]

Azam Asanjarani* Yoni Nazarathy!




To Fish or Cut Bait?

Jiahao Diao, Yoni Nazarathy, Thomas Taimre, and Jerzy A. Filar.
School of Mathematics and Physics,
The University of Queensland.
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The Value of Informtion and Efficient
Switching in Channel Selection ' —— Partial Observation

Jiesen Wang, Yoni Nazarathy, Thomas Taimre

optimal average reward
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Fig. 1: The Optimal average reward for a system with y = 0.4 as a function of cost.

If ¢ < ¥? switch not before 7*, solution of:

6%(7 — D@ =) 2'75(7 + 751 = 7)) +(c —7%)




mp(z,t+1) (14)
{Z;z..;o fzc:,o(t) Q.z,u(") (%) mi(dz, t), h=0,

Exploration vs. Exploitation with min-1 (min {2, 19}, ¢), h>1,

Partially Observable Gaussian Autoregressive Arms where £n() ‘= £(t) — 6™ with £(¢) defined by

oC
Julia Kuhn Michel Mandjes Yoni Nazarat _ =~ _
The University of Queensland,  Univeraity of Amstorgam  The University of Y ciand £(t) = sup {e I D in(lo0), t) =p } . (15)
University of Amsterdam m.r.h.mandjes@uva.nl  y.nazarathy@uq.edu.au h=0
j-kuhn@uq.edu.au

Here, m;, denotes the measure on indices, i.e.

n(B, t) =mn({ueR|u+6v™ € B}, 1),  (16)
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S . : 08y —— parametrized index, 8 found from Alg. 1 |
nuu‘u}uu?“ vt -'-"myopic

15 20
d (number of arms)

Figure 4: Comparison of average rewards achieved per
arm under the Whittle, the parametric index (9) and the
myopic policy. The parameter 6 is found by optimizing
(i) the problem with d arms (dotted), and (ii) the one-
armed problem. ¢ =0.9, c =2, p= 0.4, T = 100, 000.

Figure 3: Expected average reward G(f) computed
by the algorithm as a function of 6. o = 2, ¢ €
{0.9,0.925,0.95,0.975}, p = 0.4, T = 2 x 10°.
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