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Talk Outline

Part 1: Approximating trajectories (of birth-death processes)
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Part 2: Approximating stationary distributions (of cyclic processes)
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Part 1: Approximating Trajectories



An Example Class of Birth Death Processes

{X (t), t ≥ 0} is a Continuous Time,
Birth-Death, Markov Chain taking values {0, 1, . . .}
Birth rates are constant: λ

Death rates are state dependent: µX (t)α, α ≥ 0

α = 0 is M/M/1, α = 1 is M/M/∞

Desired: A deterministic x(t) that approximates X (t)

Some ideas: R.W.R. Darling, J.R. Norris, Differential equation
approximations for Markov chains, Probability Surveys, 5, pp. 37-79, 2008



Scaling The Processes

A sequence of processes

XN(·), N = 1, 2, . . .

The parameters of the N’th process: λN , µN and α

Initial values are XN(0) = N X (0)

Desired: XN(t) ≈ N x(t) as N →∞ (for finite t)

Try x(t), solution of the ODE:

ẋ(t) = λ− µx(t)α

x(0) = X (0)

What is a ”correct” scaling?



Scaling The Processes

A sequence of processes

XN(·), N = 1, 2, . . .

The parameters of the N’th process: λN , µN and α

Initial values are XN(0) = N X (0)

Desired: XN(t) ≈ N x(t) as N →∞ (for finite t)

Try x(t), solution of the ODE:

ẋ(t) = λ− µx(t)α

x(0) = X (0)

What is a ”correct” scaling?

Observe from the ODE:

λN = λN, µN = µN1−α



Illustration for α = 2/3
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Illustration for α = 2/3
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Illustration for α = 2/3
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Illustration for α = 2/3
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Theorem

(i) Trajectories:

lim
N→∞

P
(

sup
s∈[0,t]

∣∣∣XN(s)

N
− x(s)

∣∣∣ > ε
)

= 0

(ii) Hitting Times:

lim
N→∞

P
(∣∣∣TN(yN)− τ(y)

∣∣∣ > ε
)

= 0

where,

TN(y) = inf{t : XN(t) = y}, τ(y) = inf{t : x(t) = y} = x−1(y)

Note 1: For α = 0, 1 it is well known, see P. Robert book, 2003
Note 2: Also have formulation for more general BD processes



Martingale Representation

XN(t) = XN(0) + MN(t) + λNt − µN

∫ t

0
XN(s)αds

Substitute: XN(0) = N X (0), λN = λN, µN = µN1−α and divide by N

XN(t)

N
= X (0) +

MN(t)

N
+ λt − µ

∫ t

0

(XN(s)

N

)α
ds

Compare With the Deterministic Trajectory:

x(t) = X (0) + λt − µ
∫ t

0
x(s)αds

sups∈[0,t]

∣∣∣XN(s)

N
−x(s)

∣∣∣ ≤ sups∈[0,t]

∣∣MN(s)
∣∣

N
+

∫ t

0

supu∈[0,s]

∣∣∣(XN(u)

N

)α
−x(u)α

∣∣∣ds



Part 2: Approximating Stationary Distributions
(of Cyclically Varying Systems)



Cyclically Varying Systems

A sequence of increasing time points {Tn, n ≥ 0}
Two sets of birth-death parameters Λi =

(
λi , µi

)
, i = 1, 2

At time points Tn, X (t) changes behavior,
alternating between Λ1 and Λ2

T0=0 T1 T2 T3 T4

L1 L2 L1 L2 L1



Types of Cyclic Behavior

Hysteresis Control

Tn = inf{t > Tn−1 : X (t) =

{
`2 n odd
`1 n even

}

Fixed Cycles

Tn − Tn−1 =

{
τ1 n odd
τ2 n even

Random Environment

Tn − Tn−1 ∼
{

exp
(
τ−1

1

)
n odd

exp
(
τ−1

2

)
n even



Some of the Related Literature

Hysteresis Control

Federgruen and Tijms 1980, Perry 1997, Bekker 2009...

Fixed Cycles

Harrison and Lemoine 1977, Lemoine 1989, Breuer 2004...

Random Environment

Yechiali and Naor 1971, Neuts 1977, Prabhu and Zhu 1989, Boxma and
Kurkova 2000, Falin 2008, Fralix and Adan 2009...

In general, the queue level distribution is ”tough”. Things get ”tougher”
as one moves from α = 0 to α = 1 and then to arbitrary α.



Basic Idea: Use the Scaling Limits
Random Environment Hysteresis Control

Fixed Cycles



Basic Idea: Use the Scaling Limits

Hysteresis Control

Look at one deterministic cycle through `1 → `2 → `1

Fixed Cycles

Look at one deterministic cycle of duration τ1 + τ2

Random Environment

Look at a piece-wise deterministic Markov process (PDMP)

In all 3 cases: Construct a distribution function F (·)
by means of the scaling limit



F (·) for Hysteresis Control and Fixed Cycles

ẋi (t) = λi − µix(t)α

xi (0) = `i
limt→∞ xi (t) = mi

m2 < `1 < `2 < m1

ẋ2(0) < 0 < ẋ1(0)
τi (y) = inf{t : xi (t) = y}
τi = τi (`̄i ) m2

{1

{2

m1

Τ1 Τ2

A CDF with support [`1, `2], (assume α > 0)

F (y) =
1

τ1 + τ2

(
τ1(y) + (τ2 − τ2(y)

)
For Hysteresis control, `1, `2 given, τ1, τ2 easily calculated

For Fixed Cycles τ1, τ2 given, unique `1, `2 obtained by solving:

x1∣∣(τ1)

x1(0)=`1

= `2, x2∣∣(τ2)

x2(0)=`2

= `1



F (·) for Random Environment

PDMP: Environment Markov chain alternates between 1, 2. Given a
mode, trajectory is deterministic with ”state-dependent” rates.

O. Kella and W. Stadje, Exact Results for a Fluid Model with
State-Dependent Flow Rates, Prob. in Eng. and Inform. Sci., 16, pp.
389-402, 2002.

Stationary Distribution

Solve for p1(·), p2(·) on y ∈ (m2,m1)

(λ1 − µ1yα)p′1(y) = τ2
−1p2(y)− τ1

−1p1(y)

(λ2 − µ2yα)p′2(y) = τ1
−1p1(y)− τ2

−1p2(y)

p1(m2) = 0, p2(m1) =
τ2

τ1 + τ2

F (y) = p1(y) + p2(y), y ∈ (m2,m1)



Some Cases where F (·) is explicit

Hysteresis Control or Fixed Cycles where α = 1

F (y) =

∫ y

−∞
f (u)du, f (u) =

(µ1−µ2)u+(λ2−λ1)
(µ1u−λ1)(µ2u−λ2)

log
(
µ1`1−λ1
µ1`2−λ1

) 1
µ1
(
µ2`2−λ2
µ2`1−λ2

) 1
µ2

1{`1≤u≤`2}

For fixed cycles set: `i =
(eτi µi−1)

λi
µi

+(e
τ
ī
µ

ī−1)
λ

ī
µ

ī
eτi µi

e
τi µi +τ

ī
µ

ī−1

Hysteresis Control or Fixed Cycles with α = 0

Uniform distribution, sometimes with masses at the endpoints

Random Environment with α = 0

Truncated exponential distribution with masses at m1 and m2

Random Environment with α = 1

When µ1 = µ2 = τ1 = τ2 = 1, uniform on [λ2, λ1]. Otherwise, more
complex explicit expression



Convergence of Stationary Distributions

Assume XN(·) is positive-recurrent. Then,

lim
N→∞

sup
y

∣∣∣P(XN(∞)

N
≤ y

)
− F (y)

∣∣∣ = 0,

In the hysteresis control case, also scale the thresholds:
(
dN`1e, bN`2c

)



Numerical Example: Hysteresis Control and Fixed Cycles
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`1 = 0.3 `2 = 1.6 τ1 = 1.447 τ2 = 2.639
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Numerical Example: Hysteresis Control and Fixed Cycles
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Numerical Example: Hysteresis Control and Fixed Cycles
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Numerical Example: Hysteresis Control and Fixed Cycles
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Numerical Example: Hysteresis Control and Fixed Cycles
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Numerical Example: Hysteresis Control and Fixed Cycles

α = 1 µ1 = µ2 = 1 λ1 = 2 λ2 = 0.2
`1 = 0.3 `2 = 1.6 τ1 = 1.447 τ2 = 2.639
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Numerical Example: Random Environment - Uniform

α = 1

µ1 = µ2 = τ1 = τ2 = 1, λ1 = 3, λ2 = 1,

N = 1, 10, 100:
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Numerical Example: Random Environment

α = 4/3

µ1 = µ2 = 1, λ1 = 2, λ2 = 1/2, τ1 = 3, τ2 = 1

N = 50, 100, 500, 1000:
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Questions?


