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Talk Outline

Part 1: Approximating trajectories (of birth-death processes)
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Part 2: Approximating stationary distributions (of cyclic processes)
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Part 1: Approximating Trajectories



An Example Class of Birth Death Processes

{X (t), t ≥ 0} is a Continuous Time,
Birth-Death, Markov Chain taking values {0, 1, . . .}
Birth rates are constant: λ

Death rates are state dependent: µ ·
(

X (t)
)α

, α ≥ 0

α = 0 is M/M/1, α = 1 is M/M/∞

Desired: A deterministic x(t) that approximates X (t)

Some ideas: R.W.R. Darling, J.R. Norris, Differential equation
approximations for Markov chains, Probability Surveys, 5, pp. 37-79, 2008.



Scaling The Processes

A sequence of processes

XN(·), N = 1, 2, . . .

The parameters of the N’th process: λN , µN and α

Initial values are XN(0) = N · X (0)

Desired: XN(t) ≈ N x(t) as N →∞ (for finite t)

Try x(t), solution of the ODE:

ẋ(t) = λ− µ
(
x(t)

)α
x(0) = X (0)

What is a ”correct” scaling for λN , µN?



Scaling The Processes

A sequence of processes

XN(·), N = 1, 2, . . .

The parameters of the N’th process: λN , µN and α

Initial values are XN(0) = N · X (0)

Desired: XN(t) ≈ N x(t) as N →∞ (for finite t)

Try x(t), solution of the ODE:

ẋ(t) = λ− µ
(
x(t)

)α
x(0) = X (0)

What is a ”correct” scaling for λN , µN?

Answer:

λN = λN, µN = µN1−α



Illustration for α = 2/3

N = 1

1 2 3 4 5 6 7 8 9 10
t

1

2

3

4

5

N = 1

Λ=Μ=1, Α=2�3, X0=5

λ = µ = 1, X (0) = 5



Illustration for α = 2/3
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Illustration for α = 2/3
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Illustration for α = 2/3
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Theorem

(i) Trajectories:

lim
N→∞

P
(

sup
s∈[0,t]

∣∣∣XN(s)

N
− x(s)

∣∣∣ > ε
)

= 0

(ii) Hitting Times:

lim
N→∞

P
(∣∣∣TN(yN)− τ(y)

∣∣∣ > ε
)

= 0

where,

TN(y) = inf{t : XN(t) = y}, τ(y) = inf{t : x(t) = y} = x−1(y)

Note 1: For α = 0, 1 result is well known
(there are even a.s. and L1 versions)

Note 2: We have a formulation for more general BD processes
(the choice of rates λ and µ

(
X (t)

)α
is for presentation simplicity)



Martingale Representation

XN(t) = XN(0) + MN(t) + λNt − µN
∫ t

0

(
XN(s)

)α
ds

Substitute: XN(0) = N X (0), λN = λN, µN = µN1−α and Divide by N

XN(t)

N
= X (0) +

MN(t)

N
+ λt − µ

∫ t

0

(XN(s)

N

)α
ds

Compare With the Deterministic Trajectory:

x(t) = X (0) + λt − µ
∫ t

0

(
x(s)

)α
ds

sups∈[0,t]

∣∣∣XN(s)

N
−x(s)

∣∣∣ ≤ sups∈[0,t]

∣∣MN(s)
∣∣

N
+µ

∫ t

0

supu∈[0,s]

∣∣∣(XN(u)

N

)α
−
(
x(u)

)α∣∣∣ds



sups∈[0,t]

∣∣∣XN(s)

N
−x(s)

∣∣∣ ≤ sups∈[0,t]

∣∣MN(s)
∣∣

N
+µ

∫ t

0

supu∈[0,s]

∣∣∣(XN(u)

N

)α
−
(
x(u)

)α∣∣∣ds

Gronwall’s lemma makes things easy for α = 1:

ε(t) ≤ m(t) + µ

∫ t

0
ε(s)ds ⇒ ε(t) ≤ m(t)eµt

And then m(t) = sups∈[0,t]

∣∣MN(s)
∣∣

N ”vanishes” as N →∞

The above is ”standard”, see for example: Philippe Robert 2003,
Stochastic Networks and Queues. But in case of α 6= 1 we need to work
harder: Control the probability of being in a set where Gronwall can be
applied.



Part 2: Approximating Stationary Distributions
(of Cyclically Varying Systems)



Cyclically Varying Systems

A sequence of increasing time points {Tn, n ≥ 0}
Two sets of birth-death parameters Λi =

(
λi , µi

)
, i = 1, 2

At time points Tn, X (t) changes behavior,
alternating between Λ1 and Λ2

T0=0 T1 T2 T3 T4

L1 L2 L1 L2 L1



Types of Cyclic Behavior

Hysteresis Control

Tn = inf{t > Tn−1 : X (t) =

{
`2 n odd
`1 n even

}

Fixed Cycles

Tn − Tn−1 =

{
τ1 n odd
τ2 n even

Random Environment

Tn − Tn−1 ∼
{

exp
(
τ−1

1

)
n odd

exp
(
τ−1

2

)
n even



Some of the Related Literature

Hysteresis Control

Federgruen and Tijms 1980, Perry 1997, Bekker 2009...

Fixed Cycles

Harrison and Lemoine 1977, Lemoine 1989, Breuer 2004, Mandjes 2011...

Random Environment

Yechiali and Naor 1971, Neuts 1977, Prabhu and Zhu 1989, Boxma and
Kurkova 2000, Falin 2008, Fralix and Adan 2009, Mandjes 2011...

In general, the queue level distribution is ”tough”. Things get ”tougher”
as one moves from α = 0 to α = 1 and then to arbitrary α.



Basic Idea: Use the Scaling Limits

Random Environment Hysteresis Control

Fixed Cycles



Basic Idea: Use the Scaling Limits

Hysteresis Control

Look at one deterministic cycle through `1 → `2 → `1

Fixed Cycles

Look at one deterministic cycle of duration τ1 + τ2

Random Environment

Look at a piece-wise deterministic Markov process (PDMP)

In all three cases we propose a distribution function F (·)
motivated by the scaling limit



F (·) for Hysteresis Control and Fixed Cycles

ẋi (t) = λi − µi

(
x(t)

)α
xi (0) = `i
limt→∞ xi (t) = mi

m2 < `1 < `2 < m1

ẋ2(0) < 0 < ẋ1(0)
τi (y) = inf{t : xi (t) = y}
τi = τi (`̄i ) m2

{1

{2

m1

Τ1 Τ2

A CDF with support [`1, `2], (assume α > 0)

F (y) =
1

τ1 + τ2

(
τ1(y) + (τ2 − τ2(y)

)
For Hysteresis control, `1, `2 given, τ1, τ2 easily calculated

For Fixed Cycles τ1, τ2 given, unique `1, `2 obtained by solving:

x1∣∣(τ1)

x1(0)=`1

= `2, x2∣∣(τ2)

x2(0)=`2

= `1



F (·) for Random Environment

PDMP: Environment Markov chain alternates between 1, 2. Given a
mode, trajectory is deterministic with ”state-dependent” rates

O. Kella and W. Stadje, Exact Results for a Fluid Model with
State-Dependent Flow Rates, Prob. in Eng. and Inform. Sci., 16, pp.
389-402, 2002

Stationary Distribution

Solve for p1(·), p2(·) on y ∈ (m2,m1)

(λ1 − µ1yα)p′1(y) = τ2
−1p2(y)− τ1

−1p1(y)

(λ2 − µ2yα)p′2(y) = τ1
−1p1(y)− τ2

−1p2(y)

p1(m2) = 0, p2(m1) =
τ2

τ1 + τ2

F (y) = p1(y) + p2(y), y ∈ (m2,m1)



Some Cases where F (·) is explicit
Hysteresis Control or Fixed Cycles where α = 1

F (y) =

∫ y

−∞
f (u)du, f (u) =

(µ1−µ2)u+(λ2−λ1)
(µ1u−λ1)(µ2u−λ2)

log
(
µ1`1−λ1
µ1`2−λ1

) 1
µ1
(
µ2`2−λ2
µ2`1−λ2

) 1
µ2

1{`1≤u≤`2}

For fixed cycles set: `i =
(eτiµi−1)

λi
µi

+(e
τ
ī
µ
ī−1)

λ
ī

µ
ī
eτiµi

e
τiµi +τ

ī
µ
ī−1

Hysteresis Control or Fixed Cycles with α = 0

Uniform distribution, sometimes with masses at the endpoints

Random Environment with α = 0

Truncated exponential distribution with masses at m1 and m2

Random Environment with α = 1

When µ1 = µ2 = τ1 = τ2 = 1, uniform on [λ2, λ1]. Otherwise, more
complex explicit expression



Convergence of Stationary Distributions

Let XN(·) be the scaled modulated process. Assume it is
positive-recurrent. Then:

lim
N→∞

P
(XN(∞)

N
≤ y

)
= F (y),

for y where F (·) is continuous.

Note: For the N’th hysteresis control system use thresholds
(
dN`1e, bN`2c

)
Proof for hysteresis control is ”easy”, proof for random environment
requires ”more care” and IS NOT YET COMPLETE



Numerical Example: Hysteresis Control and Fixed Cycles
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0.0 0.5 1.0 1.5 2.0
y

0.2

0.4

0.6

0.8

1.0
N = 1

LimitFHyL
Hysteresis Control

PHXN H¥L�N £ y L
Fixed Cycles

PHXN H¥L�N £ y L



Numerical Example: Hysteresis Control and Fixed Cycles
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Numerical Example: Hysteresis Control and Fixed Cycles
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Numerical Example: Hysteresis Control and Fixed Cycles
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Numerical Example: Hysteresis Control and Fixed Cycles
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Numerical Example: Hysteresis Control and Fixed Cycles
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Numerical Example: Random Environment - Uniform

α = 1

µ1 = µ2 = τ1 = τ2 = 1, λ1 = 3, λ2 = 1,

N = 1, 10, 100:
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Numerical Example: Random Environment

α = 4/3

µ1 = µ2 = 1, λ1 = 2, λ2 = 1/2, τ1 = 3, τ2 = 1

N = 50, 100, 500, 1000:
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Conclusion



Scaling (fluid) limits in queueing theory is not a new concept

Contribution 1: Scaling limits of a very general class of birth-death
processes

Contribution 2: For cyclic systems the scaling limits give stationary
distribution approximations. This is a different novel application of
scaling (fluid) limits (the ”usual”: Transient analysis, Stability,
Near-Optimal control of queueing systems)

Future work: Change point detection (and prediction) of birth-death
processes using scaling limits



A General Formulation

XN(·) a sequence of processes with rates λN(y), µN(y)

CN , N = 1, 2, . . . a sequence of subsets of the state space

x(·), solution of ẋ(t) = b
(
x(t)

)
− d

(
x(t)

)
, x(0) = X (0)

Notation: ḡ(CN) = supy∈CN g(y), for a function g(·)

Theorem

Assume: (i) ∃N0 : ∀N ≥ N0, bN x(t)c ∈ CN
(ii) λ̄N(CN) = o(N2), µ̄N(CN) = o(N2)

(iii) ∃L, ∀N, ∀y ∈ CN ,∀y ′ :∣∣∣λN (y)
N − b(y ′)

∣∣∣ ≤ L
∣∣∣ yN − y ′

∣∣∣, ∣∣∣µN (y)
N − d(y ′)

∣∣∣ ≤ L
∣∣∣ yN − y ′

∣∣∣
Then,

lim
N→∞

P
(

sup
s∈[0,t]

∣∣∣XN(s)

N
− x(s)

∣∣∣ > ε
)

= 0

Similar result holds for hitting times


