Instability, Stability and Non-Stabilizability of Queueing Networks

Yoni Nazarathy,
The University of Queensland,

Based on some joint work with

Erjen Lefeber, Eindhoven University of Technology,
Leonardo Rojas-Nandayapa, The University of Queensland,
Tom Salisbury, York University,
Gideon Weiss, The University of Haifa and The University of Southern California,
Hanqin Zhang, National University of Singapore.

Hebrew University of Jerusalem Statistics Seminar,
December 24, 2012.
Contents

- Queues and Queueing Networks
- Instability
- Queueing Networks with Infinite Supplies
- Stability
- Non-Stabilizability
Queues and Queueing Networks
Congestion, delay and resource scarcity occurs in a variety of application areas:

- Customer service systems
- Complex manufacturing lines
- Telecommunication networks and computing systems
- Transportation networks
Congestion, delay and resource scarcity occurs in a variety of application areas:

- Customer service systems
- Complex manufacturing lines
- Telecommunication networks and computing systems
- Transportation networks

Stochastic queueing network models often capture the essentials of such examples allowing for quantitative performance evaluation, optimization and control.
A Single Queue

Items arrive at random times to a server, queue up, each requiring service for a random duration, then depart
A Single Queue

Items arrive at random times to a server, queue up, each requiring service for a random duration, then depart

Construction of the Queue Length Process: \(Q(t) \)

\[A(t) \equiv \text{counting process generated by a sequence of random inter-arrival times each with mean } \lambda^{-1} \]

\[S(t) \equiv \text{counting process generated by a sequence of random service times each with mean } \mu^{-1} \]

The Load \(\rho \):

\[\rho < 1 \] queue is stable

\[\rho > 1 \] queue is unstable

\[\rho = 1 \] queue is critically unstable
A Single Queue

Items arrive at random times to a server, queue up, each requiring service for a random duration, then depart.

Construction of the Queue Length Process: $Q(t)$

- $A(t) \equiv$ counting process generated by a sequence of random **inter-arrival times** each with mean λ^{-1}
- $S(t) \equiv$ counting process generated by a sequence of random **service times** each with mean μ^{-1}

$$Q(t) = Q(0) + A(t) - S(T(t))$$

$$T(t) = \int_{0}^{t} \mathbf{1}_{\{Q(s)>0\}} \, ds$$

The Load $\rho = \frac{\lambda}{\mu}$:
- $\rho < 1$ queue is stable
- $\rho > 1$ queue is unstable
- $\rho = 1$ queue is critically unstable
Items arrive at random times to a server, queue up, each requiring service for a random duration, then depart.

Construction of the Queue Length Process: $Q(t)$

$A(t) \equiv$ counting process generated by a sequence of random **inter-arrival times** each with mean λ^{-1}

$S(t) \equiv$ counting process generated by a sequence of random **service times** each with mean μ^{-1}

$$Q(t) = Q(0) + A(t) - S(T(t))$$

$$T(t) = \int_0^t \mathbf{1}_{\{Q(s) > 0\}}\, ds$$

The Load $\rho = \frac{\lambda}{\mu}$
Items arrive at random times to a server, queue up, each requiring service for a random duration, then depart

Construction of the Queue Length Process: $Q(t)$

$A(t) \equiv$ counting process generated by a sequence of random inter-arrival times each with mean λ^{-1}

$S(t) \equiv$ counting process generated by a sequence of random service times each with mean μ^{-1}

$$Q(t) = Q(0) + A(t) - S(T(t))$$

$$T(t) = \int_0^t 1 \{Q(s) > 0\} ds$$

The Load $\rho = \frac{\lambda}{\mu}$

- $\rho < 1$ queue is stable
A Single Queue

Items arrive at random times to a server, queue up, each requiring service for a random duration, then depart

Construction of the Queue Length Process: $Q(t)$

$A(t) \equiv$ counting process generated by a sequence of random inter-arrival times each with mean λ^{-1}

$S(t) \equiv$ counting process generated by a sequence of random service times each with mean μ^{-1}

$$Q(t) = Q(0) + A(t) - S(T(t))$$

$$T(t) = \int_0^t 1_{\{Q(s) > 0\}} \, ds$$

The Load $\rho = \frac{\lambda}{\mu}$

- $\rho < 1$ queue is stable
- $\rho > 1$ queue is unstable
A Single Queue

Items arrive at random times to a server, queue up, each requiring service for a random duration, then depart

Construction of the Queue Length Process: $Q(t)$

$A(t) \equiv$ counting process generated by a sequence of random **inter-arrival times** each with mean λ^{-1}

$S(t) \equiv$ counting process generated by a sequence of random **service times** each with mean μ^{-1}

$$Q(t) = Q(0) + A(t) - S(T(t))$$

$$T(t) = \int_0^t 1_{\{Q(s)>0\}} ds$$

The Load $\rho = \frac{\lambda}{\mu}$

- $\rho < 1$ queue is **stable**
- $\rho > 1$ queue is **unstable**
- $\rho = 1$ queue is **critically unstable**
The Flavor of Classic Queueing Network Results

\[\lambda_1 = \alpha_1 + p_{2,1} \]
\[\lambda_2 = \alpha_2 + p_{1,2} \]
\[\rho_i = \frac{\lambda_i}{\mu_i}, i = 1, 2. \]

A Product Form Result

Assume Poisson arrival and service processes. If \(\rho_1, \rho_2 < 1 \) then,
\[\lim_{t \to \infty} P(Q_1(t) = k_1, Q_2(t) = k_2) = \prod_{i=1}^2 (1 - \rho_i)^{k_i} \rho_i, \]
otherwise the network is not stable.

Note: Without the Poisson assumptions the product form typically does not hold, yet the stability properties are the same.
The Flavor of Classic Queueing Network Results

\[\lambda_1 = \alpha_1 + p_{2,1} \lambda_2 \]
\[\lambda_2 = \alpha_2 + p_{1,2} \lambda_1 \]
\[\rho_i = \frac{\lambda_i}{\mu_i}, \quad i = 1, 2. \]
The Flavor of Classic Queueing Network Results

A Product Form Result

Assume Poisson arrival and service processes. If $\rho_1, \rho_2 < 1$ then,

$$
\lim_{t \to \infty} P\left(Q_1(t) = k_1, \ Q_2(t) = k_2 \right) = \prod_{i=1}^{2} (1 - \rho_i) \rho_i^{k_i},
$$

otherwise the network is not stable.
A Product Form Result

Assume Poisson arrival and service processes. If $\rho_1, \rho_2 < 1$ then,

$$\lim_{t \to \infty} P\left(Q_1(t) = k_1, \ Q_2(t) = k_2\right) = \prod_{i=1}^{2} (1 - \rho_i) \rho_i^{k_i},$$

otherwise the network is not stable.

Note: Without the Poisson assumptions the product form typically does not hold, yet the stability properties are the same.
Control Policies

Now there is a choice as to how to allocate server resources:

Policy: What operation should be served by each of the servers at every time instant based on the current state.
Control Policies

Now there is a choice as to how to allocate server resources:

Policy: What operation should be served by each of the servers at every time instant based on the current state

- Explicit performance analysis for a given control policy is typically intractable
Control Policies

Now there is a choice as to how to allocate server resources:

Policy: What operation should be served by each of the servers at every time instant based on the current state

- Explicit performance analysis for a given control policy is typically intractable
- Optimal control is typically out of the question
Control Policies

Now there is a choice as to how to allocate server resources:

Policy: What operation should be served by each of the servers at every time instant based on the current state

- Explicit performance analysis for a given control policy is typically intractable
- Optimal control is typically out of the question

A realistic research goal: understanding stability
Instability
The Kumar-Seidman-Rybko-Stolyar Network

Load Conditions

Necessary condition for stability:
\[\rho_1 = \frac{\alpha_1}{\lambda_1} + \frac{\alpha_2}{\mu_2} < 1, \quad \rho_2 = \frac{\alpha_1}{\mu_1} + \frac{\alpha_2}{\lambda_2} < 1. \]

A Control Question

If \(\rho_i < 1, \quad i = 1, 2 \), are all work conserving policies stabilizing?

KSRS Adversarial Idea: Try the pull-priority policy. Give priority to pull operations, \(\mu_1, \mu_2 \), over push operations, \(\lambda_1, \lambda_2 \).
The Kumar-Seidman-Rybko-Stolyar Network

Load Conditions

Necessary condition for stability:

\[\rho_1 = \alpha_1 \frac{1}{\lambda_1} + \alpha_2 \frac{1}{\mu_2} < 1, \quad \rho_2 = \alpha_1 \frac{1}{\mu_1} + \alpha_2 \frac{1}{\lambda_2} < 1. \]
The Kumar-Seidman-Rybko-Stolyar Network

Load Conditions

Necessary condition for stability:

\[
\rho_1 = \alpha_1 \frac{1}{\lambda_1} + \alpha_2 \frac{1}{\mu_2} < 1, \quad \rho_2 = \alpha_1 \frac{1}{\mu_1} + \alpha_2 \frac{1}{\lambda_2} < 1.
\]

A Control Question

If \(\rho_i < 1, \ i = 1, 2, \) are all work conserving policies stabilizing?
Load Conditions

Necessary condition for stability:

\[\rho_1 = \alpha_1 \frac{1}{\lambda_1} + \alpha_2 \frac{1}{\mu_2} < 1, \quad \rho_2 = \alpha_1 \frac{1}{\mu_1} + \alpha_2 \frac{1}{\lambda_2} < 1. \]

A Control Question

If \(\rho_i < 1, \ i = 1, 2, \) are all work conserving policies stabilizing?

KSRS Adversarial Idea: Try the pull-priority Policy

Give priority to pull operations, \(\mu_1, \mu_2, \) over push operations \(\lambda_1, \lambda_2 \)
Illustrative example in which the load conditions hold:

\[(\alpha_i = 3, \lambda_i = 10, \mu_i = 5) \implies \rho_i = \frac{9}{10}, \quad i = 1, 2.\]
Illustrative example in which the load conditions hold:

\[(\alpha_i = 3, \lambda_i = 10, \mu_i = 5) \implies \rho_i = 9/10, \quad i = 1, 2.\]

Illustration of instability by means of deterministic fluid dynamics:
Dynamics of Pull-Priority KSRS

Illustrative example in which the load conditions hold:

\[(\alpha_i = 3, \, \lambda_i = 10, \, \mu_i = 5) \implies \rho_i = 9/10, \quad i = 1, 2.\]

Illustration of instability by means of deterministic fluid dynamics:
Illustrative example in which the load conditions hold:

\[(\alpha_i = 3, \lambda_i = 10, \mu_i = 5) \implies \rho_i = \frac{9}{10}, \quad i = 1, 2.\]

Illustration of instability by means of deterministic fluid dynamics:
Dynamics of Pull-Priority KSRS

Illustrative example in which the load conditions hold:

\[(\alpha_i = 3, \lambda_i = 10, \mu_i = 5) \implies \rho_i = 9/10, \quad i = 1, 2.\]

Illustration of instability by means of deterministic \textbf{fluid} dynamics:
Illustrative example in which the load conditions hold:

\[
(\alpha_i = 3, \lambda_i = 10, \mu_i = 5) \implies \rho_i = 9/10, \quad i = 1, 2.
\]

Illustration of instability by means of deterministic **fluid** dynamics:
Dynamics of Pull-Priority KSRS

Illustrative example in which the load conditions hold:

\[
(\alpha_i = 3, \lambda_i = 10, \mu_i = 5) \implies \rho_i = \frac{9}{10}, \quad i = 1, 2.
\]

Illustration of instability by means of deterministic fluid dynamics:
Illustrative example in which the load conditions hold:

\[(\alpha_i = 3, \lambda_i = 10, \mu_i = 5) \implies \rho_i = 9/10, \ i = 1, 2.\]

Illustration of instability by means of deterministic **fluid** dynamics:

A Virtual Server

Observation: Pull operations “never” occur at the same time. Thus with this policy, an additional condition for stability is:

\[\rho_v := \alpha_1 \frac{1}{\mu_1} + \alpha_2 \frac{1}{\mu_2} < 1\]
Some Notes and Comments

Lessons Learned from KSRS

- Stability is not just a property of the network but rather of both the network and the control policy – this is in stark difference to classic queueing networks.
- “Innocent looking” control policies can be very bad.
- This is easy to detect (and fix) for small toy examples such as KSRS - but what about big complex manufacturing networks?
- The sub-field of stability analysis of queueing networks was “born” (early 90’s).

Summarizing Books (including KSRS and beyond)

Queueing Networks with Infinite Supplies
A Different Kind of Model

Many real life systems often operate some servers at full utilization yet in previous models $\rho = 1$ implies critically unstable behavior
Many real life systems often operate some servers at full utilization yet in previous models $\rho = 1$ implies critically unstable behavior.

Infinite Supply Models

- Assume that servers generate arrivals to the network by having some of the queues that never run out of work.
- This allows full utilization of servers.
- Analyze stability for non-idling (fully-utilizing) control policies.
A Different Kind of Model

Many real life systems often operate some servers at full utilization yet in previous models $\rho = 1$ implies critically unstable behavior

Infinite Supply Models

- Assume that servers generate arrivals to the network by having some of the queues that never run out of work
- This allows full utilization of servers
- Analyze stability for non-idling (fully-utilizing) control policies

The simplest example is Gideon Weiss’s push-pull network:

![Push-Pull Network Diagram]
Under Poisson assumptions, every control policy \(P : \mathbb{Z}^2_+ \rightarrow \{\text{push}, \text{pull}\}^2 \) (with restrictions at the axes) implies a Markov chain on \(\mathbb{Z}^2_+ \).

The Push-Pull Queueing Network as a Markov Chain

Server 1

\[\infty \stackrel{\lambda_2}{\longrightarrow} \mathbb{Q}_2 \]

\[\mu_2 \]

Server 2

\[\mathbb{Q}_1 \stackrel{\mu_1}{\longrightarrow} \infty \]

\[\lambda_1 \]
Policies and Markov Chains

Under **Poisson assumptions**, every control policy \(P : \mathbb{Z}_+^2 \to \{\text{push, pull}\}^2 \) (with restrictions at the axes) implies a Markov chain on \(\mathbb{Z}_+^2 \)
The Push-Pull Network with $\lambda_i < \mu_i$
The Push-Pull Network with $\lambda_i < \mu_i$

Pull-Priority Policy is Stabilizing
The Push-Pull Network with $\lambda_i > \mu_i$
The Push-Pull Network with $\lambda_i > \mu_i$

A Threshold Policy is Stabilizing
Is there a $\mathcal{P} : \mathbb{Z}_+^2 \rightarrow \{\text{push, pull}\}^2$ (with restrictions at the axes) such that the Markov chain has a **positive recurrent** state that is reached w.p. 1?
Is there a $P : \mathbb{Z}_+^2 \rightarrow \{\text{push, pull}\}^2$ (with restrictions at the axes) such that the Markov chain has a positive recurrent state that is reached w.p. 1?

We’ll get back to this in a few minutes....
Push-Pull Rings
Generalizes the Push to \(M \) servers

- \(M \) queues, each with "potential load" \(\gamma_i = \frac{\lambda_i}{\mu_i} \)
- Pull-priority policy
- An interesting case is when \(\gamma_i > 1 \) but "not too large":

 It turns out that odd rings are stable yet even rings are not
Stochastic Model \((Q(t), T(t))\)

\[
Q_i(t) = Q_i(0) + S_{i,1} (T_{i,1}(t)) - S_{i,2} (T_{i,2}(t)) \\
t = T_{i,1}(t) + T_{i-1,2}(t) \\
0 = \int_0^t Q_i(s) dT_{i+1,1}(s)
\]

Associated Fluid Model \((\bar{Q}(t), \bar{T}(t))\)

\[
\bar{Q}_i(t) = \bar{Q}_i(0) + \lambda_i \bar{T}_{i,1}(t) - \mu_i \bar{T}_{i,2}(t) \\
t = \bar{T}_{i,1}(t) + \bar{T}_{i-1,2}(t) \\
0 = \int_0^t \bar{Q}_i(s) d\bar{T}_{i+1,1}(s)
\]
Fluid Stability Framework

Thm: (Dai '95), adapted to infinite supplies

Assume minor technical assumptions on the processing time distributions. If there exists a τ such that for all solutions of the fluid model and all $t \geq \tau$, $\sum \bar{Q}_i(t) = 0$ then the (stochastic) network is stable.

- All solutions of the fluid model are Lipschitz, thus have derivatives a.e.
- **Regular time points:** Time points at which derivatives exists

Lemma

If we have a Lyapounov function: $V : \mathbb{R}^M \rightarrow \mathbb{R}$ such that for all regular time points of all solutions of the fluid model, $\frac{d}{dt} V(\bar{Q}(t)) < -\epsilon$ for some $\epsilon > 0$, then the fluid model is stable.
Stability Result: \(M \) odd, \(\gamma_i > 1 \)

Theorem (Erjen Lefeber, Gideon Weiss, Y.N.)

The push-pull ring with \(M \) odd, \(\gamma_i > 1 \) for all \(i \), operating under a pull-priority policy is stable if \(\Delta < 0 \), where

\[
\Delta = \sum_{i=1}^{M} c_i \left(\frac{M-1}{2} (\gamma_i - 1) - 1 \right),
\]

with,

\[
c_i = \left((\cdots (((\gamma_{i-1}-1)\gamma_{i-2}+1)\gamma_{i-3}-1)\gamma_{i-4} \cdots \cdots \cdots)\gamma_{i+2}-1)\gamma_{i+1}+1.\right.
\]

Note: If \(\gamma_i = \gamma \) for all \(i \) then the stability condition reduces to:

\[
\gamma < 1 + \frac{1}{M-1}
\]
Use \(V(x) = \sum_{i=1}^{M} c_i x_i \) as Lyapounov function for the fluid model with coefficients, \(c_i \), designed based on the intuition that “typical” fluid trajectories eventually cycle on states of the form (e.g. \(M = 5 \)):

\[(+, 0, +, 0, +), (+, +, 0, +, 0), (0, +, +, 0, +), (+, 0, +, +, 0), (0, +, 0, +, +). \]

The \(c_i \) are such that \(\dot{V}(t) \) is constant during such cycles:

\[
\begin{bmatrix}
-1 & 0 & \gamma_3 - 1 & 0 & \gamma_5 - 1 \\
\gamma_1 - 1 & -1 & 0 & \gamma_4 - 1 & 0 \\
0 & \gamma_2 - 1 & -1 & 0 & \gamma_5 - 1 \\
\gamma_1 - 1 & 0 & \gamma_3 - 1 & -1 & 0 \\
0 & \gamma_2 - 1 & 0 & \gamma_4 - 1 & -1 \\
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2 \\
c_3 \\
c_4 \\
c_5 \\
\end{bmatrix}
= \begin{bmatrix}
\Delta \\
\Delta \\
\Delta \\
\Delta \\
\Delta \\
\end{bmatrix}
\]

2. Characterize the regular time points and show that on these time points the Lyapounov function has negative drift

3. Now apply Jim Dai’s stability framework
Non-Stabilizability
Is there a $\mathcal{P} : \mathbb{Z}_+^2 \rightarrow \{\text{push, pull}\}^2$ (with restrictions at the axes) such that the Markov chain has a positive recurrent state that is reached w.p. 1?
The Push-Pull Network with $\lambda_i = \mu_i$

Is there a $\mathcal{P} : \mathbb{Z}_+^2 \to \{\text{push}, \text{pull}\}^2$ (with restrictions at the axes) such that the Markov chain has a positive recurrent state that is reached w.p. 1?

Theorem (Leonardo Rojas-Nandayapa, Tom Salisbury, Y.N.)
The push-pull network with $\lambda_i = \mu_i, i = 1, 2$ is non-stabilizable.
Non-stabilizability Proof

(This version assumes: $\lambda_1 = \mu_1 = \mu_2 = \lambda_2$) for simplicity

1. Set x_n as the embedded Markov chain of $X(t) = (Q_1(t), Q_2(t))$

2. Define $g((x_1, x_2)) = x_1 - x_2$ and $Z_n = g(X_n)$
 Z_n is a martingale for any \mathcal{P}:

3. Assume \exists positive recurrent $B \subset \mathbb{Z}^2_+$. Take $x, y \in B$ with $g(x) \neq g(y)$

4. Set $X_0 = x$ and define $T = \inf\{n \geq 0 : X_n = y\}$

5. For B to be positive recurrent, $E[T] < \infty$ so:

 $g(x) = E[Z_0] = E[Z_T] = g(y)$,

 a contradiction.
The idea of finding a linear-martingale simultaneously for all possible policies turns out to be fruitful in greater generality:
The idea of finding a linear-martingale simultaneously for all possible policies turns out to be fruitful in greater generality:

Theorem (Leonardo Rojas-Nandayapa, Tom Salisbury, Y.N.)

Consider controlled queueing networks \(\{X_n, \ n \geq 0\} \) on \(\mathbb{Z}_+^M \) with \(L < \infty \) possible actions. Denote, by \(\mathbf{D} \) the \(L \times M \) matrix with rows,

\[
\Delta_i := E_{\text{action } i}[X_{n+1} - X_n \mid X_n], \quad i = 1, \ldots, L.
\]

Then subject to technical non-degeneracy conditions, if

\[
\text{rank}(\mathbf{D}) < M,
\]

then the network is non-stabilizable.
Corollary (Leonardo Rojas-Nandayapa, Tom Salisbury, Y.N.)

Push-Pull Rings with M even and $\lambda_i = \mu_i$ are non-stabilizable.
Corollary (Leonardo Rojas-Nandayapa, Tom Salisbury, Y.N.)

Consider an infinite supply network with 2 servers and S streams. Assume,

$$\sum_{j \in C_1(i)} \mu_{i,j}^{-1} = \sum_{j \in C_2(i)} \mu_{i,j}^{-1}, \quad i = 1, \ldots, S,$$

then the network is non-stabilizable.
Current Projects Related to Stability Properties of Queueing Networks

- With Leonardo Rojas-Nandayapa and Tom Salisbury: Non-stabilizability of similar models under general processing time assumptions (can not use Martingale method as is)

- With Erjen Lefeber and Dieter Armbruster: It is known that in certain cases stability depends on the distributional assumptions. We have an illustration of this phenomenon based on deterministic dynamical (hybrid) systems

- Long term interest: Designing and understanding stabilizing adaptive control methods for complex queueing networks
References

