Non-Existence of Stabilising Policies for the Critical Push-Pull Network and Generalisations

Yoni Nazarathy⁽¹⁾, Leonardo Rojas-Nandayapa⁽¹⁾, Thomas S. Salisbury⁽²⁾.

June 11, 2012, Jerusalem

- (1) The University of Queensland, Brisbane, Australia
- (2) York University, Toronto, Canada

The Push-Pull Queueing Network

Kopzon - Weiss (2002), Kopzon - N - Weiss (2009), N - Weiss (2010), Lefeber - Weiss (...)

Look for a stationary, deterministic, preemptive, memory-less, non-idling, central control law (policy) : $\mathcal{P}: \mathbb{Z}_+^2 \to \{\text{push}, \text{pull}\}^2$

Each policy yields a Markov chain on \mathbb{Z}_+^2

A policy is **stable** if the resulting Markov chain has a positive recurrent class, reached w.p. 1

Does such a policy exist?

"Pull-Priority" Policy

Stable iff $\lambda < \mu$

"Thresholds Policy"

Stable iff $\lambda > \mu$

Intermediate Summary

Stable policies exist for both the $\lambda < \mu$ case and the $\lambda > \mu$ case.

What about the critical $\lambda = \mu$ case?

Proposition: If $\lambda = \mu$ there does not exist a stable \mathcal{P}

Proof: $g((x_1, x_2)) = x_1 - x_2$, $Z_n = g(X_n)$ is a martingale for any \mathcal{P}

Assume \exists positive recurrent $\mathcal{B} \subset \mathbb{Z}_+^2$. Take $\mathbf{x}, \mathbf{y} \in \mathcal{B}$ with $g(\mathbf{x}) \neq g(\mathbf{y})$

Set $X_0 = \mathbf{x}$ w.p. 1 and define $T = \inf\{n \ge 0 : X_n = \mathbf{y}\}$

For \mathcal{B} positive recurrent, $\mathbb{E}\left[T\right]<\infty$, so:

$$g(\mathbf{x}) = \mathbb{E}[Z_0] = \mathbb{E}[Z_T] = g(\mathbf{y})$$

a contradiction.

Generalisation to "Homogenous" Controlled Random Walks

 $X_n \in \mathbb{Z}_+^M$ with actions $\mathcal{A}(\mathbf{z})$ for state \mathbf{z} yielding "limited" jumps To show non-stabilisabily find $g(\cdot)$:

$$\mathbb{E}_a[g(X_{n+1}) - g(X_n) | X_n = \mathbf{z}] = 0, \quad \mathbf{z} \in \mathbb{Z}_+^M, \ a \in \mathcal{A}(\mathbf{z}).$$

Set $A = \bigcup_{\mathbf{z}} A(\mathbf{z})$, assume $|A| < \infty$ and $\mathbb{P}_a(\cdot | \mathbf{z})$ "same" for all \mathbf{Z}

Then we have $|\mathcal{A}|$ equations for a harmonic function $g(\cdot)$:

Go for linear
$$g(\cdot)$$
: $g(\mathbf{z}) = \boldsymbol{\alpha}' \mathbf{z}$
$$\boldsymbol{\alpha}' \mathbb{E}_a[X_{n+1} - X_n \, | \, X_n] = 0, \ a \in \mathcal{A} \quad \text{or} \quad \mathbf{D}\boldsymbol{\alpha} = \mathbf{0}$$

Proposition: The homogenous controlled random walk is non-stabilisable if $rank(\mathbf{D}) < M$.

Application to Generalisations of the Push-Pull

Critical:
$$\frac{1}{\sum_{j=1}^{N_i} \frac{1}{\lambda_{i,j}}} = \frac{1}{\sum_{j=1}^{M_i} \frac{1}{\mu_{i,j}}}, i = 1, 2$$
 Critical: $\lambda_i = \mu_i, i = 1, \dots, M$

Critical:
$$\lambda_i = \mu_i, i = 1, \dots, M$$

Structured matrixes:

$$\mathbf{D}_{(N_1+M_2)(N_2+M_1)\times(N_1+N_2+M_1+M_2-2)}$$

 $\mathbf{D}_{2^M \times M}$

The Structure of **D**

Action on Server $i-1$	Action on Server i	Drift of Queue i
push	push	λ_i
push	pull	$\lambda_i - \mu_i := \delta_i$
pull	push	0
pull	pull	$-\mu_i$

i'th entry	i+1'th entry
1	1 or δ
-1	-1 or 0
0	δ or 1
δ	0 or -1

- 1. There are no adjacent -1's and 1's.
- 2. The number of 0's between **any** two entries with the same sign is zero or even.
- 3. The number of 0's between **any** two entries with opposite signs is **odd**.
- 4. The number of 0's is even.

Proposition: For critical rings

 $\operatorname{rank}(\mathbf{D}_{2^M \times M}) = \begin{cases} M - 1 & \text{if } M \text{ is even,} \\ M & \text{if } M \text{ is odd.} \end{cases}$

So critical rings with M even are non-stabilisable

Critical rings with M odd are stable with "pull-priority"

$$\operatorname{rank}(\mathbf{D}_{2^M \times M}) = \begin{cases} M - 1 & \text{if } M \text{ is even,} \\ M & \text{if } M \text{ is odd.} \end{cases}$$

Re-entrant lines on Two Servers

Proposition:

If
$$\frac{1}{\sum_{j=1}^{N_i} \frac{1}{\lambda_{i,j}}} = \frac{1}{\sum_{j=1}^{M_i} \frac{1}{\mu_{i,j}}}$$
, $i = 1, 2$ then the

network is non-stabilisable

Note: If $\frac{1}{\sum_{j=1}^{N_i} \frac{1}{\lambda_{i,j}}} < \frac{1}{\sum_{j=1}^{M_i} \frac{1}{\mu_{i,j}}}$, i=1,2 then "pull-priority-LBFS" is stable

Guo - Lefeber - N - Zhang - Weiss (2011...)

Extra: Necessary conditions for rate stability

$$\theta_i = \lim_{t \to \infty} \frac{T_i(t)}{t}$$

$$\theta_1 \lambda_1 = (1 - \theta_2) \mu_1$$

$$(1 - \theta_1) \mu_2 = \theta_2 \lambda_2$$

$$(\theta_1, \theta_2) = \left(\frac{\mu_1(\lambda_2 - \mu_2)}{\lambda_1 \lambda_2 - \mu_1 \mu_2}, \frac{\mu_2(\lambda_1 - \mu_1)}{\lambda_1 \lambda_2 - \mu_1 \mu_2}\right)$$