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The model:
Processor sharing scheduling with linear slow down
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The model

Background: “classic” processor sharing queue with N users

v
(
q(t)

)
=

β

q(t)
,

`i =

∫ di

ai

v
(
q(t)

)
dt, q(t) =

N∑
i=1

1{t ∈ [ai, di]}

Think: CPU time-sharing batch jobs

In our model, set v(·) to have “linear slowdown”

v
(
q(t)

)
= β − α

(
q(t)− 1

)
β ≡ free flow speed
α ≡ slowdown rate
Assume β − α(N − 1) > 0

Think: aggregated urban road network
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The model

`i =

∫ di

ai

v
(
q(t)

)
dt, v

(
q(t)

)
= β−α

(
q(t)−1

)
, q(t) =

N∑
i=1

1{t ∈ [ai, di]}

Objective function for scheduling

ci(ai, di) = γ1(di − d∗i )2 + γ2(ai − a∗i )2 + γ3(di − ai)

TotalCost
(
a1, . . . , aN

)
=

N∑
i=1

ci
(
ai, di(a1, . . . , aN )

)

Research goal: optimization of total cost
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Dynamics:
How does {ai} determine {di}?
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Dynamics

Example

β = 15, α = 5, N = 3, `1 = `2 = `3 = 30
In this case, “free flow travel time” = 2
Assume scheduler decides a1 = 0, a2 = 1 and a3 = 3

t

work

` a1 a2 a3

d1 = 2.50 d2 = 3.75 d3 = 5.25
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Dynamics

N equations

`i =

∫ di

ai

β − α
(( N∑

j=1

1{t ∈ [aj , dj ]}
)
− 1
)
dt, i = 1, . . . , N

Observation: If `i ≡ ` then the arrival and departure sequences
have the same order. We make this assumption throughout!

Label the arrivals: a1 ≤ a2 ≤ . . . ≤ aN
Thus the departures satisfy: d1 ≤ d2 ≤ . . . ≤ dN

To describe the order of {ai} vs. {di} use:

ki := max
{
k : ak ≤ di

}
, or hi := min

{
h : dh ≥ ai

}
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Dynamics

t

work

` a1 a2 a3

d1 = 2.50 d2 = 3.75 d3 = 5.25

ki := max
{
k : ak ≤ di

}
, or hi := min

{
h : dh ≥ ai

}
In this example: a1 ≤ a2 ≤ d1 ≤ a3 ≤ d2 ≤ d3, so

k1 = 2, k2 = 3, k3 = 3, and h1 = 1, h2 = 1, h3 = 2
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Determining {di} based on {ai}

Lemma

Assume that {ai} are ordered: a1 ≤ a2 ≤ . . . ≤ aN and assume
that k1, . . . , kN and h1, . . . , hN describe the order of {di},
then for i = 1, . . . , N ,

di =
`+

(
β − α(i− hi)

)
ai + α

(∑i−1
j=hi

dj −
∑ki

j=i+1 aj

)
β − α(ki − i)

with the special cases,

d1 =
`+ βa1 − α

∑k1
j=2 aj

β − α(k1 − 1)
, dN =

`+ βaN + α
∑N−1

j=hN
(dj − aN )

β
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Derivation

Simply “play around” with the N equations

`i =

∫ di

ai

β − α
(( N∑

j=1

1{t ∈ [aj , dj ]}
)
− 1
)
dt, i = 1, . . . , N

` = (β + α)(di − ai)− α
N∑
j=1

∫ di
ai

1{t ∈ [aj , dj ]}dt

= (β + α)(di − ai)− α
N∑
j=1

(
di ∧ dj − ai ∨ aj

)+

= (β + α)(di − ai)− α
i−1∑
j=1

(
di ∧ dj − ai ∨ aj

)+ − α(di − ai)− α N∑
j=i+1

(
di ∧ dj − ai ∨ aj

)+

= −βai + (β − α(N − i))di − α
i−1∑
j=1

dj + α

i−1∑
j=1

(ai ∧ dj) + α
N∑

j=i+1

(aj ∧ di).

Now use ki and hi values to resolve sums with minimum...
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Proposition

We have an algorithm that finds the unique {di} corresponding to
{ai} and requires at most 2N steps

Input: a = (a1, ..., aN )
Output: d = (d1, ..., dN ), k = (k1, ..., kN ) and h = (h1, ..., hN )

init k = h = (1, 2, 3, . . . , N)
init d = ∅
for i = 1, . . . , N do

init k = i ∨ ki−1

compute d̃i(k, hi,d)
while d̃i(k, h,d) ≤ ak+1 do

increment k
compute d̃i(k, hi,d)

end while
set ki = k
set di = d̃i(k, hi,d)
set hi+1 = h̃i+1(k1, . . . , ki+1)

end for
return (d,k,h)
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Towards optimization procedures
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Supporting algorithms for optimization

We have the following algorithms

1. Optimizing efficiently over one coordinate (changing one ai)
and keeping the rest fixed

2. More generally a line search for optimizing over some line

3. Given an ordering (e.g. k1, . . . , kN ), a specification of a
quadratic program for optimizing over a region of a’s that
maintain that order

Our goal is to have an optimization procedure that uses
the above and attains a local minimum efficiently
(perhaps with a guaranteed probability)

We are still not fully there!
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Possible naive optimization procedures

Naive uses of the supporting algorithms

1. Optimizing efficiently over one coordinate (changing one ai)
and keeping the rest fixed
→ Fits naturally in “coordinate pivot iteration” (but
our objective is not smooth)!

2. More generally a line search for optimizing over some line
→ Can also be used in an iteration procedure over N
orthogonal directions

3. Given an ordering (e.g. k1, . . . , kN ), a specification of a
quadratic program for optimizing over a region of a’s that
maintain that order
→ Is useful for exhaustive search in finite time
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Optimizing over the arrival of one user (ai)
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Optimizing over the arrival of one user (ai)

init a = sort(a(r)), x = a
run Alg. 1(a)→ (d,k,h)

init a
(r)
∗ = a(r), m

(r)
∗ = T (x)

while x ≤ a do

init π = order(a(r)), a = sort(a−r ∪ x)
compute θ, η, T , t, T ′(x) > 0

if T ′(x)(r) < 0 then
compute x0 and T (x0)
if x0 < x + t then

if T (x0) < m
(r)
∗ then

set a
(r)
∗ =

(
a
(r)
∗
)
−r
∪ (x0), m

(r)
∗ = T (x0)

end if

else if T (x + t) < m
(r)
∗ then

set a
(r)
∗ =

(
a
(r)
∗
)
−r
∪ (x + t), m

(r)
∗ = T (x + t)

end if
end if
set x = x + t
for τ ∈ T do

if τ ∈ {1, . . . , N then
if θτ < 0 then
hkτ = hkτ + 1, kτ = kτ − 1

else if θτ > 0 then
kτ = kτ + 1, hkτ = hkτ − 1

end if
end if

end for
end while

return a
(r)
∗ and m

(r)
∗
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Each one coordinate search is efficient

Proposition

In any execution of a one coordinate search, time is broken up to
at most 1

6N
3 − 1

2N
2 + 7

6N intervals
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Optimization example (coordinate pivot iteration)

5 10 15 20

−
4

−
2

0
2

4

Index

a1

d∗i – desired departure time

ai – optimized arrival time

di – actual departure time
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Convergence not guaranteed!
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Wrap up
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`i =

∫ di

ai

v
(
q(t)

)
dt, v

(
q(t)

)
= β−α

(
q(t)−1

)
, q(t) =

N∑
i=1

1{t ∈ [ai, di]}

ci(ai, di) = γ1(di − d∗i )2 + γ2(ai − a∗i )2 + γ3(di − ai)

TotalCost
(
a1, . . . , aN

)
=

N∑
i=1

ci
(
ai, di(a1, . . . , aN )

)

Summary

• Efficient algorithm for local minimum – Not yet

• Finite time algorithm for global minimum – Yes

• Outlook — ???

Thanks and enjoy your lunch!!!
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