
Processor Sharing Scheduling
with Linear Slowdown

Yoni Nazarathy∗

The University of Queensland

Joint work with
Liron Ravner∗∗, Moshe Haviv and Hai Le Vu

QANZIAM,
October, 2013,

Brisbane, Australia

* Work partially supported by ARC through DP130100156 and DE130100291

** With thanks to the Australia-Israel Scientific Exchange Foundation

Outline

• Model

• Dynamics

• Optimization

2

The model:
Processor sharing scheduling with linear slow down

3

The model

Background: “classic” processor sharing queue with N users

v
(
q(t)

)
=

β

q(t)
,

`i =

∫ di

ai

v
(
q(t)

)
dt, q(t) =

N∑
i=1

1{t ∈ [ai, di]}

Think: CPU time-sharing batch jobs

In our model, set v(·) to have “linear slowdown”

v
(
q(t)

)
= β − α

(
q(t)− 1

)
β ≡ free flow speed
α ≡ slowdown rate
Assume β − α(N − 1) > 0

Think: aggregated urban road network

4

The model

Background: “classic” processor sharing queue with N users

v
(
q(t)

)
=

β

q(t)
,

`i =

∫ di

ai

v
(
q(t)

)
dt, q(t) =

N∑
i=1

1{t ∈ [ai, di]}

Think: CPU time-sharing batch jobs

In our model, set v(·) to have “linear slowdown”

v
(
q(t)

)
= β − α

(
q(t)− 1

)
β ≡ free flow speed
α ≡ slowdown rate
Assume β − α(N − 1) > 0

Think: aggregated urban road network
4

The model

`i =

∫ di

ai

v
(
q(t)

)
dt, v

(
q(t)

)
= β−α

(
q(t)−1

)
, q(t) =

N∑
i=1

1{t ∈ [ai, di]}

Objective function for scheduling

ci(ai, di) = γ1(di − d∗i)2 + γ2(ai − a∗i)2 + γ3(di − ai)

TotalCost
(
a1, . . . , aN

)
=

N∑
i=1

ci
(
ai, di(a1, . . . , aN)

)

Research goal: optimization of total cost

5

The model

`i =

∫ di

ai

v
(
q(t)

)
dt, v

(
q(t)

)
= β−α

(
q(t)−1

)
, q(t) =

N∑
i=1

1{t ∈ [ai, di]}

Objective function for scheduling

ci(ai, di) = γ1(di − d∗i)2 + γ2(ai − a∗i)2 + γ3(di − ai)

TotalCost
(
a1, . . . , aN

)
=

N∑
i=1

ci
(
ai, di(a1, . . . , aN)

)

Research goal: optimization of total cost

5

The model

`i =

∫ di

ai

v
(
q(t)

)
dt, v

(
q(t)

)
= β−α

(
q(t)−1

)
, q(t) =

N∑
i=1

1{t ∈ [ai, di]}

Objective function for scheduling

ci(ai, di) = γ1(di − d∗i)2 + γ2(ai − a∗i)2 + γ3(di − ai)

TotalCost
(
a1, . . . , aN

)
=

N∑
i=1

ci
(
ai, di(a1, . . . , aN)

)

Research goal: optimization of total cost

5

Dynamics:
How does {ai} determine {di}?

6

Dynamics

Example

β = 15, α = 5, N = 3, `1 = `2 = `3 = 30
In this case, “free flow travel time” = 2
Assume scheduler decides a1 = 0, a2 = 1 and a3 = 3

t

work

` a1 a2 a3

d1 = 2.50 d2 = 3.75 d3 = 5.25

7

Dynamics

Example

β = 15, α = 5, N = 3, `1 = `2 = `3 = 30
In this case, “free flow travel time” = 2
Assume scheduler decides a1 = 0, a2 = 1 and a3 = 3

t

work

` a1 a2 a3

d1 = 2.50 d2 = 3.75 d3 = 5.25
7

Dynamics

N equations

`i =

∫ di

ai

β − α
((N∑

j=1

1{t ∈ [aj , dj]}
)
− 1
)
dt, i = 1, . . . , N

Observation: If `i ≡ ` then the arrival and departure sequences
have the same order. We make this assumption throughout!

Label the arrivals: a1 ≤ a2 ≤ . . . ≤ aN
Thus the departures satisfy: d1 ≤ d2 ≤ . . . ≤ dN

To describe the order of {ai} vs. {di} use:

ki := max
{
k : ak ≤ di

}
, or hi := min

{
h : dh ≥ ai

}

8

Dynamics

N equations

`i =

∫ di

ai

β − α
((N∑

j=1

1{t ∈ [aj , dj]}
)
− 1
)
dt, i = 1, . . . , N

Observation: If `i ≡ ` then the arrival and departure sequences
have the same order. We make this assumption throughout!

Label the arrivals: a1 ≤ a2 ≤ . . . ≤ aN
Thus the departures satisfy: d1 ≤ d2 ≤ . . . ≤ dN

To describe the order of {ai} vs. {di} use:

ki := max
{
k : ak ≤ di

}
, or hi := min

{
h : dh ≥ ai

}

8

Dynamics

N equations

`i =

∫ di

ai

β − α
((N∑

j=1

1{t ∈ [aj , dj]}
)
− 1
)
dt, i = 1, . . . , N

Observation: If `i ≡ ` then the arrival and departure sequences
have the same order. We make this assumption throughout!

Label the arrivals: a1 ≤ a2 ≤ . . . ≤ aN
Thus the departures satisfy: d1 ≤ d2 ≤ . . . ≤ dN

To describe the order of {ai} vs. {di} use:

ki := max
{
k : ak ≤ di

}
, or hi := min

{
h : dh ≥ ai

}
8

Dynamics

t

work

` a1 a2 a3

d1 = 2.50 d2 = 3.75 d3 = 5.25

ki := max
{
k : ak ≤ di

}
, or hi := min

{
h : dh ≥ ai

}
In this example: a1 ≤ a2 ≤ d1 ≤ a3 ≤ d2 ≤ d3, so

k1 = 2, k2 = 3, k3 = 3, and h1 = 1, h2 = 1, h3 = 2

9

Determining {di} based on {ai}

Lemma

Assume that {ai} are ordered: a1 ≤ a2 ≤ . . . ≤ aN and assume
that k1, . . . , kN and h1, . . . , hN describe the order of {di},
then for i = 1, . . . , N ,

di =
`+

(
β − α(i− hi)

)
ai + α

(∑i−1
j=hi

dj −
∑ki

j=i+1 aj

)
β − α(ki − i)

with the special cases,

d1 =
`+ βa1 − α

∑k1
j=2 aj

β − α(k1 − 1)
, dN =

`+ βaN + α
∑N−1

j=hN
(dj − aN)

β

10

Derivation

Simply “play around” with the N equations

`i =

∫ di

ai

β − α
((N∑

j=1

1{t ∈ [aj , dj]}
)
− 1
)
dt, i = 1, . . . , N

` = (β + α)(di − ai)− α
N∑
j=1

∫ di
ai

1{t ∈ [aj , dj]}dt

= (β + α)(di − ai)− α
N∑
j=1

(
di ∧ dj − ai ∨ aj

)+

= (β + α)(di − ai)− α
i−1∑
j=1

(
di ∧ dj − ai ∨ aj

)+ − α(di − ai)− α N∑
j=i+1

(
di ∧ dj − ai ∨ aj

)+

= −βai + (β − α(N − i))di − α
i−1∑
j=1

dj + α

i−1∑
j=1

(ai ∧ dj) + α
N∑

j=i+1

(aj ∧ di).

Now use ki and hi values to resolve sums with minimum...
11

Proposition

We have an algorithm that finds the unique {di} corresponding to
{ai} and requires at most 2N steps

Input: a = (a1, ..., aN)
Output: d = (d1, ..., dN), k = (k1, ..., kN) and h = (h1, ..., hN)

init k = h = (1, 2, 3, . . . , N)
init d = ∅
for i = 1, . . . , N do

init k = i ∨ ki−1

compute d̃i(k, hi,d)
while d̃i(k, h,d) ≤ ak+1 do

increment k
compute d̃i(k, hi,d)

end while
set ki = k
set di = d̃i(k, hi,d)
set hi+1 = h̃i+1(k1, . . . , ki+1)

end for
return (d,k,h)

12

Towards optimization procedures

13

Supporting algorithms for optimization

We have the following algorithms

1. Optimizing efficiently over one coordinate (changing one ai)
and keeping the rest fixed

2. More generally a line search for optimizing over some line

3. Given an ordering (e.g. k1, . . . , kN), a specification of a
quadratic program for optimizing over a region of a’s that
maintain that order

Our goal is to have an optimization procedure that uses
the above and attains a local minimum efficiently
(perhaps with a guaranteed probability)

We are still not fully there!

14

Supporting algorithms for optimization

We have the following algorithms

1. Optimizing efficiently over one coordinate (changing one ai)
and keeping the rest fixed

2. More generally a line search for optimizing over some line

3. Given an ordering (e.g. k1, . . . , kN), a specification of a
quadratic program for optimizing over a region of a’s that
maintain that order

Our goal is to have an optimization procedure that uses
the above and attains a local minimum efficiently
(perhaps with a guaranteed probability)

We are still not fully there!

14

Supporting algorithms for optimization

We have the following algorithms

1. Optimizing efficiently over one coordinate (changing one ai)
and keeping the rest fixed

2. More generally a line search for optimizing over some line

3. Given an ordering (e.g. k1, . . . , kN), a specification of a
quadratic program for optimizing over a region of a’s that
maintain that order

Our goal is to have an optimization procedure that uses
the above and attains a local minimum efficiently
(perhaps with a guaranteed probability)

We are still not fully there!

14

Possible naive optimization procedures

Naive uses of the supporting algorithms

1. Optimizing efficiently over one coordinate (changing one ai)
and keeping the rest fixed
→ Fits naturally in “coordinate pivot iteration” (but
our objective is not smooth)!

2. More generally a line search for optimizing over some line
→ Can also be used in an iteration procedure over N
orthogonal directions

3. Given an ordering (e.g. k1, . . . , kN), a specification of a
quadratic program for optimizing over a region of a’s that
maintain that order
→ Is useful for exhaustive search in finite time

15

Possible naive optimization procedures

Naive uses of the supporting algorithms

1. Optimizing efficiently over one coordinate (changing one ai)
and keeping the rest fixed
→ Fits naturally in “coordinate pivot iteration” (but
our objective is not smooth)!

2. More generally a line search for optimizing over some line
→ Can also be used in an iteration procedure over N
orthogonal directions

3. Given an ordering (e.g. k1, . . . , kN), a specification of a
quadratic program for optimizing over a region of a’s that
maintain that order
→ Is useful for exhaustive search in finite time

15

Possible naive optimization procedures

Naive uses of the supporting algorithms

1. Optimizing efficiently over one coordinate (changing one ai)
and keeping the rest fixed
→ Fits naturally in “coordinate pivot iteration” (but
our objective is not smooth)!

2. More generally a line search for optimizing over some line
→ Can also be used in an iteration procedure over N
orthogonal directions

3. Given an ordering (e.g. k1, . . . , kN), a specification of a
quadratic program for optimizing over a region of a’s that
maintain that order
→ Is useful for exhaustive search in finite time

15

Optimizing over the arrival of one user (ai)

−0.5 0.0 0.5

−
0.

5
0.

0
0.

5
1.

0

New arrival time

A
rr

iv
al

 &
 D

ep
ar

tu
re

 ti
m

es

New arrival
New departure

Fixed arrivals
Fixed departures

Coefficient changesNew arrival
New departure

Fixed arrivals
Fixed departures

Coefficient changes
16

Optimizing over the arrival of one user (ai)

−0.5 0.0 0.5

−
0.

5
0.

0
0.

5
1.

0

New arrival time

A
rr

iv
al

 &
 D

ep
ar

tu
re

 ti
m

es

New arrival
New departure

Fixed arrivals
Fixed departures

Coefficient changesNew arrival
New departure

Fixed arrivals
Fixed departures

Coefficient changes

−0.5 0.0 0.5

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

New arrival time

To
ta

l c
os

t

Total cost Coefficient changes
17

Optimizing over the arrival of one user (ai)

init a = sort(a(r)), x = a
run Alg. 1(a)→ (d,k,h)

init a
(r)
∗ = a(r), m

(r)
∗ = T (x)

while x ≤ a do

init π = order(a(r)), a = sort(a−r ∪ x)
compute θ, η, T , t, T ′(x) > 0

if T ′(x)(r) < 0 then
compute x0 and T (x0)
if x0 < x + t then

if T (x0) < m
(r)
∗ then

set a
(r)
∗ =

(
a
(r)
∗
)
−r
∪ (x0), m

(r)
∗ = T (x0)

end if

else if T (x + t) < m
(r)
∗ then

set a
(r)
∗ =

(
a
(r)
∗
)
−r
∪ (x + t), m

(r)
∗ = T (x + t)

end if
end if
set x = x + t
for τ ∈ T do

if τ ∈ {1, . . . , N then
if θτ < 0 then
hkτ = hkτ + 1, kτ = kτ − 1

else if θτ > 0 then
kτ = kτ + 1, hkτ = hkτ − 1

end if
end if

end for
end while

return a
(r)
∗ and m

(r)
∗

18

Each one coordinate search is efficient

Proposition

In any execution of a one coordinate search, time is broken up to
at most 1

6N
3 − 1

2N
2 + 7

6N intervals

19

Optimization example (coordinate pivot iteration)

5 10 15 20

−
4

−
2

0
2

4

Index

a1

d∗i – desired departure time

ai – optimized arrival time

di – actual departure time

20

Convergence not guaranteed!

6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1

0.
92

0.
96

1.
00

N=3
Objective function value

E
C

D
F

13.0 13.5 14.0

0.
90

0.
94

0.
98

N=5
Objective function value

E
C

D
F

61.0 61.5 62.0 62.5

0.
97

5
0.

99
0

N=20
Objective function value

E
C

D
F

21

Wrap up

22

`i =

∫ di

ai

v
(
q(t)

)
dt, v

(
q(t)

)
= β−α

(
q(t)−1

)
, q(t) =

N∑
i=1

1{t ∈ [ai, di]}

ci(ai, di) = γ1(di − d∗i)2 + γ2(ai − a∗i)2 + γ3(di − ai)

TotalCost
(
a1, . . . , aN

)
=

N∑
i=1

ci
(
ai, di(a1, . . . , aN)

)

Summary

• Efficient algorithm for local minimum – Not yet

• Finite time algorithm for global minimum – Yes

• Outlook — ???

Thanks and enjoy your lunch!!!

23

`i =

∫ di

ai

v
(
q(t)

)
dt, v

(
q(t)

)
= β−α

(
q(t)−1

)
, q(t) =

N∑
i=1

1{t ∈ [ai, di]}

ci(ai, di) = γ1(di − d∗i)2 + γ2(ai − a∗i)2 + γ3(di − ai)

TotalCost
(
a1, . . . , aN

)
=

N∑
i=1

ci
(
ai, di(a1, . . . , aN)

)
Summary

• Efficient algorithm for local minimum – Not yet

• Finite time algorithm for global minimum – Yes

• Outlook — ???

Thanks and enjoy your lunch!!!

23

`i =

∫ di

ai

v
(
q(t)

)
dt, v

(
q(t)

)
= β−α

(
q(t)−1

)
, q(t) =

N∑
i=1

1{t ∈ [ai, di]}

ci(ai, di) = γ1(di − d∗i)2 + γ2(ai − a∗i)2 + γ3(di − ai)

TotalCost
(
a1, . . . , aN

)
=

N∑
i=1

ci
(
ai, di(a1, . . . , aN)

)
Summary

• Efficient algorithm for local minimum – Not yet

• Finite time algorithm for global minimum – Yes

• Outlook — ???

Thanks and enjoy your lunch!!!

23

	Model 1

