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Minimal Background: Queueing Models in this Talk

Birth-Death queues:
M/M/1, M/M/1/K, M/M/s/K, M/M/s/K+M ...

General service times: G/G/1, G/G/1/K ...

Open stable Jackson networks

Open stable generalized Jackson networks

A basic packet conservation equation

Q(t) = Q(0) +
(

A(t)− L(t)
)
−
(

R(t) + D(t)
)
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Stochastic Counting Processes and their Variance

Poisson processes:

E[N(t)] = Var
(
N(t)

)
= λt

Renewal processes:

E[N(t)] ∼ λt Var
(
N(t)

)
∼ λc2t

Counting processes resulting from queues?

Q(t) = Q(0) +
(

A(t)− L(t)
)
−
(

R(t) + D(t)
)
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The Output Process D(·)

Q(t) = Q(0) +
(

A(t)− L(t)
)
−
(

R(t) + D(t)
)

Why analysis of the output counting process {D(t), t ≥ 0}?
Orders

Production

Arrival process to a downstream queueing system

Daryl Daley, “Queueing Output Processes”, Advances in Applied

Probability, 1976.

Some performance measures of interest

The law of {D(t), t ≥ 0}
E[D(t)], Var

(
D(t)

)
λ∗ := limt→∞

E[D(t)]
t , V := limt→∞

Var
(
D(t)
)

t , D := V
λ∗

Asymptotic normality: D(t) ∼ N
(
λ∗t, V t

)
, large t
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Talk Outline

A (new) formula for asymptotic variance of outputs, D := V
λ∗

Single servers (older BRAVO results)

Many server scaling (new BRAVO results)

Something else: Asymptotic variance in queueing networks
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Asymptotic Variance of Outputs
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Finite Birth-Death Asymptotic Variance

Irreducible birth-death process on finite state space

Birth rates: λ0, . . . , λJ−1

Death rates: µ1, . . . , µJ

Stationary distribution: π0, . . . , πJ

D(t) is number of downward transitions (deaths) during [0, t],
each “filtered” independently with state-dependent
probabilities, q1, . . . , qJ .

e.g. The departure process (processed packets) in
M/M/s/K+M systems

Of interest:

D =
V

λ∗
= lim

t→∞

Var
(
D(t)

)
E[D(t)]
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Finite Birth-Death Asymptotic Variance Formula

Theorem: Daryl Daley, Johan van Leeuwaarden, Y.N. 2013

D := lim
t→∞

Var
(
D(t)

)
E[D(t)]

= 1−2
J∑

i=0

(Pi −Λ∗i )
(

qi+1−
λ∗

πiλi
(Pi −Λ∗i )

)
,

with,

Pi :=
i∑

j=0

πj , λ∗ :=
J∑

j=1

µjqjπj , Λ∗i :=

∑i
j=1 µjqjπj

λ∗
.

Note: In Weiss, Y.N. 2008, similar expression for case qi ≡ 1

Note: In case λi ≡ λ, qi ≡ 1:

D = 1− 2
πJ

1− πJ

J∑
i=0

Pi

(
1− πJ

Pi

πi

)
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Idea of Renewal Reward Derivation

”Embed” D(t) in a Renewal-Reward Process, C (t)

1 (Xn,Yn) ≡ (busy cycle, number served) in cycle n

2 N(t) = sup{n :
∑n

i=1 Xi ≤ t}, C (t) =
∑N(t)

i=1 Yi

3 Asymptotic variance rates of C (t) and D(t) are equal

4 Known:
– Asymptotic variance rate of C (t) is 1

E[X ] Var
(
Y − E[Y ]

E[X ] X
)

– Systems of equations for 1’st, 2’nd and cross
moments of X and Y

X1

X2

X3

Y1

Y2

Y3

DHtL
CHtL

t
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Single Server BRAVO
(older results)
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M/M/1/K Queue

Here πi is truncated geometric distribution when λ 6= µ and a
uniform distribution when λ = µ

Using D = 1− 2 πJ
1−πJ

∑J
i=0 Pi

(
1− πJ Pi

πi

)
:

D =

{
1 + oK (1), λ 6= µ,
2
3 + oK (1), λ = µ.
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We call this BRAVO:

Balancing Reduces Asymptotic Variance of Outputs
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M/M/1 Queue

When K =∞, the formula for D does not hold. In this case,

D =

{
1, λ 6= µ,

?, λ = µ.

A guess is 2
3 , since for K <∞, D = 2

3 + oK (1)...

Theorem:
Ahmad Al-Hanbali, Michel Mandjes, Y. N., Ward Whitt, 2011

For the M/M/1 queue with λ = µ and arbitrary initial conditions
of Q(0) (with finite second moments),

D = 2
(

1− 2

π

)
≈ 0.727.

Proof based on analysis of classic Laplace transform of generating
function of D(χ) where χ is an exponential random variable.
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G/G/1 Queue

Moving away from the memory-less assumptions,

D =


c2
a , λ < µ,

?, λ = µ,

c2
s , λ > µ.

For M/M/1 it was 2(1− 2
π )...

Theorem:
Ahmad Al-Hanbali, Michel Mandjes, Y.N., Ward Whitt, 2011

For the G/G/1 queue with λ = µ, arbitrary finite second moment
initial conditions

(
Q(0),V (0),U(0)

)
, and finite fourth moments of

the inter-arrival and service times,

D = (c2
a + c2

s )
(

1− 2

π

)
.

Proof based on diffusion limit of (D(n·)− λn·)/
√
λn· as n→∞

(Iglehart and Whitt 1971). Fourth moments are a technical
condition used in establishing uniform integrability.
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G/G/1/K Queue

D =


c2
a + oK (1), λ < µ,

?, λ = µ,

c2
s + oK (1), λ < µ.

For M/M/1/K it was 2
3 + oK (1), for G/G/1 it was

(c2
a + c2

s )(1− 2
π )...

Conjecture (numerically tested): Y.N., 2011

For the G/G/1/K queue with λ = µ and arbitrary initial conditions
and light-tailed service and inter-arrival times,

D = (c2
a + c2

s )
1

3
+ O

( 1

K

)
.

Numerical verification done by representing the system as
PH/PH/1/K MAPs
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Many Servers
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M/M/s/b
√
sc

0.6 0.8 1.0 1.2 1.4 r

0.2

0.4

0.6

0.8

1.0
Dp

s=9

s=100

s=900
s=104

D0,1
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Quality and Efficiency Driven (QED) Scaling Regime

A sequence of systems

Consider a sequence of M/M/s/K queues with increasing
s = 1, 2, ... and with ρs := λ

sµ and Ks such that,

(1− ρs)
√

s → β ∈ (−∞,∞)

Ks√
s
→ η ∈ (0,∞)

So for large s:

ρs ≈ 1− β/
√

s

Ks ≈ η
√

s

Halfin, Whitt, 1981, Garnett, Mandelbaum, Reiman 2002, Borst, Mandelbaum,

Reiman, 2004, Whitt, 2004, Pang, Talreja, Whitt, 2007, Janssen, van Leeuwaarden,

Zwart, 2011, Kaspi, Ramanan 2011...
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Favorable QED Properties

Probability of delay converges to a value ∈ (0, 1)

Mean waiting times are typically O(s−1/2)

Large queue lengths almost never occur

Quick mixing times

In applications: Call-centers (etc...) describes behavior well
and allows for asymptotic approximate optimization of staffing
etc...

How about BRAVO?
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BRAVO for QED Queues
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M/M/s/K QED BRAVO

Theorem: Daryl Daley, Johan van Leeuwaarden, Y.N. 2013

Consider QED scaling with β 6= 0:

Dβ,η := lim
s,K→∞

lim
t→∞

Var
(
D(t)

)
E
(
D(t)

) ,
Dβ,η = 1− 2β2e−βηh2

φ(β)

∫ ∞
−β

(
1− βe−βηh

Φ(−u)

φ(u)

)
Φ(−u) du

+ 2e−βηh(1 + e−βηh)
(

1− βη − e−βη + (1− 2βηe−βη − e−2βη)h
)

where

h = lim
s→∞

P
(
Qs ≥ s)

1− e−βη
=

1

1− e−βη + βΦ(β)
φ(β)
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BRAVO viewed through the QED lens

-4 -2 0 2 4
Β
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DΒ,Η
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Η=2
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M/M/s/K QED BRAVO with ρ ≡ 1 (β = 0)

Theorem: Daryl Daley, Johan van Leeuwaarden, Y.N. 2013

Assume ρ ≡ 1 and Ks√
s
→ η ∈ (0,∞). Then

D0,η := lim
s,K→∞

lim
t→∞

Var
(
D(t)

)
E
(
D(t)

) ,
D0,η =

2

3
−
(
6− 3π

2

)
η − 1

2π
√

π
2 + 3

√
2π(1− log 2)

3
(
η +

√
π
2

)3
.
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M/M/s/bη
√
sc s →∞ at ρ ≡ 1 (β = 0)

0 2 4 6 8 10
Η
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0.66
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D
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Idea of BRAVO QED Proofs

Use

D = 1− 2
πJ

1− πJ

J∑
i=0

Pi

(
1− πJ

Pi

πi

)
.

Using QED scaling:

(1− ρs)
√

s → β,
Ks√

s
→ η,

“simply evaluate” the limit,

lim
s,K→∞

πJ
1− πJ

J∑
i=0

Pi

(
1− πJ

Pi

πi

)
.
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Intermediate Summary: BRAVO

Known BRAVO constants:

Single server finite buffer: 2/3
(for G/G replace 2 by c2

a + c2
s )

Single server infinite buffer 2(1− 2/π):
(for G/G replace 2 by c2

a + c2
s )

Memoryless many servers finite buffer: D0,η ∈ [0.6, 2/3]

Not yet known:

Memoryless many servers infinite buffer

Many servers without memoryless assumptions

Systems with reneging or other packet loss mechanisms

Other questions: How can BRAVO be harnessed in practice?
Why does BRAVO occur?
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Further properties of Var
(
D(t)

)
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The Stable M/G/1 Queue

Theorem: Sophie Hautphenne, Yoav Kerner, Y. N., Peter Taylor, 2013

Consider the stable M/G/1 queue with finite third service moment,
parameterized by (arrival rate, load, scv, skewness)= (λ, ρ, c2, γ).

Stationary version:

Var
(
D(t)

)
= λt + Le

ρ

(1− ρ)2
+ o(1),

Le =
(3c4 − 4γc3 + 6c2 − 1)ρ3 + (4γc3 − 12c2 + 4)ρ2 + (6c2 − 6)ρ

6
.

Starting empty version:

Var
(
D(t)

)
= λt − (1− L0)

ρ

(1− ρ)2
+ o(1),

L0 =
(3c4 − 4γc3 + 6c2 − 1)ρ3 + (4γc3 − 6c2 − 2)ρ2 − (6c2 − 6)ρ

12
.

M/M/1: c2 = 1, γ = 2. Le = 0, L0 = 0.
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M/M/1 Queue

20 000 40 000 60 000 80 000
t

-100 000

-50 000

0

50 000

VarHDHtLL
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=-12234.6

Slope = 2H1-
2
Π

L
Ρ = 0.991
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M/M/1 Queue
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M/M/1 Queue
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M/M/1 Queue
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Asymptotic Variance of Flows
in General Open Stable Queueing Networks

34



Stable Open Queueing Networks

Generalized Jackson network with external arrival vector α, routing
matrix P and service capacity vector µ.

Stable if ν := (I − P ′)−1α < µ.

Counting processes: E (·) are entrances to nodes (exogenous and
endogenous). Di ,j(·), are packets passed from node i to j .

Simple:

νi := lim
t→∞

E[Ei (t)]

t
.

Our contribution: Computable exact formulas for:

σi,j := lim
t→∞

Cov
(
Ei (t),Ej (t)

)
t

, σi1→j1,i2→j2 := lim
t→∞

Cov
(
Di1,j1 (t),Di2,j2 (t)

)
t

.
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Main Queueing Network Result

Theorem: Werner Scheinhardt, Y. N. 2013

Define,

Σ(D) := H Σ(F ) H ′, Σ(E) :=
(

BH + [I 0]
)

Σ(F )
(

BH + [I 0]
)′
.

Here Σ(F ) is the covariance matrix of the primitive input
sequences (arrivals and routing) and the matrices B and H are
easily constructed with only the inversion (I − P ′)−1.

Under general assumptions of stable (single or multi-class)
queueing networks, the processes D(·) and E (·) converge weakly to
Brownian motions with the above covariance matrices.

Further,

σi1→j1,i2→j2 = Σ
(D)
(i1−1)K+j1, (i2−1)K+j2

, σi ,j = Σ
(E)
i ,j .

Note: σ’s do not depend on the service variance. Compare with
QNA (Queueing Network Analyzer, Whitt 80’s).

36



Wrap Up
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Is all this useful?

BRAVO: Can it be incorporated in system planning,
estimation, or control?

Network Flows: Can heuristic queueing network
decomposition schemes be improved?

Other uses?
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