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Queues and Counting Processes:

Q(t) = Q(0) +
(

A(t)− L(t)
)
−
(

R(t) + D(t)
)

Why analysis of the output counting process D(t)?

Orders

Production

Arrival process to a downstream queueing system

Daryl Daley, “Queueing Output Processes”, Advances in Applied

Probability, 1976.

Some performance measures of interest

The law of {D(t), t ≥ 0}
E[D(t)], Var

(
D(t)

)
λ∗ := limt→∞

E[D(t)]
t , V := limt→∞

Var
(
D(t)
)

t , D := V
λ∗

Asymptotic normality: D(t) ∼ N
(
λ∗t, V t

)
, large t
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Outline

A (new) formula for asymptotic variance of outputs, D := V
λ∗

Single servers (older BRAVO results)

Many server scaling (new BRAVO results)
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Asymptotic Variance of Outputs
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Finite Birth-Death Asymptotic Variance

Irreducible birth-death process on finite state space

Birth rates: λ0, . . . , λJ−1

Death rates: µ1, . . . , µJ

Stationary distribution: π0, . . . , πJ

D(t) is number of downward transitions (deaths) during [0, t],
each “filtered” independently with state-dependent
probabilities, q1, . . . , qJ .

e.g. The departure process (served customers) in
M/M/s/K+M systems

Of interest:

D =
V

λ∗
= lim

t→∞

Var
(
D(t)

)
E[D(t)]
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Finite Birth-Death Asymptotic Variance Formula

Theorem: Daryl Daley, Johan van Leeuwaarden, Y.N. 2013

D := lim
t→∞

Var
(
D(t)

)
E[D(t)]

= 1−2
J∑

i=0

(Pi −Λ∗i )
(

qi+1−
λ∗

πiλi
(Pi −Λ∗i )

)
,

with,

Pi :=
i∑

j=0

πj , λ∗ :=
J∑

j=1

µjqjπj , Λ∗i :=

∑i
j=1 µjqjπj

λ∗
.

Note: In Weiss, Y.N. 2008, similar expression for case qi ≡ 1

Note: In case λi ≡ λ, qi ≡ 1:

D = 1− 2
πJ

1− πJ

J∑
i=0

Pi

(
1− πJ

Pi

πi

)
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Idea of Renewal Reward Derivation

”Embed” D(t) in a Renewal-Reward Process, C (t)

1 (Xn,Yn) ≡ (busy cycle, number served) in cycle n

2 N(t) = inf{n :
∑n

i=1 Xi > t}, C (t) =
∑N(t)

i=1 Yi

3 Asymptotic variance rates of C (t) and D(t) are equal

4 Known:
– Asymptotic variance rate of C (t) is 1

E[X ] Var
(
Y − E[Y ]

E[X ] X
)

– Systems of equations for 1’st, 2’nd and cross
moments of X and Y

X1

X2

X3

Y1

Y2

Y3

DHtL
CHtL

t
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Single Server BRAVO
(older results)
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M/M/1/K Queue

Here πi is truncated geometric distribution when λ 6= µ and a
uniform distribution when λ = µ

Using D = 1− 2 πJ
1−πJ

∑J
i=0 Pi

(
1− πJ Pi

πi

)
:

D =

{
1 + oK (1), λ 6= µ,
2
3 + oK (1), λ = µ.
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We call this BRAVO:

Balancing Reduces Asymptotic Variance of Outputs
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M/M/1 Queue

When K =∞, the formula for D does not hold. In this case,

D =

{
1, λ 6= µ,

?, λ = µ.

A guess is 2
3 , since for K <∞, D = 2

3 + oK (1)...

Theorem:
Ahmad Al-Hanbali, Michel Mandjes, Y. N., Ward Whitt, 2011

For the M/M/1 queue with λ = µ and arbitrary initial conditions
of Q(0) (with finite second moments),

D = 2
(

1− 2

π

)
≈ 0.727.

Proof based on analysis of classic Laplace transform of generating
function of D(χ) where χ is an exponential random variable.
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G/G/1 Queue

Moving away from the memory-less assumptions,

D =


c2
a , λ < µ,

?, λ = µ,

c2
s , λ > µ.

For M/M/1 it was 2(1− 2
π )...

Theorem:
Ahmad Al-Hanbali, Michel Mandjes, Y.N., Ward Whitt, 2011

For the G/G/1 queue with λ = µ, arbitrary finite second moment
initial conditions

(
Q(0),V (0),U(0)

)
, and finite fourth moments of

the inter-arrival and service times,

D = (c2
a + c2

s )
(

1− 2

π

)
.

Proof based on diffusion limit of (D(n·)− λn·)/
√
λn· as n→∞

(Iglehart and Whitt 1971). Fourth moments are a technical
condition used in establishing uniform integrability.
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G/G/1/K Queue

D =


c2
a + oK (1), λ < µ,

?, λ = µ,

c2
s + oK (1), λ < µ.

For M/M/1/K it was 2
3 + oK (1), for G/G/1 it was

(c2
a + c2

s )(1− 2
π )...

Conjecture (numerically tested), Y.N., 2011

For the G/G/1/K queue with λ = µ and arbitrary initial conditions
and light-tailed service and inter-arrival times,

D = (c2
a + c2

s )
1

3
+ O

( 1

K

)
.

Numerical verification done by representing the system as
PH/PH/1/K MAPs
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Many Servers
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M/M/s/b
√
sc

0.6 0.8 1.0 1.2 1.4 r

0.2

0.4

0.6

0.8

1.0
Dp

s=9

s=100

s=900
s=104

D0,1
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Quality and Efficiency Driven (QED) Scaling Regime

A sequence of systems

Consider a sequence of M/M/s/K queues with increasing
s = 1, 2, ... and with ρs := λ

sµ and Ks such that,

(1− ρs)
√

s → β ∈ (−∞,∞)

Ks√
s
→ η ∈ (0,∞)

So for large s:

ρs ≈ 1− β/
√

s

Ks ≈ η
√

s

Halfin, Whitt, 1981, Garnett, Mandelbaum, Reiman 2002, Borst, Mandelbaum,

Reiman, 2004, Whitt, 2004, Pang, Talreja, Whitt, 2007, Janssen, van Leeuwaarden,

Zwart, 2011, Kaspi, Ramanan 2011, first session of this morning....
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Favorable QED Properties

Probability of delay converges to a value ∈ (0, 1)

Mean waiting times are typically O(s−1/2)

Large queue lengths almost never occur

Quick mixing times

In applications: Call-centers (etc...) describes behavior well
and allows for asymptotic approximate optimization of staffing
etc...

How about BRAVO?
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BRAVO for QED Queues
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M/M/s/K QED BRAVO

Theorem: Daryl Daley, Johan van Leeuwaarden, Y.N. 2013

Consider QED scaling with β 6= 0:

Dβ,η := lim
s,K→∞

lim
t→∞

Var
(
D(t)

)
E
(
D(t)

) ,
Dβ,η = 1− 2β2e−βηh2

φ(β)

∫ ∞
−β

(
1− βe−βηh

Φ(−u)

φ(u)

)
Φ(−u) du

+ 2e−βηh(1 + e−βηh)
(

1− βη − e−βη + (1− 2βηe−βη − e−2βη)h
)

where

h = lim
s→∞

P
(
Qs ≥ s)

1− e−βη
=

1

1− e−βη + βΦ(β)
φ(β)
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BRAVO viewed through the QED lens

-4 -2 0 2 4
Β

0.6

0.7

0.8

0.9

1.0

DΒ,Η

Η=0.232

Η=1

Η=2
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M/M/s/K QED BRAVO with ρ ≡ 1 (β = 0)

Theorem: Daryl Daley, Johan van Leeuwaarden, Y.N. 2013

Ks√
s
→ η ∈ (0,∞)

D0,η := lim
s,K→∞

lim
t→∞

Var
(
D(t)

)
E
(
D(t)

) ,
D0,η =

2

3
−
(
6− 3π

2

)
η − 1

2π
√

π
2 + 3

√
2π(1− log 2)

3
(
η +

√
π
2

)3
.
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M/M/s/bη
√
sc s →∞ at ρ ≡ 1 (β = 0)

0 2 4 6 8 10
Η

0.61

0.62

0.63

0.64

0.65

0.66

0.67
D
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Summary

Known BRAVO constants:

Single server finite buffer: 2/3
(for G/G replace 2 by c2

a + c2
s )

Single server infinite buffer 2(1− 2/π):
(for G/G replace 2 by c2

a + c2
s )

Memoryless many servers finite buffer: D0,η ∈ [0.6, 2/3]

Not yet known:

Memoryless many servers infinite buffer.

Many servers without memoryless assumptions

Systems with reneging or other customer loss mechanisms

Other questions: How can BRAVO be harnessed in practice?
Why does BRAVO occur?
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