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and the Variance of Output Processes
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G/G/s/K + G Queueing Systems

Jobs arrive randomly to a server (first ’G ’), enter if Q(t) < s + K ,

otherwise are lost. Upon entering, the jobs queue up with impatience

(+G ) and may renege, are served by one of s servers and require service

for a random durations (second ’G ’). After service, jobs depart.

Q(t) = Q(0) +
(

A(t)− L(t)
)
−
(

R(t) + D(t)
)

Processes with specified laws (inputs)

A(t) – arrival counting process

The random service durations

The random patience durations

Initial conditions

Resulting counting processes

L(t) – jobs arriving to a full system

R(t) – reneging jobs (leaving due to impatience)

D(t) – completed jobs
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Analysis of Output Processes: D(t)

Q(t) = Q(0) +
(

A(t)− L(t)
)
−
(

R(t) + D(t)
)

Why analysis of the output counting process D(t)?

Orders

Production

Arrival process to a downstream queueing system

Daryl Daley, “Queueing Output Processes”, Advances in Applied

Probability, 1976.

Some performance measures of interest

The law of {D(t), t ≥ 0}
E[D(t)], Var

(
D(t)

)
λ∗ := limt→∞

E[D(t)]
t , V := limt→∞

Var
(
D(t)
)

t , R := V
λ∗

Sometimes: asymptotic normality D(t) ∼ N
(
λ∗t, V t

)
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The M Case

If the arrival process, {A(t), t ≥ 0} is Poisson and the service and
impatience times are i.i.d. exponential sequences, we have the
M/M/s/K + M model. (Termed ‘Erlang-A’ when K =∞).

In this case Q(t) is a birth-death continuous time Markov Chain
on the states {0, 1, 2, . . . , s + K}, with birth and death rates,

λi = λ1{i<s+K}, µi = µ(i ∧ s) + γ(i − s)+.

The constants λ > 0, µ > 0 and γ ≥ 0 correspond to the
three M’s.

Resulting Counting Processes

The overflow process, L(t) is a renewal process.

The reneging and output processes, R(t),D(t) are
non-renewal (unless s = 0 and K = 1)

All these processes are Markovian Arrival Processes (MAPs)
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Asymptotic Variance in the M Case

V := lim
t→∞

Var
(
D(t)

)
t

, R :=
V

λ∗
.

Theorem: Y.N., Weiss, 2008

Consider an irreducible birth-death process on the finite state
space {0, 1 . . . , J} with constant birth rates λ, death rates,
µ1, . . . , µJ and arbitrary initial distribution. Let D(t) count
downward transitions (deaths) during [0, t]. Then,

R = 1− 2
πJ

1− πJ

J∑
i=0

Pi

(
1− πJ

Pi

πi

)
,

with,
πi =

λi
∏i

j=1 µ
−1
j∑J

j=0 λ
j
∏j

k=1 µ
−1
k

, Pi :=
i∑

j=0

πj .

2008 derivation based on MAPs and relations to MMPPs for which
there is an explicit formula (for the birth-death case). Newer
derivation based on more elementary renewal-reward approach.
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Previous BRAVO Results
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M/M/1/K Queue

This is the case, s = 1,K <∞, γ = 0. πi evaluates to a geometric
distribution when λ 6= µ and a uniform distribution when λ = µ.

Using R = 1− 2 πJ
1−πJ

∑J
i=0 Pi

(
1− πJ Pi

πi

)
:

R =

{
1 + oK (1), λ 6= µ,
2
3 + oK (1), λ = µ.
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We call this BRAVO:

Balancing Reduces Asymptotic Variance of Outputs
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M/M/1 Queue

When K =∞, the formula for R does not hold. In this case,

R =

{
1, λ 6= µ,

?, λ = µ.

A guess is 2
3 , since for K <∞, R = 2

3 + oK (1)...

Theorem:
Ahmad Al-Hanbali, Michel Mandjes, Y.N., Ward Whitt, 2011

For the M/M/1 queue with λ = µ and arbitrary initial conditions
of Q(0) (with finite second moments),

R = 2
(

1− 2

π

)
≈ 0.727.

Proof based on analysis of classic Laplace transform of generating
function of D(χ) where χ is an exponential random variable.

10



M/M/1 Queue

When K =∞, the formula for R does not hold. In this case,

R =

{
1, λ 6= µ,

?, λ = µ.

A guess is 2
3 , since for K <∞, R = 2

3 + oK (1)...

Theorem:
Ahmad Al-Hanbali, Michel Mandjes, Y.N., Ward Whitt, 2011

For the M/M/1 queue with λ = µ and arbitrary initial conditions
of Q(0) (with finite second moments),

R = 2
(

1− 2

π

)
≈ 0.727.

Proof based on analysis of classic Laplace transform of generating
function of D(χ) where χ is an exponential random variable.

10



M/G/1 Queue - Relating BRAVO to Y-Intercept

Theorem: Yoav Kerner and Y.N., 2009

For M/G/1 with λ < µ, starting empty and third service moment
finite:

Var
(
D(t)

)
= λt − (1− L0)

ρ

(1− ρ)2
+ ot(1).

L0 expression of ρ and first 3 service moments

For M/M/1, L0 = 0

Example: Look at the curves Var
(
D(t)

)
M/M/1 starting empty, µ = 1, ρ = 0.991, 0.993, 0.995, 0.997

Linear asymptote slope ≈ 1,
y-intercepts ≈ −104,−2× 104,−4× 104,−105

Simulate D(t):
3× 104 repetitions, 105 time units, sample variance every 1000
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M/M/1 Queue

20 000 40 000 60 000 80 000
t
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-50 000

0
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H1 - ΡL2
=-12234.6

Slope = 2H1-
2
Π

L
Ρ = 0.991
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M/M/1 Queue
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M/M/1 Queue
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M/M/1 Queue
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G/G/1 Queue

Moving away from the memory-less assumptions,

R =


c2
a , λ < µ,

?, λ = µ,

c2
s , λ < µ.

For M/M/1 it was 2(1− 2
π )...

Theorem:
Ahmad Al-Hanbali, Michel Mandjes, Y.N., Ward Whitt, 2011

For the G/G/1 queue with λ = µ, arbitrary finite second moment
initial conditions

(
Q(0),V (0),U(0)

)
, and finite fourth moments of

the inter-arrival and service times,

R = (c2
a + c2

s )
(

1− 2

π

)
.

Proof based on diffusion limit of (D(nt)− λnt)/
√
λnt as n→∞

(Iglehart and Whitt 1971). Fourth moments are a technical
condition used in establishing uniform integrability.
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G/G/1/K Queue

Breaking the exponentially assumption,

R =


c2
a + oK (1), λ < µ,

?, λ = µ,

c2
s + oK (1), λ < µ.

For M/M/1/K it was 2
3 + oK (1), for G/G/1 it was

(c2
a + c2

s )(1− 2
π )...

Conjecture (numerically tested), Y.N., 2011

For the G/G/1/K queue with λ = µ and arbitrary initial conditions
and light-tailed service and inter-arrival times,

R = (c2
a + c2

s )
1

3
+ O

( 1

K

)
.

Numerical verification done by representing the system as
PH/PH/1/K MAPs.
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Multi-servers and Reneging
(s > 1 and/or γ > 0)
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M/M/c/K (different notation in this slide, µ = 1)
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G/G/s Queue

Theorem:
Ahmad Al-Hanbali, Michel Mandjes, Y.N., Ward Whitt, 2011

For the G/G/s queue with λ = µ, arbitrary finite second moment
initial conditions, finite second moments of the inter-arrival and
service times and technical uniform integrability assumptions,

R = (c2
a + c2

s )
(

1− 2

π

)
.

As with the G/G/1 case, the limiting process is,

inf
s∈[0,t]

{c2
aB1(s) + c2

s B2(t − s)},

the proof is the same, yet uniform integrability only established in
special cases.
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Handling Reneging

Theorem∗: Daryl Daley, Johan van Leeuwaarden, Y.N. 2012

Consider an irreducible birth-death process on the finite state space
{0, 1 . . . , J} with constant birth rates λ, death rates, µ1, . . . , µJ
and arbitrary initial distribution. Let D(t) count downward
transitions (deaths) during [0, t], each “filtered” independently
with state-dependent probabilities, p1, . . . , pJ . Then,

R = 1− 2
1

λ∗
π′+(Z − λ∗I )W−1(p • µ− λ∗1).

with p and µ vectors of pi and µi reps. and,

W :=



−(λ + µ1) λ

µ2 −(λ + µ2) λ

µ3 −(λ + µ3) λ

. . .
. . .

. . .

µJ−1 −(λ + µJ−1) λ

µJ −µJ


,

Z :=

[
0′J−1 0

diag(p2µ2, . . . , pJµJ ) 0J−1

]
, π+ = (π1, . . . , πJ )′.

* Cleaner expression (based on explicit inverse of W ) in progress...
21



Idea of Renewal Reward Derivation

”Embed” D(t) in a Renewal-Reward Process, C (t)

1 (Xn,Yn) ≡ (busy cycle, number served) in cycle n

2 N(t) = inf{n :
∑n

i=1 Xi > t}, C (t) =
∑N(t)

i=1 Yi

3 Can show variance rates of C (t) and D(t) are equal

4 Known:
– Variance rate of C (t) is 1

E [X ] Var
(
Y − E [Y ]

E [X ] X
)

— Systems of equations for 1’st, 2’nd and cross
moments of X and Y

X1

X2

X3

Y1

Y2

Y3

DHtL
CHtL

t

22



M/M/1/K + M

K = 100, µ = 1, γ ∈ {0, 0.02, 0.1, 0.5}.
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The Halfin-Whitt (or QED) Regime
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Quality and Efficiency Driven (QED) Scaling Regime

A sequence of systems: QED(α, β) scaling

Consider M/M/s/K + M queues with ρs := λ
sµ such that,

(1− ρs)
√

s → β ∈ (−∞,∞).

If K <∞,
K√

s
→ η :=:

√
π/2

α
∈ (0,∞).

Halfin, Whitt, 1981, Garnett, Mandelbaum, Reiman 2002, Borst, Mandelbaum,

Reiman, 2004, Whitt, 2004, Pang, Talreja, Whitt, 2007, Janssen, van Leeuwaarden,

Zwart, 2011, Kaspi, Ramanan 2011 ...

The key QED Property (of ’M’ systems)

{(Q(t)− s)/
√

s, t ≥ 0} converges weakly to {X (t) ∧ η, t ≥ 0}, a
diffusion process with infinitesimal mean m(x) = −βµ− µx for
x < 0 and m(x) = −β − (γ/µ)x for x > 0 and infinitesimal
variance σ2(x) = 2.
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Favorable QED Properties

Analyzing systems through the QED Lens:

Probability of delay converges to a value ∈ (0, 1)

Mean waiting times are typically O(s−1/2)

Large queue lengths almost never occur

Quick mixing times (convergence to stationary distribution)

In applications: Call-centers (etc...) describes behavior well
and allows for asymptotic approximate optimization of staffing
etc...

How about BRAVO?

26



BRAVO for QED Queues
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M/M/s/K Asymptotic Variance under QED

Theorem: Daryl Daley, Johan van Leeuwaarden, Y.N. 2012

R
s,K→∞−−−−−→
QED

1− aα,βbα,βcα,β − dα,β,

where,

aα,β := e−
β
α

√
π/2,

bα,β :=
(

e
1
2β

2

Φ(β)
√

2π +
1− aα,β

β

)−1

,

cα,β :=

∫ β

−∞
Φ(u)

(
1− aα,βφ(β)

Φ(u)

φ(u)

)
du,

dα,β := 2aα,βbα,β(1 +
aα,βbα,β

β
)
((√2/π

α
− 1− aα,β

β

)
(1 +

aα,βbα,β
β

)

+
(√2/π

α
− 1− aα,β

βaα,β

)
(

aα,βbα,β
β

)
)
,

with,

φ(u) :=
e−u

2/2

√
2π

, ,Φ(u) :=

∫ u

−∞
φ(t)dt.
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M/M/s/K Asymptotic Variance under QED with ρ ≡ 1

Theorem: Daryl Daley, Johan van Leeuwaarden, Y.N. 2012

For M/M/s/K with ρs ≡ 1 and,

K√
s
→
√
π/2

α
∈ (0,∞).

R
s,K→∞−−−−−→
QED

1− 1 + 3α

3(1 + α)3
− α

1 + α

2− log 2

π
.

Proof based on expansions of

R = 1− 2
πJ

1− πJ

J∑
i=0

Pi

(
1− πJ

Pi

πi

)
.
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BRAVO for QED M/M/s/K with ρ = 1

R
s,K→∞−−−−−→
QED

1− 1 + 3α

3(1 + α)3
− α

1 + α

2− log 2

π
.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Α

0.62

0.64

0.66

0.68

0.70
R
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Wrap-Up
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Summary and Open Ends

The R-formula applied to QED–M/M/s/K
yields clean asymptotics

The “extended” formula for systems with reneging
still does not...?

When analyzing actual systems, balancing α and β in the
approximation is delicate

Limiting processes of D(t) under QED scaling may be fruitful
for G/G cases...
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M/M/1/K – Correlation Between D(·) and L(·)
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Regenerative Simulation for M/M/1 + M

0 2 4 6 8 10 Λ

0.5

1.0

1.5

V �Λ*

M�M�1+M

Μ=1, Γ=1

Γ�2

37



Regenerative Simulation for M/M/1 + M

0 5 10 15 20 Λ

0.5

1.0

1.5

V �Λ*

M�M�1+M

Μ=1, Γ=2

Γ�2

38
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Regenerative Simulation for M/M/1 + M
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Regenerative Simulation for M/M/1 + M
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Regenerative Simulation for M/M/1 + M
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Regenerative Simulation for M/M/1 + M
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Regenerative Simulation for M/M/1 + M
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