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@ Linear Systems: A Success Story
@ Stabilising Control of Queues with Hidden Environments

@ Reward Observing Restless Bandits



(Deterministic) Linear Systems



(Deterministic) Linear Systems Setup

A

State: X(t) X(t+1) X(t+2) _A

C

Observation: Y(t)

?

A

Estimate: X(t)
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Control:  U(t) U(t+1) U(t+2)

X(t+1)=AX(t)+ BU(t) Y(t) = CX(t)




The Luenberger Observer

X(t) = AX(t)+BU(t) — Ko (Y(t) — Y(t)) with Y(t) = CX(t)
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The Luenberger Observer

e(t+1)=X(t+1) - X(t+1)

= AX() + BU(t) — (AR(t) + BU(t) — Ko (CX(t) ~ CX(1)))
AX(t) — Ko
(

= AX(t) - ) — Ko C(X(t) — X(1))
= (A— K, C)e(t)

Would like e(t) — 0

Observer Design: Select K, so that sp(A— K, C) < 1.
This can always be done if the pair (A, C) satisfies a rank
condition (observability).



State Feedback Control and The Separation Principle

As controller would like to take U(t) = —KrX(t) so that,
X(t+1) = AX(t)+ BU(t)
— (A= BK)X(t)

If (A, B) satisfy a rank condition (controllability) then can
choose Kr so as to have arbitrary eigenvalues of (A — B Kr)
(e.g. stabilise).



State Feedback Control and The Separation Principle

As controller would like to take U(t) = —KrX(t) so that,
X(t+1) = AX(t)+ BU(t)
— (A= BK)X(t)

If (A, B) satisfy a rank condition (controllability) then can
choose Kr so as to have arbitrary eigenvalues of (A — B Kr)
(e.g. stabilise).

But we don't have X(t), so instead use U(t) = —K¢X(t).

The “Separation Principle”: Can design the observer (K,) and the
controller (Kr) separately to achieve desired behaviour.



Making the “Right Decisions”

First choose K, for a “good” observer. Now the separation
principle allows to focus on finding Ks:

Choose Kr so that X(t) — 0




Making the “Right Decisions”

First choose K, for a “good” observer. Now the separation
principle allows to focus on finding Ks:

Choose Kr so that X(t) — 0

Quadratic Regulation

min > X(t) QX(t) + U(t) RU(t)

U
t=1
Solution to this problem (LQR):

U(t) = —KrX(t),

with K¢ based on a solution of a Riccati equation.

Moral: For such systems: Don't worry about the fact that “you
can't see everything” when you choose an optimal decision



(Deterministic) Linear Systems Summary

Observation: Y'(t)
Observer
Estimate: X(t)

L

Control:  U(t)
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Linear Systems with Noise (Stochastic)
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State: X(t)

Observation: Y'(t)

?

A

Estimate: X(t)

?

Control:  U(t)

C.&,

Al X(t+1)

U(t+1)

X(t+1) = AX(t) + B U(t) + &(t)

X(t+2) Adx

U(t+2)

Y(t) = CX(t)+&(t)

The noise components &,(-) and £, (-) are i.i.d. Gaussian

(Stochastic) Linear Systems Setup

A&y
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Kalman Filtering

Ignore the control and consider:
X(t+1) = AX(t) + & (1)
Y(t) = CX(8) + &,(8)
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Kalman Filtering

Ignore the control and consider:
X(t+1) = AX(t) + & (1)
Y(t) = CX(8) + &,(8)

Given Y = (Y(1),,...,Y(T)) and X(1), it is straightforward to
compute the MMSE X h(X) of X = (X(1),...,X(T)):

argmin,E[[|X — h(X)[]*] = E[X(1),....X(T) | Y(1),..., Y(T)]

The Kalman Filter is a way to do this recursively (online)
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Kalman Filtering (cont)

The (steady state) Kalman filter is a Luenberger observer with
parameters optimised for solving the MMSE:

X(t+1) = AX(t) — Ke(CAX(t) — Y(t+1)).
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Kalman Filtering (cont)

The (steady state) Kalman filter is a Luenberger observer with
parameters optimised for solving the MMSE:

X(t+1) = AX(t) — Ke(CAX(t) — Y(t+1)).
The parameter K is calculated as follows:
S = lim Cov(X(t+1)~ X(t+1) | X(t),X(t—1),....X(1))

—A(S-sc'(csC’+3,) T CS)A + 3

Now,
Ki = SC'(csC’ +x,) "
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Making The Right Decisions (in a Stochastic Setting)

The Separation Principle generalises:

Certainty EqUiVaIence Princip|e (holds for such systems, but not always)

In making optimal decisions use X(t) = E[X(t) | observations] as
though it was X(t).
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Making The Right Decisions (in a Stochastic Setting)

The Separation Principle generalises:

Certainty EqUiVaIence Princip|e (holds for such systems, but not always)

In making optimal decisions use X(t) = E[X(t) | observations| as

though it was X(t).

This allows to solve the LQG problem:
Quadratic Regulation with Gaussian Noise (LQG)

min _lim —IE ZX ) QX(t) + U(t) RU(t)]

T—oo T

lution:
Solution U(t) = —KeX(1).

with K¢ based on a solution of a Riccati equation.

Moral: For such systems don't worry about the fact that "you can't see
everything” when you choose an optimal decision.
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(Stochastic) Linear Systems Summary

A 8x A&x

Ay
State: X(t) —— X(t+1) —— X(t+2) —— ---
C¢,

Observation: Y'(t)

Kalman

A

Estimate: X(t)

L

Control:  U(t)
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Stabilising Control of Queues with Hidden Server States

(preliminary results from a conference paper with T. Taimre, A. Asanjarani, J. Kuhn, B. Patch and A. Vuorinen)
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Who Should Serve What?

A — | -
Server 1

— oo |
)\2 e I
, s Server M

H L7 3 e d
T

Hidden server states: X(t) = (x1(t), ..., xm(t)) with x;(t)

following a 2 state MC:

pp|_|1=vp P
q q o 1=7p

Service rates are 1 j(xj(t)). The observations are service
successes/failures as well as queue lengths.

P/ =

18
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A Simpler Problem: Who Should Serve the Queue?

Safe Server 's’

Al —),Ms
’ (:)
’

= IIIF
_ iy Bandit Server ‘b’

q
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A Similar (Simplest) Problem: Go “Safe” or “Bandit”?

Safe Server 's’

@ —>:u’5

Bandit Server ‘b

o T
q

o Independent i.i.d. Bernoulli sequences, Y1(t), Ys(t), Ya(t)
with means 1, po and s, respectively, and py < ps < o

e X(t) is a 2 state Markov chain
e Observations: Y(t) = 1{U(t) ='s'} Yi(t) + 1{U(t) = ’b’}f/x(t)
o Causal policy U(t) should maximize: limr_,. LE[ [, Y(1)]
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Belief States (POMDP)

Instead of state estimate, )A((t) keep the conditional distribution
(or parameters thereof) of X(t) given history:

w(t) = P(X(t) = 2 | previous observations and actions) J

29



Belief States (POMDP)

Instead of state estimate, )A((t) keep the conditional distribution
(or parameters thereof) of X(t) given history:

w(t) = P(X(t) = 2 | previous observations and actions) |

Now based on “no observation”, “observation of failure” or
“observation of success”, update w(t) using one of:

T(w) =wp+ (1 — p) (no observation on bandit)
To(w) = w (observation of failure on bandit)
How + f1w
_ Quew + pin

T1(w (observation of success on bandit)

How + (1w

29



Value Function and Optimal Decision

For simplicity consider the discounted case with factor 8 € (0, 1):

max E[> ptY(t)]
t=0

Bellman's Optimality Equation

reward next step

V(w) = max{ ’;L\ +B8V(r(w)) ,

safe

next step

reward
wp2 +wps + B ((@[1 + wimz) V(10(w)) + (@p1 + wpo) V(Tl(w))) }
NGNS

good bad failed transmission successful transmission

bandit

The Bellman equation for average costs (no discounting) is similar.
23



Some Structural Results (Average Costs)

Numerical Observations

© The optimal policy is a threshold policy: For w < w* choose
‘'s', otherwise choose 'b'.

@ In comparison to the “myopic”’ threshold,
w™ = (ps — p1)/ (2 — p1), we have w* < W™

24



Some Structural Results (Average Costs)

Numerical Observations

© The optimal policy is a threshold policy: For w < w* choose
‘'s', otherwise choose 'b'.

@ In comparison to the “myopic”’ threshold,
w™ = (ps — p1)/ (2 — p1), we have w* < W™
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Optimal threshold values with us = 0.5, u3 = 0.2, uo = 0.8, p = 0.4.

The attraction region of 7;(-) is marked by the vertical dotted lines.
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Some Structural Results (Average Costs)

Numerical Observations

© The optimal policy is a threshold policy: For w < w* choose
‘'s', otherwise choose 'b'.

@ In comparison to the “myopic”’ threshold,
w™ = (ps — p1)/ (2 — p1), we have w* < W™

0.55 -

0.5

0.45

Optimal Threshold

04 | | | |
0 02 04 06 08 1

v
Optimal threshold values with us = 0.5, u3 = 0.2, uo = 0.8, p = 0.4.
The attraction region of 7;(-) is marked by the vertical dotted lines.
Moral: Myopic is typically not the best. Need to take exploration

into account in optimal decision.
24



Simple Server Selection Summary

P (2 state MC) P (2 state MC) P (2 state MC)

State: X(t) X(t+1) X(t+2)

wjj € {1,2,s} wjsJ € {1,2,s} wjj € {1,2,s}

Observation: Y'(t) Y(t+1) Y(t+2)

Bernoufli Bernoplli
w(t+1)

Estimate: X(t) X(t+1) t+2)

w

Control: U(t) U(t+1) U(t+2)

Hope: Proving optimality of w* threshold (structural result)
Less Hope: An explicit w*
Hope: Rougher structural results for the more general problem
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Reward Observing Restless Bandits

(based on some joint work with J. Kuhn)
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Several (or Many) Servers to Choose From (No Queues)

Server 1

Server M

e U(t): choose d < M servers, to maximise long term reward
@ Server states, X;(t), evolve independently and are fully
observed when the server is selected, otherwise not observed
@ Easy to handle server state models are:
e Two state Markov chains
o Autoregressive processes of order 1
e Explicit (numerical) solution as a POMDP is hopeless
= use index policies on the belief state (approximation)
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Reward Observing Restless Bandits Summary

(P, .., PM) Pt pM (P, ..., PM)

State: X(t)

U(t — 1) @ X(t) U(t+1) e X(t+

Observation: Y(t) +2)

Bernoplli
Belief Update

Estimate: )A<(t)

Indgx Policy

Control:  U(t) U(t+2)
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Index Policies

@ The belief state for each channel i is w; € [0, 1] for 2-state
MC channels and (i, v;) € R x Ry for AR channels

@ For each channel set an index function Z;(belief state) — R
@ Policy: U(t) indicates the d channels with the highest index

20
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The Celebrated Gittins Index Result(s)

If d =1 and channels freeze when not being selected, then an
optimal policy is a specific index (Gittins et. al.).
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Index Policies

@ The belief state for each channel i is w; € [0, 1] for 2-state
MC channels and (i, v;) € R x Ry for AR channels

@ For each channel set an index function Z;(belief state) — R
@ Policy: U(t) indicates the d channels with the highest index

The Celebrated Gittins Index Result(s)

If d =1 and channels freeze when not being selected, then an
optimal policy is a specific index (Gittins et. al.).

Restless Bandits and the Whittle Index

The Reward Observing Restless Bandits problem is a specific case
of the Restless Bandits problem of P. Whittle (1988).

A solution of a relaxed problem is an index policy. In certain cases
as M — oo the policy becomes optimal.
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EXPLORATION
Julia Kuhn

Model and Framework
A dymasnic decision problem under uncertainty
We select  out of d restless rewand obscrving
onc-armed bandis to play on, such as to max:
pocted total discounted or aserage
Rewards are colected and states are
observed ONLY i an v is playe.
Should we collect new information or
opt for the immediate payoff
State processes are Gasian AR(1),
Xilt) = Xt = 1)+ ),
whete € (0,1) and & ~ 11 N(0,0%). An
spplication is channel selection in wircles et

Why is the Gaussian model so special?

o The belie states (jft), #(1)), . the means and varianees conditonesd
on the s contin all relevant i o

time £
@ AL the same tie, 5 (t) and 13(t) quantily the expected g from ex:
pliting an o vs. the need for exploring i

Updating the Belief States
A policy 7 maps the information avalble to actions a(f) = 1 (play’) or
do ot sl that in total b aut of d e played at cvery time.

Voo~ Nt 0),

a=0
Wit

alt) =,

e+ 1), wit + 1)
@ aift) = 1.

{(;,.m P+

s

observe state

update belief collect reward

11. Index Policies

An indes policy i of the for

-

The index function ~ maps the belief state of cach arm to
some priosity indes.

,
i,
i {0

s the optinual policy for one-armea banit prob-

callcts the rewasd when playing, and obtains a subsidy A
othervise,

L. Totuitively, s d -+ 50, k p, i the Tong-run the

system approaches an equilibrium at which the proportion of

arts associated with certain el state remains fxed. Then

the action chosen for  certain aem is independent of the cur

s s the same.

proportion of arms assaciate with  cortai bl tate i the
stew,

rent el state o any other arm, s there

2. We explcitly identily a mesure-valued recussion that de-
ey arms o fhe st ot ol
Nl the g propotion of st . hve I b
v whose conditonal mean falls in

A B i steps ago and
(=o0.2] ean be modeld a5

SR 5 o (£) it
e (s 5,540 1)

(1)~ 091) with £(0) i by

e, t41)

s 0
=m0, ) }

Thus, 65(8) i o threshold such that ot time ¢ the parametri
poliey actvates all arms that ave of age h and have conditonal

mean ult)

. EXPLOITATION WITH PARTIALLY OBSERVABLE AR(1) ARMS

‘Whittle

“The Whitele e ol has been fonnd

> Index: Structural Results

optisnal i many cases (alihough o such result i known

for aur model) but o closed-form expression

wsing dynaic programming techniques. We

The optimal polcy for the one-armed hand
with sy is o hreshold polcy.

s known. The associated optimal value function can in principle be fonnd
can further prove the following

The Whittle index 7"(s,0) s monotone. non-
deceasing in o and v, and generally ot constant

it problem

i

Switching cueves: above the curve the optimal

setion s “play’
09,0=

ny-Arms Asyn

3. Based on 1. and 2. we conjec-
ture that the measore-alue dynam-
feal system at equilibrium s directly
selated 10 a onc-arme process where
the arm i activated whenever the in-

s paricla threshold ©

emine  such that
s achieved for

1. For lage 7 e
15 0t =

o i i ol apled
o the one-amned pro

2 Use the sunple pathy of Step 1 0
obtsin an estmate G for the cx-
pectd verae v of he one-
amned systenn.

3 Output Gy = d G s an appros-
imation of the expected average
e of the sltarmed systenn
vith d s,

below “do o play

Difsence of Whitle ad myopic indes

iptoti

L]
e

et avengs e G(0)computed by tho i s ftion
o0 0 =2, 5 € {09,0925,0.95,0975), p= 0.4, T =2 x

Comparison of per a0 i found by
optimiing () the prbc vithd s 5, 8 th o

problem (8°). = 09,0 =2, p 0"

20



References

@ P. Whittle, “Optimization Over Time: Dynamic Programming and Stochastic
Control’, John Wiley & Sons, 1982.

@ P. Antsaklis and A. Michel, “A Linear Systems Primer’, Birkhauser Boston,
2007.

@ P. Whittle, “Restless Bandits: Activity allocation in a changing world.”, Journal
of Applied Probability, 1988.

@ Y. Nazarathy, T. Taimre, A. Asanjarani, J. Kuhn, B. Patch and A. Vuorinen,
“The Challenge of Stabilizing Control for Queueing Systems with Unobservable
Server States”, Proceedings of AUCC Confrence, accepted for publication, 2015.

@ J. Kuhn, Y. Nazarathy “Wireless Channel Selection with Reward-Observing
Restless Multi-armed Bandits', Chapter to appear in “Markov Decision
Processes in Practice”, Editors: R. Boucherie and N. van Dijk.

@ J. Kuhn, M. Mandjes and Y. Nazarathy “Exploration vs. Exploitation with
Partially Observable Gaussian Autoregressive Arms", Proceedings of the
Valuetools Conference, 2014.

@ Y. Nazarathy, L. Rojas-Nandayapa and T. Salisbury “Non-existence of
Stabilizing Policies for the Critical Push-Pull Network and Generalizations",
Operations Research Letters, 2013.

21



