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Discrete Time Setup

X (t)State: X (t + 1) X (t + 2) . . .

Y (t) Y (t + 1) Y (t + 2)Observation:

X̂ (t) X̂ (t + 1) X̂ (t + 2) . . .Estimate:

U(t) U(t + 1) U(t + 2)Control:
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Outline

Linear Systems: A Success Story

Stabilising Control of Queues with Hidden Environments

Reward Observing Restless Bandits
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(Deterministic) Linear Systems
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(Deterministic) Linear Systems Setup

X (t) X (t + 1) X (t + 2) . . .

Y (t) Y (t + 1) Y (t + 2)

X̂ (t) X̂ (t + 1) X̂ (t + 2) . . .

U(t) U(t + 1) U(t + 2)

State:

Observation:

Estimate:

Control:

A A A

C C C

? ? ?

? ? ?

B B B

X (t + 1) = AX (t) + B U(t) Y (t) = C X (t)
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The Luenberger Observer

X̂ (t) = AX̂ (t) +BU(t)−Ko

(
Ŷ (t)−Y (t)

)
with Ŷ (t) = CX̂ (t)

e(t + 1) = X (t + 1)− X̂ (t + 1)

= AX (t) + BU(t)−
(
AX̂ (t) + BU(t)− Ko

(
CX̂ (t)− CX (t)

))

= AX (t)− AX̂ (t)− KoC
(
X (t)− X̂ (t)

)

= (A− Ko C )e(t)

Would like e(t)→ 0

Observer Design: Select Ko so that sp(A− Ko C ) < 1.
This can always be done if the pair (A,C ) satisfies a rank
condition (observability).
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State Feedback Control and The Separation Principle

As controller would like to take U(t) = −Kf X (t) so that,

X (t + 1) = AX (t) + BU(t)

= (A− B Kf )X (t)

If (A,B) satisfy a rank condition (controllability) then can
choose Kf so as to have arbitrary eigenvalues of (A− B Kf )
(e.g. stabilise).

But we don’t have X (t), so instead use U(t) = −Kf X̂ (t).

The “Separation Principle”: Can design the observer (Ko) and the
controller (Kf ) separately to achieve desired behaviour.
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Making the “Right Decisions”

First choose Ko for a “good” observer. Now the separation
principle allows to focus on finding Kf :

Stability

Choose Kf so that X (t)→ 0

Quadratic Regulation

min
U

∞∑

t=1

X (t)′QX (t) + U(t)′RU(t)

Solution to this problem (LQR):

U(t) = −Kf X (t),

with Kf based on a solution of a Riccati equation.

Moral: For such systems: Don’t worry about the fact that “you
can’t see everything” when you choose an optimal decision
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(Deterministic) Linear Systems Summary

X (t) X (t + 1) X (t + 2) . . .

Y (t) Y (t + 1) Y (t + 2)

X̂ (t) X̂ (t + 1) X̂ (t + 2) . . .

U(t) U(t + 1) U(t + 2)

State:

Observation:

Estimate:

Control:

A A A

C C C

Observer Observer Observer

LQR LQR LQR

B B B

10



Linear Systems with Noise (Stochastic)
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(Stochastic) Linear Systems Setup

X (t) X (t + 1) X (t + 2) . . .

Y (t) Y (t + 1) Y (t + 2)

X̂ (t) X̂ (t + 1) X̂ (t + 2) . . .

U(t) U(t + 1) U(t + 2)

State:

Observation:

Estimate:

Control:

A,ξx A,ξx A,ξx

C,ξy C,ξy C,ξy

? ? ?

? ? ?

B B B

X (t + 1) = AX (t) + B U(t) + ξx(t) Y (t) = C X (t) + ξy (t)

The noise components ξx(·) and ξy (·) are i.i.d. Gaussian
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Kalman Filtering

Ignore the control and consider:

X (t + 1) = AX (t) + ξx(t)

Y (t) = CX (t) + ξy (t)

Given Y =
(
Y (1), , . . . ,Y (T )

)
and X (1), it is straightforward to

compute the MMSE X̂ = h(X ) of X =
(
X (1), . . . ,X (T )

)
:

argminhE
[
||X − h(X )||2

]
= E

[
X (1), . . . ,X (T ) | Y (1), . . . ,Y (T )

]

The Kalman Filter is a way to do this recursively (online)
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Kalman Filtering (cont)

The (steady state) Kalman filter is a Luenberger observer with
parameters optimised for solving the MMSE:

X̂ (t + 1) = AX̂ (t)− Kk

(
C A X̂ (t)− Y (t + 1)

)
.

The parameter Kk is calculated as follows:

S = lim
t→∞

Cov
(
X (t + 1)− X̂ (t + 1)

∣∣ X (t),X (t − 1), . . . ,X (1)
)

= A
(
S − SC ′

(
CSC ′ + Σy

)−1
CS
)
A′ + Σx

Now,
Kk = SC ′

(
CSC ′ + Σy

)−1
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Kalman Filtering (cont)
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Making The Right Decisions (in a Stochastic Setting)

The Separation Principle generalises:

Certainty Equivalence Principle (holds for such systems, but not always)

In making optimal decisions use X̂ (t) = E[X (t) | observations] as
though it was X (t).

This allows to solve the LQG problem:

Quadratic Regulation with Gaussian Noise (LQG)

min
U

lim
T→∞

1

T
E
[ T∑

t=1

X (t)′QX (t) + U(t)′RU(t)
]

Solution:
U(t) = −Kf X (t),

with Kf based on a solution of a Riccati equation.

Moral: For such systems don’t worry about the fact that “you can’t see

everything” when you choose an optimal decision.
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(Stochastic) Linear Systems Summary

X (t) X (t + 1) X (t + 2) . . .

Y (t) Y (t + 1) Y (t + 2)

X̂ (t) X̂ (t + 1) X̂ (t + 2) . . .

U(t) U(t + 1) U(t + 2)

State:

Observation:

Estimate:

Control:

A,ξx A,ξx A,ξx

C,ξy C,ξy C,ξy

Kalman Kalman Kalman

LQG LQG LQG

B B B

16



Stabilising Control of Queues with Hidden Server States

(preliminary results from a conference paper with T. Taimre, A. Asanjarani, J. Kuhn, B. Patch and A. Vuorinen)
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Who Should Serve What?

λ1

λ2

λL

Server M

21

Server 1

21

Controller

Hidden server states: X (t) = (x1(t), . . . , xM(t)) with xj(t)
following a 2 state MC:

P j =

[
p̄ p

q q̄

]
=

[
1− γ ρ̄ γ ρ̄

γ̄ ρ̄ 1− γ̄ ρ̄

]
.

Service rates are µi ,j
(
xj(t)

)
. The observations are service

successes/failures as well as queue lengths.
18



The Setup

X (t) X (t + 1) X (t + 2) . . .

Y (t) Y (t + 1) Y (t + 2)

X̂ (t) X̂ (t + 1) X̂ (t + 2) . . .

U(t) U(t + 1) U(t + 2)

State:

Observation:

Estimate:

Control:

(P1, . . . , PM ) (P1, . . . , PM ) (P1, . . . , PM )

(µi ,j)
M
i ,j=1 (µi ,j)

M
i ,j=1 (µi ,j)

M
i ,j=1

? ? ?

? ? ?

Bernoulli Bernoulli Bernoulli
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A Simpler Problem: Who Should Serve the Queue?

λ
Bandit Server ‘b’

21

µ1 µ2

q

p µ`

Safe Server ‘s’

1
µs

20



A Similar (Simplest) Problem: Go “Safe” or “Bandit”?

Bandit Server ‘b’

21

µ1 µ2

q

p µ`

Safe Server ‘s’

1
µs

Independent i.i.d. Bernoulli sequences, Ỹ1(t), Ỹs(t), Ỹ2(t)
with means µ1, µ2 and µs , respectively, and µ1 < µs < µ2

X (t) is a 2 state Markov chain

Observations: Y (t) = 1{U(t) = ’s’}Ỹs(t) + 1{U(t) = ’b’}ỸX (t)

Causal policy U(t) should maximize: limT→∞
1
T E
[∑T

t=0 Y (t)
]
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Belief States (POMDP)

Instead of state estimate, X̂ (t), keep the conditional distribution
(or parameters thereof) of X (t) given history:

ω(t) = P(X (t) = 2 | previous observations and actions)

Now based on “no observation”, “observation of failure” or
“observation of success”, update ω(t) using one of:

τ(ω) = ωρ+ γ(1− ρ) (no observation on bandit)

τ0(ω) =
q̄µ̄2ω + pµ̄1ω̄

µ̄2ω + µ̄1ω̄
(observation of failure on bandit)

τ1(ω) =
q̄µ2ω + pµ1ω̄

µ2ω + µ1ω̄
(observation of success on bandit)
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Value Function and Optimal Decision

For simplicity consider the discounted case with factor β ∈ (0, 1):

max E[
∞∑

t=0

βtY (t)]

Bellman’s Optimality Equation

V (ω) = max
{ reward︷︸︸︷

µ +

next step︷ ︸︸ ︷
βV (τ(ω))︸ ︷︷ ︸
safe

,

reward︷ ︸︸ ︷
ωµ2︸︷︷︸
good

+ ω̄µ1︸︷︷︸
bad

+

next step︷ ︸︸ ︷
β

(ω̄µ̄1 + ωµ̄2)V (τ0(ω))︸ ︷︷ ︸
failed transmission

+ (ω̄µ1 + ωµ2)V (τ1(ω))︸ ︷︷ ︸
successful transmission


︸ ︷︷ ︸

bandit

}

The Bellman equation for average costs (no discounting) is similar.
23



Some Structural Results (Average Costs)

Numerical Observations

1 The optimal policy is a threshold policy: For ω < ω∗ choose
‘s’, otherwise choose ’b’.

2 In comparison to the “myopic” threshold,
ωm = (µs − µ1)/(µ2 − µ1), we have ω∗ ≤ ωm

0 0.2 0.4 0.6 0.8 1
0.4

0.45

0.5

0.55

γ

O
p

ti
m

al
T

h
re

sh
ol

d

Optimal threshold values with µs = 0.5, µ1 = 0.2, µ2 = 0.8, ρ = 0.4.

The attraction region of τi (·) is marked by the vertical dotted lines.

Moral: Myopic is typically not the best. Need to take exploration
into account in optimal decision.
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Simple Server Selection Summary

X (t) X (t + 1) X (t + 2) . . .

Y (t) Y (t + 1) Y (t + 2)

X̂ (t) X̂ (t + 1) X̂ (t + 2) . . .

U(t) U(t + 1) U(t + 2)

State:

Observation:

Estimate:

Control:

P (2 state MC) P (2 state MC) P (2 state MC)

µj , j ∈ {1, 2, s} µj , j ∈ {1, 2, s} µj , j ∈ {1, 2, s}

τi
(
w(t)

)
→ ω(t + 1) τi

(
w(t)

)
→ ω(t + 1) τi

(
w(t)

)
→ ω(t + 1)

ω∗ ω∗ ω∗

Bernoulli Bernoulli Bernoulli

Hope: Proving optimality of ω∗ threshold (structural result)
Less Hope: An explicit ω∗

Hope: Rougher structural results for the more general problem
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Reward Observing Restless Bandits
(based on some joint work with J. Kuhn)

26



Several (or Many) Servers to Choose From (No Queues)

Server M

Server 1

U(t): choose d < M servers, to maximise long term reward

Server states, Xi (t), evolve independently and are fully
observed when the server is selected, otherwise not observed

Easy to handle server state models are:
Two state Markov chains
Autoregressive processes of order 1

Explicit (numerical) solution as a POMDP is hopeless
=⇒ use index policies on the belief state (approximation)

27



Reward Observing Restless Bandits Summary

X (t) X (t + 1) X (t + 2) . . .

Y (t) Y (t + 1) Y (t + 2)

X̂ (t) X̂ (t + 1) X̂ (t + 2) . . .

U(t) U(t + 1) U(t + 2)

State:

Observation:

Estimate:

Control:

(P1, . . . , PM ) (P1, . . . , PM ) (P1, . . . , PM )

U(t − 1) • X (t) U(t) • X (t + 1) U(t + 1) • X (t + 2)

Belief Update Belief Update Belief Update

Index Policy Index Policy Index Policy

Bernoulli Bernoulli Bernoulli

28



Index Policies

1 The belief state for each channel i is ωi ∈ [0, 1] for 2-state
MC channels and (µi , νi ) ∈ R× R+ for AR channels

2 For each channel set an index function Ii (belief state)→ R
3 Policy: U(t) indicates the d channels with the highest index

The Celebrated Gittins Index Result(s)

If d = 1 and channels freeze when not being selected, then an
optimal policy is a specific index (Gittins et. al.).

Restless Bandits and the Whittle Index

The Reward Observing Restless Bandits problem is a specific case
of the Restless Bandits problem of P. Whittle (1988).
A solution of a relaxed problem is an index policy. In certain cases
as M →∞ the policy becomes optimal.
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LATEX TikZposter

Exploration vs. Exploitation with Partially Observable AR(1) Arms
Julia Kuhn
Supervisors: Yoni Nazarathy (UQ) & Michel Mandjes (Universiteit van Amsterdam)

Exploration vs. Exploitation with Partially Observable AR(1) Arms
Julia Kuhn
Supervisors: Yoni Nazarathy (UQ) & Michel Mandjes (Universiteit van Amsterdam)

i. Model and Framework

A dynamic decision problem under uncertainty:
We select k out of d restless reward observing
one-armed bandits to play on, such as to max-
imize the expected total discounted or average
reward. Rewards are collected and states are
observed ONLY if an arm is played.
Should we collect new information or
opt for the immediate payoff?
State processes are Gaussian AR(1),

Xi(t) = ϕXi(t− 1) + εi(t),

where ϕ ∈ (0, 1) and εi ∼ i.i.d. N (0, σ2). An
application is channel selection in wireless net-
works.

Why is the Gaussian model so special?

•The belief states
(
µi(t), νi(t)

)
, i.e. the means and variances conditioned

on the available information, contain all relevant information available at
time t.

•At the same time, µi(t) and νi(t) quantify the expected gain from ex-
ploiting an arm vs. the need for exploring it.

Updating the Belief States
A policy π maps the information available to actions ai(t) = 1 (“play”) or
ai = 0 (“do not play”), such that in total k out of d are played at every time
t. With Yµ,ν ∼ N (µ, ν),

(
µi(t + 1), νi(t + 1)

)
=

{(
ϕµi(t), ϕ

2 νi(t) + σ2
)
, ai(t) = 0,

(
ϕYµi(t), νi(t) , σ

2
)
, ai(t) = 1.

Chain of Actions

(µ,ν) a

∑d
i=1Xi ai

π

observe state,
collect reward

update belief
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ii. Index Policies

An index policy is of the form

πγ(µ,ν) = arg max
a:
∑d

i=1 ai=k

{
d∑

i=1

γ (µi, νi) ai

}

The index function γ maps the belief state of each arm to
some priority index.

Myopic γM (µ, ν) = µ

Parametric γθ(µ, ν) = µ + θν, θ > 0

Whittle γW (µ, ν) = inf
{
λ | πopt(µ, ν) = 0

}

Here πopt is the optimal policy for a one-armed bandit prob-
lem with subsidy, where the decision maker observes and
collects the reward when playing, and obtains a subsidy λ
otherwise.

iii. Whittle Index: Structural Results

The Whittle index policy has been found to be asymptotically optimal in many cases (although no such result is known
for our model) but no closed-form expression is known. The associated optimal value function can in principle be found
using dynamic programming techniques. We can further prove the following.

The optimal policy for the one-armed bandit problem
with subsidy is a threshold policy.
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The Whittle index γW (µ, ν) is monotone non-
decreasing in µ and ν, and generally not constant.
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iv. Parametric Index: Many-Arms Asymptotic Behaviour

1. Intuitively, as d → ∞, kd/d → ρ, in the long-run the
system approaches an equilibrium at which the proportion of
arms associated with a certain belief state remains fixed. Then
the action chosen for a certain arm is independent of the cur-
rent belief state of any other arm, as there is always the same
proportion of arms associated with a certain belief state in the
system.

2. We explicitly identify a measure-valued recursion that de-
scribes the many-arms behaviour of the system at equilibrium.
Namely, the limiting proportion of arms that have been ob-
served h time steps ago and whose conditional mean falls in
(−∞, x] can be modeled as

mh

(
x, t + 1

)
=





∑∞
h=0

∫∞
`∗h(t)

Φz, ν(h)

(
x
ϕ

)
mh(dz, t), h = 0,

mh−1

(
min

{
x
ϕ, `

∗
h−1(t)

}
, t
)
, h ≥ 1,

where `∗h(t) := `∗(t)− θν(h)(t) with `∗(t) defined by

`∗(t) = sup

{
`
∣∣∣
∞∑

h=0

mh

({
µ |µ + θν(h) ∈ [`,∞)

}
, t
)

= ρ

}
.

Thus, `∗h(t) is a threshold such that at time t the parametric
policy activates all arms that are of age h and have conditional
mean µ(t) ≥ `∗h(t).

3. Based on 1. and 2. we conjec-
ture that the measure-valued dynam-
ical system at equilibrium is directly
related to a one-armed process where
the arm is activated whenever the in-
dex exceeds a particular threshold `,
namely ` = `∗.

Algorithm for Performance
Evaluation

1. For large T determine ` such that
T−1

∑T
t=0 ai(t) = ρ is achieved for

a parametric index policy applied
to the one-armed process.

2. Use the sample path of Step 1 to
obtain an estimate G for the ex-
pected average reward of the one-
armed system.

3. Output Gd := d G as an approx-
imation of the expected average
reward of the multiarmed system
with d arms.
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Expected average reward G(θ) computed by the algorithm as a function
of θ. σ = 2, ϕ ∈ {0.9, 0.925, 0.95, 0.975}, ρ = 0.4, T = 2× 106.
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Motivated by the many-arms
asymptotic behaviour of the
system.
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