Exploring Model Predictive Control for Queueing Networks

Johan van Leeuwaardena,b, Erjen Lefeberc,*, Yoni Nazarathyb,c,* and Koos Roodac.

Twente Industrial Engineering Seminar,
July 6, 2010.

aDepartment of Mathematics and Computer Science, Eindhoven University of Technology, The Netherlands.
bEURANDOM, Eindhoven University of Technology, The Netherlands.
cDepartment of Mechanical Engineering, Eindhoven University of Technology, The Netherlands.

*Supported by the Netherlands Organization for Scientific Research (NWO-VIDI grant 639.072.072).
Overview and Main Story: Control of Queueing Networks

- Queueing Networks: Jobs, Servers, Queues, Routes, Scheduling Policy
- Desired:
 - High throughout, low WIP, steady output
 - Sensible computable control
 - Methodological and mathematical structure of the control
- In this talk: A control methodology based on MPC
- Not yet: Theory, stability, adaptiveness, robustness, observers...

Exploring Model Predictive Control for Queueing Networks
Our Queueing Network Models

- Discrete time $n = 0, 1, \ldots$
- K job classes, L servers
- Types of classes:
 - ∞ – Source
 - Q – Queue
 - D – Delay
 - S – Sink
- Deterministic routes
- Randomness due to ”batch” arrivals” (∞ classes), \tilde{u}_k, m_k
- Processing capacity: jobs per server per time unit, $c_i, i = 1, \ldots L$
- Control Policy – How do servers allocate capacity among Q and ∞?
Some Structured Examples

A Single Server Queue, \((c_1, c_2, m_1)\)

The Acquisition Queue – Similar to – A Simple Re-Entrant Line

A Controlled Markov Chain

- $P = \{p_{kk'}\}$ – routing matrix, C – constituency matrix
- i.i.d jobs generated at sources, $\tilde{u}^* U$ – generic r.v. of U-fold sum
- $\{X(n)\}$ is a controlled Markov chain, with control $U(n) = f(X(n))$

$$X_k(n + 1) = \begin{cases}
X_k(n) + \sum_{k' \in K_D} X_{k'}(n)p_{k'k} + \sum_{k' \in K\{Q,\infty\}} \tilde{u}_{k'}^{\ast U_k(n)} p_{k'k} - U_k(n), & k \in K_Q \text{ (queue)} \\
\sum_{k' \in K_D} X_{k'}(n)p_{k'k} + \sum_{k' \in K\{Q,\infty\}} \tilde{u}_{k'}^{\ast U_k(n)} p_{k'k}, & k \in K_D \text{ (delay)} \\
X_k(n) + \sum_{k' \in K_D} X_{k'}(n)p_{k'k} + \sum_{k' \in K\{Q,\infty\}} \tilde{u}_{k'}^{\ast U_k(n)} p_{k'k}, & k \in K_S \text{ (sink)}
\end{cases}$$

Matrix form

$$\begin{bmatrix} X_Q(n+1) \\ X_D(n+1) \\ X_S(n+1) \end{bmatrix} = \begin{bmatrix} I & P'_{DQ} & 0 \\ 0 & P'_{DD} & 0 \\ 0 & P'_{DS} & I \end{bmatrix} \begin{bmatrix} X_Q(n) \\ X_D(n) \\ X_S(n) \end{bmatrix} + \begin{bmatrix} P'_{\infty Q} M_\infty \\ P'_{\infty D} M_\infty \\ P'_{\infty S} M_\infty \end{bmatrix} \begin{bmatrix} U_\infty(n) \\ U_Q(n) \end{bmatrix} + \begin{bmatrix} P'_{\infty Q} \\ P'_{\infty D} \\ P'_{\infty S} \end{bmatrix} \tilde{u}(U_\infty(n))$$

Elements of $\tilde{u}(\cdot)$ are $\tilde{u}_k^{\ast U_k(n)} - U_k(n)m_k$

s.t.

$$\begin{bmatrix} 0 & 0 & 0 & -I & 0 \\ 0 & 0 & 0 & 0 & -I \\ -I & 0 & 0 & I & 0 \\ 0 & 0 & 0 & C_\infty & C_Q \end{bmatrix} \begin{bmatrix} X_Q(n) \\ X_D(n) \\ X_S(n) \\ U_\infty(n) \\ U_Q(n) \end{bmatrix} \leq \begin{bmatrix} 0 \\ 0 \\ 0 \\ c \end{bmatrix}$$

Exploring Model Predictive Control for Queueing Networks
Control as a Linear System

\[X(n + 1) = A X(n) + B U(n) + \text{zero mean noise} \]

s.t.

\[F \begin{bmatrix} X(n) \\ U(n) \end{bmatrix} \leq g \]

Our Control Methodology

- Ignore noise
- Assume state and control \((X(\cdot), U(\cdot))\) are continuous in value
- Find a reference trajectory
- Apply ”standard” control-theoretic methods for tracking the reference trajectory
- Use Model Predictive Control (MPC) using a Quadratic Programming (QP) formulation

Exploring Model Predictive Control for Queueing Networks
Illustrative Example: Acquisition Queue with $d = 3$

\[
\begin{bmatrix}
D_1(n+1) \\ D_2(n+1) \\ D_3(n+1) \\ Q(n+1) \\ S(n+1)
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
D_1(n) \\ D_2(n) \\ D_3(n) \\ Q(n) \\ S(n)
\end{bmatrix} + \begin{bmatrix}
m & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & -1 \\ 0 & 1
\end{bmatrix} \begin{bmatrix}
U_\infty(n) \\ U_Q(n)
\end{bmatrix}
\]

Maximal Throughput

\[
\delta = \lim_{n \to \infty} \frac{1}{n} S(n) = m \frac{c}{1 + m},
\]

A Reference Trajectory

\[
D_1^*(n) = D_2^*(n) = D_3^*(n) = Q^*(n) = U_\infty^*(n) = U_Q^*(n) = \delta, \quad S^*(n) = \delta n
\]

Error Dynamics: $X_e(n) = X(n) - X^*(n)$, $U_e(n) = U(n) - U^*(n)$

Also satisfy $X_e(n+1) = A X_e(n) + B U_e(n)$

Our controller needs tries to regulate $X_e(n)$ on 0
The MPC Approach

Action of Controller at Time n

- Look at $X^e(n)$
- Plan an optimal schedule for a **time horizon** of N time units:
 - Optimize the variables $U^e(n), \ldots, U^e(n + N - 1)$
 - These yield predictions of $X^e(n + 1), \ldots, X^e(n + N)$
 - Practical objective (QP):
 $$\sum_{i=n}^{n+N-1} \hat{X}^e(i+1)' Q \hat{X}^e(i+1) + U^e(i)' R U^e(i)$$
- After optimizing – **use first step**:
 - $U(n) = U^e(n) + U^r(n)$
 - Round off $U(n)$ and insure feasibility
- Repeat in next time step

Parameters: Time horizon, N. Positive definite cost matrixes, Q, R
Precise Formulation of the QP (for illustration)

\[
\begin{align*}
\text{min}_{U^e} & \quad U^e' (B' Q B + R) U^e + 2 X_0^e' A' Q B U^e \\
\text{s.t.} & \quad \begin{bmatrix} C \\ S_{UQ}^+_1 - S_{XQ}^- B^- I \end{bmatrix} U^e \leq \begin{bmatrix} c \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ S_{XQ}^1 \\ S_{XQ}^- \end{bmatrix} X^r + \begin{bmatrix} -C \\ -S_{UQ}^1 \\ -S_{UQ}^- \end{bmatrix} U^r + \begin{bmatrix} 0 \\ S_{XQ} \\ S_{XQ} A \\ 0 \end{bmatrix} X^e
\end{align*}
\]

Q, R are block diagonal matrixes of Q and R. The S matrixes "select" elements. The following matrixes are used for prediction:

\[
A = \begin{bmatrix} A \\ A^2 \\ \vdots \\ A^N \end{bmatrix}, \quad B = \begin{bmatrix} B & 0 & \cdots & 0 \\ AB & B & \vdots \\ \vdots & \vdots & \ddots \\ A^{N-1} B & \cdots & B \end{bmatrix}
\]

Observe: If \(U^r\) is constant as well as \(X^r\) on the Q-classes then control law is a function of \(X_0^e\) only

Exploring Model Predictive Control for Queueing Networks
Possibility for ”Explicit Form” the Solution

Multi-Parametric Quadratic Programming (MPQP)

Algorithms for an ”explicit solution” in terms of \(X_0^e \):
A piece-wise affine function

Example: Single Server Queue with \(c_1 = \infty \), \(c_2 = 20 \), \(m_1 = 1 \). \(Q = I \), \(R = I \), \(N = 5 \).

Stability?

Continuous Deterministic Case

- Add **end point constraint**: $X^e(N) = 0$
- Main Theoretical Result: If feasible solution exists then resulting system is asymptotically stable
- Alternative: Take $N = \infty$

Discrete Stochastic Case

- No general result
- Some hope of proving positive recurrence for ”toy examples” by analyzing the solution of the QP when X_0^e is far from the origin
- Practical alternative: Use end point constraint. When QP is not feasible, don’t work on ∞ classes
Numerical Examples
Acquisition Queue Threshold vs. MPC

Example: \(c = 10, d = 10, m = 3 \)

A Simple Threshold Control Law (Van Leeuwaarden et. al. 2007)

\[
U_\infty(n) = \alpha + (c - Q(n))^+, \quad U_Q(n) = c - U_\infty(n)
\]

\(\alpha < c/(1 + m) \) (for stability)

Example: \(d = 10, m = 3, \) no noise

Assume no noise, optimize \(\alpha: \alpha = 2 \) is best

Exploring Model Predictive Control for Queueing Networks
MPC Appears Better than Threshold

Compare $\alpha = 2$ with MPC ($Q = I$, $R = I$, $N = 30$)

Add noise (Geometrically distributed acquisitions)
Simple Re-Entrant Line \((\rho = 1)\)

\[c_1 = 10, \ c_2 = 100, \ m_1 = 20, \ \delta = m_1 \frac{c_1}{1+m_1} \approx 9.52 \]

Comparing LBFS and MPC \(Q = 1, \ R = I, \ N = 10\)

Note: Both controllers achieve desired throughput

Different Objective, \(Q = 1\)

Note: MPC does NOT achieve desired throughput
A More Complex Network

Use Linear Program (LP) to Find a Reference Trajectory

\[
\begin{align*}
\text{max} & \quad \sum_{i=1}^{4} w_i r_i \\
\text{s.t.} & \quad \begin{bmatrix}
1 & 0 & 0 & 0 \\
1 & 0 & 1/m_3 & 0 \\
1 & 1/m_2 & 0 & 1/m_4 \\
\end{bmatrix}
\begin{bmatrix}
r_1 \\
r_2 \\
r_3 \\
r_4 \\
\end{bmatrix} \leq
\begin{bmatrix}
c_1 m_1 \land c_3 \land c_4 \\
c_2 \\
c_5 \\
\end{bmatrix}, \\
r_i \geq 0, \quad i = 1, 2, 3, 4.
\end{align*}
\]

\(\rho \in [0, 1]\)

(route 1) \(U_1^r(n) = \rho r_1^* / m_1, \quad X_5^r(n) = X_6^r(n) = X_7^r(n) = X_8^r(n) = U_5^r(n) = U_6^r(n) = U_7^r(n) = U_8^r(n) = \rho r_1^*,\)

(route 2) \(U_2^r(n) = \rho r_2^* / m_2,\)

(route 3) \(U_3^r(n) = \rho r_3^* / m_3,\)

(route 4) \(U_4^r(n) = \rho r_4^* / m_4, \quad X_{10}^r(n) = X_{11}^r(n) = X_{12}^r(n) = X_9^r(n) = U_9^r(n) = \rho r_4^*,\)

(sinks) \(X_{13}^r(n) = \rho (r_1^* + r_2^* + r_3^*) n, \quad X_{14}^r(n) = \rho r_3^* n, \quad X_{15}^r(n) = \rho r_4^* n.\)
A More Complex Network (cont.)

Parameters set such that $r_i^* > 0$, $i = 1, 2, 3, 4$, $Q = I$, $R = I$, $\rho = 1$

$N = 5$, Stable

$N = 4$, Stable in Q’s (not in output). $N = 3$ Unstable

Exploring Model Predictive Control for Queueing Networks
Conclusion

- Main idea: View queueing network as controlled linear system with noise – apply MPC – appears to "work well"
- General theory: (1) Stability properties (2) Bounds on performance... "hard to obtain"
- At least... Hope for explicit stochastic analysis of some toy examples
- Immediate extensions (in progress): (1) Observers (2) inverse optimality of other controllers - e.g. dead beat
- Interesting to experiment: Incorporating the effect of noise in the reference value for the queue levels
Questions?