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@ Moment matching of truncated distributions
@ Cyclic queueing systems
© Scheduling with linear slowdown

@ Overflow fluid buffer networks



Moment matching of truncated distributions

Joint work with Benoit Liquet




Problem: Matching moments of truncated distributions

Moment matching




Problem: Matching moments of truncated distributions

Moment matching




Problem: Matching moments of truncated distributions

Moment matching

/Xig(X;G)dx:mT, i=1,...,n

Truncated distributions
B f(x; 0)
fab f(u; 0)du

g;b(X; 0)

Equations for 6 (given [a, b] and m*) are “hard”

Exponential: Normal:
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Start with support (—o0, c0) and truncate “bit by bit”

e z € (0,1] is level of truncation, e.g.

(a_l—z’b_’_l—z)

zZ zZ

0(z) is the solution for each z
e Derive expression for F(-,-) in the ODE:

d
= 02) = F(6(2), 2)

@ In most cases 6(0™) has a simple closed form

e Find the trajectory 6(z) numerically



f(x; 0) =0exp(—0x), mj; =24, [a, b] =]0,5]

0(z)
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— 0.6, [a, b] = [-0.9,1.35]
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Cyclic queueing systems

Joint work with Matthieu Jonckheere and Leonardo Rojas-Nandayapa




Problem: Performance of queues in cyclic environments

Want to evaluate:
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Two variations

Hysteresis control

ly for n odd,
Tpo=infet > Th_1: X(t) =
n= { = (t) {81 for n even. }

Fixed cycles

T . _]mn for n odd,
" e 7> for n even.




Basic idea: Approximate the random trajectory with switched ODE




Use the ODE to construct an approximation for F(-)

7]

¢
. ™ ™

1

Fly) = i (11(y) + (2 — 72(¥))

@ Hysteresis control: ¢1, ¢, given = find 71,7
o Fixed Cycles: 71, given = find /1, />

X1 = L2, X2

x1(0)=£1

m  =h
x(0)=t2

13



Example: Infinite server case, Zx;(t) = A — p; xi(t)

ODE based approximation for F(-)

y (p1—p2)u+(A2—A1)
F(y) :/ f(u)du, f(u) = (r1u—A1)(H2u—2N2) - 1{1 < u < 6}

1
log (#141—)\1) w1 (uzfz—)\z) w2
M1l —A1 H2l1— X2

0 - A=
(eTiMi—1) %.;.(e"f“f 1) FLeiti

For fixed cycles set: ¢; =

T T TS

Approximation becomes exact when accelerating the arrival rates:

AM = NX; with N = oo
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Scheduling with linear slowdown

Joint work with Liron Ravner
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Problem: Optimisation with rush hour traffic

Processor sharing scheduling for n users
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Problem: Optimisation with rush hour traffic

Processor sharing scheduling for n users

n

d;
:/. vg®)dt  a(t) =S 1{t € [a, ]}

i j=1

Linear slowdown

v(q(t)) = 8 — a(q(t) — 1)

(assume n < B/a + 1)
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Problem: Optimisation with rush hour traffic

Processor sharing scheduling for n users

d; n
:/. v(g()de  q(t) = 1t € 3, d}

v(q(t)) = B—a(q(t)—1)

(assume n < B/a + 1)

v

n

min c(a) = Zc,-(a,-,d,-(a)), ci(ai, di) = (di—d?)? +v (di—a;)

acR”
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Piecewise affine relationship between a and d

Eg. withn=3, 3=1/2, a=1/6:

awork
a; = 0.00

a3 = 3.00

! I

di = 2.50 d> =3.75 d3 =5.25
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Key attributes and algorithms

An exponential number of convex quadratic programs

The objective function is piecewise quadratic with number of

regions equal to,
G

n

n+1 n3/2, /7’

and with explicit expressions for describing each of the QPs.

Algorithms:
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Key attributes and algorithms

An exponential number of convex quadratic programs

The objective function is piecewise quadratic with number of

regions equal to,
I

n

n+1 m2yr

and with explicit expressions for describing each of the QPs.

Algorithms:

© Calculate d based on a or vice versa

@ Exhaustive search

© Neighbour search

Q Efficient trajectory calculation for d(a;)
© Global search by means of CPI

@ Combined global-local search heuristic

Not known if problem is NP—complete
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Optlma| dynamics n=15 (=22 B =1 and d* quantiles of Normal(0,) )
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Heuristic dynamics n=>50 (=28 B =1 and d* quantiles of Normal(0,1) )

v=1
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Overflow fluid buffer networks

Joint work with Stijn Fleuren and Erjen Lefeber
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Problem: Modelling complex manufacturing systems
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An overflow fluid buffer model

Qai,...,Qp
[, fin
P = (pij)
Ki,... K,
Q = (gij)

exogenous arrival rates

service rates

routing matrix (sub-stochastic or stochastic)
buffer sizes (can also be o)

overflow matrix (strictly sub-stochastic)

oq] ——>

I—:

a3 ——>
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A;i: The effective arrival rate to buffer i

Basic Jackson:

n
Ai = aj+ Z Ajpji
j=1
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A;i: The effective arrival rate to buffer i

Basic Jackson:

n
Ai = o + Z Ajipjii

j=1
Evolution of equations:
Basic Jackson, 1950's: A=a+ AP
Goodman and Massey, 1984: A=a+(AAp)P

Our steady state flow equations: A =a + (AA )P+ (A —u)TQ

>\—OZI+Z)\/\:UUPJI+Z qJ:
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Buffer trajectories, X(t) € R”

Modes
E(t)={i: Xi(t) =0}, F(t):={i: Xi(t) =K}
Equations based on mode

A=+ (AAp)PE + P+ (A — )t Q"

o’

X(t) = X(0) + /OtA<S(u), F(u)) du

)\,'(5,]:)—/\,'(5,.7)/\/@', i €€,
A1(57]:): )\,(5,./—")—/,6,, Iggvlg*’ta
)\,'(5,]:)—>\,'(5,.7:)\/u,', i€ F.
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Properties and results

Conditions for uniqueness and existence

Efficient algorithm for solving the equations

Trajectories are non-cycling

Example of an exponential number of mode changes
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