Parameter Estimation for Queues:
A Tale of Six Observations Schemes

Yoni Nazarathy, The University of Queensland,
Joint with Azam Asanjarani and Peter Taylor.

Research supported by ARC Grant, DP180101602.
INFORMS-APS 2019, Brisbane Australia

The 20th INFORMS Applied Probability Society Conference, July 2-4, 2019, Brisbane Australia.
A number of related events are being held before and after the INFORMS-APS conference:

- **Applied² Probability**, July 5 taking place at The University of Queensland, Brisbane. This is a satellite workshop dealing with concrete applications and is organized by CARM.
- **12th International Conference on Monte Carlo Methods and Applications (MCM2019)**, July 8 - 13 taking place in Sydney, Australia.
Parameter and State Estimation in Queues and Related Stochastic Models: A Bibliography

Azam Asanjarani, Yoni Nazarathy and Philip K. Pollett
The School of Mathematics and Physics, The University of Queensland, Brisbane Australia

January 31, 2017

A Survey of Parameter and State Estimation in Queues

Azam Asanjarani, Yoni Nazarathy and Peter Taylor

June 8, 2018
Chapter 13
Statistical analysis of queueing systems

U. Narayan Bhat, Gregory K. Miller, and S. Subba Rao

ABSTRACT This paper provides an overview of the literature on the statistical analysis of queueing systems. Topics discussed include: model identification, parameter estimation using the maximum likelihood, method of moments and Bayesian frameworks, a discussion of covariance structure and autocorrelation in queueing systems, estimation from simulation experiments, hypothesis testing, and other related aspects. The bibliography, fairly exhaustive, should provide the reader with a source of articles that comprise the core of work done up to the present time.

CONTENTS
13.1 Introduction 351
13.2 Identification of models 352
13.3 Parameter estimation: The maximum likelihood method 354
13.4 Parameter estimation: The method of moments 360
13.5 Bayes estimation 361
13.6 Covariance structure, autocorrelation and mean value estimation 364
13.7 Estimation from special types of data 368
13.8 Estimation related to performance measure 372
13.9 Estimation from simulation of queueing processes 376
13.10 Hypothesis testing 379
13.11 Other related topics and future prospects
Bibliography

STATISTICAL ANALYSIS OF QUEUEING SYSTEMS

U. NARAYAN BHAT
Department of Statistics, Southern Methodist University, Dallas, Texas 75275, USA
and
S. SUBBA RAO
Department of Management and Systems, Washington State University, Pullman, Washington 99164, USA
Number of Papers per year 1955 - 2016
Goal: Create a predictive model based on observations.
Setting for this talk: Single Pass Queue
Computation

DRAFT

Hayden Klok, Yoni Nazarathy

June 4, 2018

``` julia
using DataStructures, Distributions

function simulateNMe(λ, μ, Q₀, T)
    t, Q = 0.0, Q₀
    tValues = [0.0]
    qValues = [Q₀]
    while t < T
        if Q == 0  # arrival to an empty system
            t += rand(Exponential(1/λ))
            Q = 1
        else  # change of state when system is not empty
            t += rand(Exponential(1/(λ + μ)))
            Q += 2(rand() < λ/(λ + μ)) - 1
        end
        push!(tValues, t)
        push!(qValues, Q)
    end
    return [tValues, qValues]
end

using PyPlot
T = 50
Q₀ = 0
queueTraj = simulateNMe(0.9, 1.0, Q₀, T);
times = queueTraj[1]
qValues = queueTraj[2]
temp = stuckSteps(times, qValues)
timesForPlot = temp[1]
qForPlot = temp[2]
delta = 2.5
qSampled = sampleQ(times, qValues, delta)
plot(timesForPlot, qForPlot)
plot!(0:delta:T, qSampled, '.', color="r")

arrDep = findArrDep(times, qValues)
arrs = arrDep[1]
deps = arrDep[2]
plot(arrs, -0.2*ones(length(arrs)),"x")
plot(deps, -0.2*ones(length(deps)),"o");
```
Six observation schemes

1. Full Observation
2. Discrete Intervals
3. Input and Output Process
4. Transactional Observations
5. Probing
6. Independent Primitives
1: Full Observation
\[\{ Q(t) : t \in [0,T] \} \]
Sample until “busy time” reaches a pre-assigned value

- \(\nu \) - Initial queue size
- \(m \) - Total departures
- \(T \) - Time of last departure
- \(n \) - Total arrivals

\[
L(\lambda, \mu ; \text{ data}) = \left(1 - \frac{\lambda}{\mu}\right)e^{-\mu T - \lambda T} \mu^{m - \nu} \lambda^{n + \nu} K
\]
Rule 1: Observe the system until a fixed time t.
Rule 2: Observe the system until d departures.
Rule 3: Observe the system until m arrivals.
Rule 4: Stop after n transitions.

$$L_T(\theta, \phi) = \prod_{k=1}^{A(T)} f(u_k; \theta) \prod_{k=1}^{D(T)} g(v_k; \phi) \times \bar{F}_\theta(T - \sum_{k=1}^{A(T)} u_k) \bar{G}_\phi(T - \sum_{k=1}^{D(T)} v_k)$$
2: Discrete Intervals

\(\{ Q(n\Delta), n = 1, \ldots, N \} \)

Statistical inference for discretely observed Markov jump processes.

Mogens Bladt
IMAS–UNAM
A.P. 20-726
01000 Mexico, D.F.
Mexico
bladt@sigma.imas.unam.mx

Michael Sørensen
Department of Applied Mathematics and Statistics
University of Copenhagen
Universitetsparken 5
DK-2100 Copenhagen Ø
Denmark
michael@math.ku.dk

Estimation for queues from queue length data

J. V. Ross · T. Taimre · P. K. Pollett
\[L^{(c)}_{\tau}(Q) = \prod_{i=1}^{m} \prod_{j \neq i} q_{ij}^{N_{ij}(\tau)} e^{-q_{ij}R_{i}(\tau)} \]

An EM algorithm:

E-step, Calculate: \[g : Q \rightarrow E_{Q_0}(\log L^{(c)}_{\tau}(Q) \mid Y = y) \]

M-step, Calculate: \[Q_0 = \arg\max_Q g(Q) \]
M/M/c
Let c grow...

\[\lambda \sim \alpha c \quad \frac{\lambda}{\mu c} \to x_0 < 1 \]

Get an Ornstein-Uhlenbeck process...

\[
E[Q(t) \mid Q(0)] \approx x_0 + e^{-\mu t}(Q(0) - x_0)
\]

\[
\text{var}(Q(t) \mid Q(0)) \approx \frac{\lambda}{\mu c^2}(1 - e^{-2\mu t})
\]

\[
\text{cov}(Q(s), Q(s + t)) \approx \frac{\rho}{c^2}e^{-\mu |t|}
\]
3: Input and Output Processes
\{A_1, \ldots, A_N\}, \{D_1, \ldots, D_N\}
Most Attention Given to $M/G/\infty$

Why do we like Infinite Servers?

\[
e(t) = \text{Cov}(Q(0), Q(t)) = \begin{cases}
2\lambda(1 - \lambda) \int_0^\pi \frac{(\sin \theta)^2 e^{-t(1+\lambda-2\sqrt{\lambda} \cos \theta)}}{(1 + \lambda - 2\sqrt{\lambda} \cos \theta)^3} d\theta & \text{for } M/M/1, \\
\frac{\lambda}{\mu^2} e^{-\mu t} & \text{for } M/M/\infty.
\end{cases}
\]
CDF of the time since the last arrival at a departure point: $H(x) = 1 - (1 - G(x))e^{-\lambda x}$
Nonparametric inference about service time distribution from indirect measurements

Peter Hall
Australian National University, Canberra, Australia

and Juhyun Park

doi:10.1017/apr.2016.67
© Applied Probability Trust 2017

The \(M/G/\infty \) estimation problem revisited

ALEXANDER GOLDENSHLUGER

Department of Statistics, University of Haifa, Haifa 31905, Israel. E-mail: goldensh@stat.haifa.ac.il
Output process only (of M/G/1):

Filtering recursions for calculating likelihoods for queues based on inter-departure time data

PAUL FEARNHEAD

Department of Mathematics and Statistics, Lancaster University, LA1 4YF
p.fearnhead@lancaster.ac.uk
4: Transactional Observations

\{(D_1, \ldots, D_N), B\}

MANAGEMENT SCIENCE
Vol. 36, No. 5, May 1990
Printed in U.S.A.

THE QUEUE INFEERENCE ENGINE: DEDUCING QUEUE STATISTICS FROM TRANSACTIONAL DATA*

RICHARD C. LARSON

Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

The transactional data of a queueing system are the recorded times of service commencement and service completion for each customer served. With increasing use of computers to aid or even perform service one often has machine readable transactional data, but virtually no information about the queue itself. In this paper we propose a way to deduce the queueing behavior of Poisson arrival queueing systems from only the transactional data and the Poisson assumption. For each congestion period in which queues may form (in front of a single or multiple servers), the key quantities obtained are mean wait in queue, time-dependent mean number in queue, and probability distribution of the number in queue observed by a randomly arriving customer. The methodology builds on arguments of order statistics and usually requires a computer to evaluate a recursive function. The results are exact for a homogeneous Poisson arrival process (with unknown parameter) and approximately correct for a slowly time varying Poisson process. (QUEUES; INFEERENCE; DATA ANALYSIS; POISSON)
Example: Consider a simple “transactional observation”

You observe:
- At time 0 server starts working
- At time 1 a customer departs (and server continues to work)
- At time 2 a second customer departs and server stops working

With Poisson arrivals:

\[E[n_Q(t)] = \begin{cases}
 t, & t \in [0,1), \\
 0, & t \in [1,2].
\end{cases} \]
Transactional data (QIE)

Inferring most likely queue length from transactional data

Dragomir D. Dimitrijevic

Tulane Networks, Inc., 30250 Century Boulevard, Germantown, MD 20874, USA

Received 1 September 1992; revised 1 April 1996

Estimating characteristics of queueing networks using transactional data

Avi Mandelbaum and Sergey Zeltyn

Faculty of Industrial Engineering and Management, Technion, Haifa 32000, Israel

Analysis of an unobservable queue using arrival and departure times

Jinsoo Park, Yun B. Kim, Thomas R. Willemain

Department of Systems Management Engineering, Sungkyunkwan University, Suwon, South Korea

Deducing queueing from transactional data: the queue inference engine, revisited

Dimitris J. Bertsimas

Massachusetts Institute of Technology, Cambridge, Massachusetts

L. D. Servi

GTE Laboratories, Incorporated, Waltham, Massachusetts

(Received April 1995, revision received February 1996; accepted July 1996)

Remarks on queue inference from departure data alone and the importance of the queue inference engine

Lee K. Jones

Department of Mathematical Sciences, University of Delaware, Newark, NJ 19716, USA

MOMENT ESTIMATION OF CUSTOMER LOSS RATES FROM TRANSACTIONAL DATA

D.J. Daley

Australian National University, School of Mathematical Sciences, Canberra ACT 2600, Australia

L.D. Servi

GTE Laboratories Incorporated, 18 Sylvan Road, Waltham, MA 02254, USA
5: Probing

\{s_1^{\text{probe}}, \ldots, s_N^{\text{probe}}\}

Inverse problems in queueing theory and Internet probing

F. Baccelli · B. Kauffmann · D. Veitch
Best probe rate?

\[\hat{\lambda} = \mu - \lambda_{\text{probes}} - \frac{1}{\text{mean probe sojourn}} \]

E.g. \(T=1000 \) \(\lambda = 0.9 \) \(\mu = 1 \)

Simulated \(10^5 \) times for each point on the grid

"probing stability point?"
This function returns a sequence of sojourn times of an M/M/1 queue
that starts empty
gamma is arrival of probes
alpha is service rate

\(\text{flip}(p) = (\text{rand}() < p) \)

function simulateMMSojournWithProbes(gamma, alpha, lambda, mu, T)

\(p_{\text{Probe}} = \frac{\gamma}{(\gamma + \lambda)} \)

\(t_{\text{NextArr}} = \text{rand}(\text{Exponential}(1/(\lambda + \gamma))) \)

\(t_{\text{NextDep}} = \infty \)

\(t = t_{\text{NextArr}} \)

waitingRoom = Queue(Tuple(Float64, Bool))
arrTimeOfCustomerInService = NaN
isCustomerInServiceProbe = false
sojournTimes = Array(Float64)()

initQueue = rand(Geometric(lambda/mu))
for i in 1:initQueue
 enqueue!(waitingRoom,(NaN,false))
end

while \(t < T \)
 if \(t == t_{\text{NextArr}} \)
 if isnan(arrTimeOfCustomerInService)
 isCustomerInServiceProbe = \text{flip}(p_{\text{Probe}})
 t_{\text{NextDep}} = t + \text{rand}(\text{Exponential}(1/(isCustomerInServiceProbe ? \alpha : \mu)))
 arrTimeOfCustomerInService = t
 else
 enqueue!(waitingRoom,(t,\text{flip}(p_{\text{Probe}})))
 end
 t_{\text{NextArr}} = t + \text{rand}(\text{Exponential}(1/(\lambda + \gamma)))
 else
 \# Departure
 if length(waitingRoom) == 0
 t_{\text{NextDep}} = \infty
 if isCustomerInServiceProbe
 push!(sojournTimes, t - arrTimeOfCustomerInService)
 end
 arrTimeOfCustomerInService = NaN
 else
 if isCustomerInServiceProbe
 push!(sojournTimes, t - arrTimeOfCustomerInService)
 end
 arrTimeOfCustomerInService, isCustomerInServiceProbe = dequeue!(waitingRoom)
 t_{\text{NextDep}} = t + \text{rand}(\text{Exponential}(1/(isCustomerInServiceProbe ? \alpha : \mu)))
 end
 end
end

t = min(t_{\text{NextArr}}, t_{\text{NextDep}})
end

if length(sojournTimes) == 0
 sojournTimes = [1/\mu] #QQQQ
end
return sojournTimes
Inferring Network Characteristics via Moment-Based Estimators

Sara Alouf, Philippe Nain
INRIA Sophia Antipolis, B.P. 93
06902, Sophia Antipolis Cedex, France
{salouf, nain}@sophia.inria.fr

Don Towsley
Dept. of Computer Science
University of Massachusetts
Amherst, MA 01003, USA
towsley@cs.umass.edu

The M+M/M/1/K Queue

The M+M/D/1/K Queue

Straightforward inverse estimation formulas
Parameter Estimation for Partially Observed Queues

Thomas M. Chen, Member, IEEE, Jean Walrand, Fellow, IEEE, and David G. Messerschmitt, Fellow, IEEE

$L_k(\lambda) = \prod_{n=2}^{k} p_n(\tau_n \mid \tau_{n-1}; \lambda)$

$F(x, t \mid x_0; \lambda) \equiv P(V(t) \leq x \mid V(0) = x_0)$

$p_n(x \mid y; \lambda) = f(x - c, a_n - a_{n-1} \mid y; \lambda)$
6: Independent Primitives

\{(A_1, \ldots, A_N), (S_1, \ldots, S_M)\}
Data: \(\{(A_1, \ldots, A_N), (S_1, \ldots, S_M)\} \)

\[
\hat{\lambda} = \frac{n}{\sum_{i=1}^{m} A_i} \quad \hat{\mu} = \frac{m}{\sum_{i=1}^{m} S_i}
\]

\[
\hat{\rho} = \frac{\hat{\lambda}}{\hat{\mu}} \quad \text{If } \hat{\rho} \geq 1 \text{ then resample.}
\]

\[
\frac{\hat{\rho}}{\rho} \sim F(2m, 2n)
\]

Problem: \(E\left[\frac{\hat{\rho}}{1 - \hat{\rho}} \1{\hat{\rho} < 1} \right] = \infty \)
Technical Note: Traffic Intensity Estimation

Peter C. Kiessler, Robert Lund

Department of Mathematical Sciences, Clemson University, Clemson, South Carolina 29634-0975

\[V(t) = V(0) + \sum_{n=1}^{A(t)} S_n - \int_0^t 1\{V(\tau) > 0\} \, d\tau \]

\[\hat{\rho}_{\text{virtual}} = \frac{1}{t} \int_0^t 1\{V(\tau) > 0\} \, d\tau \]

Bias bounding:

\[\left| E[\hat{\rho}_{\text{virtual}}] - \rho \right| \leq \frac{c + V(0)}{t} \]
Bayesian Celebration...

BAYESIAN INFERENCE FOR DOUBLE PARETO LOGNORMAL QUEUES

By Pepa Ramírez-Cobo, Rosa E. Lillo, Simon Wilson and Michael P. Wiper

CNRS France, Universidad Carlos III de Madrid, Trinity College Dublin
and Universidad Carlos III de Madrid

In this article we describe a method for carrying out Bayesian estimation for the double Pareto lognormal (dPLN) distribution which has been proposed as a model for heavy-tailed phenomena. We apply our approach to estimate the dPLN/M/1 and M/dPLN/1 queueing systems. These systems cannot be analyzed using standard techniques due to the lack of an expression for the Laplace transform of the dPLN distribution. In some recent applications, the arrival distribution has been approximated with an

Bayesian inference in Markovian queues

Carmen Armero

Department of Statistics and Operations Research, University of Valencia,
Doctor Moliner 10, 46100 Burjassot, Valencia, Spain

Received 25 January 1992; revised 19 January 1993

+ Many Other Papers
In summary:

1. Full Observation
2. Discrete Intervals
3. Input and Output Process
4. Transactional Observations
5. Probing
6. Independent Primitives