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Abstract. Ecological studies typically involve comparison of biological responses among 
a variety of environmental conditions. When the response variables have continuous dis- 
tributions and the conditions are discrete, whether inherently or by design, then it is 
appropriate to analyze the data using analysis of variance (ANOVA). When data conform 
to a complete. balanced design (equal numbers of observations in each experimental treat- 
ment), it is straightforward to conduct an ANOVA, particularly with the aid ofthe numerous 
statistical computing packages that are available. Interpretation of an ANOVA of balanced 
data is also unambiguous. Unfortunately, for a variety of reasons, it is rare that a practicing 
ecologist embarks on an analysis of data that are completely balanced. Regardless of its 
cause, lack of balance necessitates care in the analysis and interpretation. In this paper, 
our aim is to provide an overview of the consequences of lack of balance and to give some 
guidelines to analyzing unbalanced data for models involving fixed effects. Our treatment 
is necessarily cursory and will not substitute for training available from a sequence of 
courses in mathematical statistics and linear models. It is intended to introduce the reader 
to the main issues and to the extensive statistical literature that deals with them. 

ANOVA AND BOONSOF BALANCE two treatment factors (A and B), each having several 

In this section we briefly review ANOVA, noting the different states or levels. All the possible combinations 

advantages of a strictly balanced design. For single fac- of the n, levels of Factor A with the n, levels of Factor 

tor analyses, lack of balance does not present serious B are generated, n, x n, = p, and one treatment com- 

problems (Milliken and Johnson, 1984: 127). We there- bination is applied to each of the = p x r experi- 

fore discuss the two-way factorial design with the ef- mental units. where r is the number of observations 

fects of both factors considered fixed. because it is among per treatment combination, or cell One or more mea- 

the simplest that reveals the main distinctions between sures (y)are taken on each expenmental unit. 

balanced and unbalanced cases. The principles we pre- Given such a design, the rneans rnodel, 

sent hold, in general, for more complicated models 
involving fixed effects. Consideration of mixed and 
random effects models, in which interest focuses on where p,, is the mean of the ljth cell of the factonal 

the variance of effects, rather than on estimates of the design, e,,, is the deviation of the kth observation in 

effects themselves, is appreciably more complex and, the ijth cell from the mean of that cell, I = 1 to n,, J 

for this reason, is beyond the scope of this paper, but = 1 to n,, and k = 1 to r, expresses the individual 


a treatment of this topic can be found in textbooks on observations in terms of the cell means. 


the subject (Searle 197 1. 1987. Milliken and Johnson An alternative model, the effects nzodel, 


1984; see also Shaw 1987a for a consideration of anal- 

ysis of quantitative-genetic data). 


In the balanced two-way factorial design, there are 	 where p is the grand mean, a, (h,) is the additive con- 
tribution of the ith 0th) level of Factor A (B) on the 
response. t,, is the deviation of the mean of the ijth cell 

' For repnnts of this Special Feature. see footnote 1. p from the sum of the ith and Jth marginal means, e,,, is 
16 15 

Present address: Department of Ecology. Evolution and the deviation of the kth observation in the ijth cell 
Behavior, University of Minnesota. St. Paul. Minnesota 55 108 from the mean of that cell. i = 1 to nu, J = 1 to n,,. and 
USA. k = 1 to r,  describes the effects of the treatment states 
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on the responses. Whereas the means model h a s p  pa- 
rameters, one for each cell mean, the effects model has 
q = (1 + n,  + n,, + p) parameters. With balanced data. 
the effects model often corresponds to factors or con- 
cepts being put to experimental test. However, it may 
be necessary to rely on the means model for analysis 
of some unbalanced data sets. In either model, it is 
assumed. for the purposes of hypothesis testing. that 
the e,,, are independent of one another and identically 
distributed in a Normal distribution having mean = 

0, and some variance, 02. 

Regardless of the choice of parameterization. either 
model can be expressed conveniently in matrix nota- 
tion as: 

where y is the A' x s matrix of s responses observed 
for each of A'individuals, X is the h x r (r = p or q, 
depending on the parameterization) "design matrix," 
b is an r x s matrix of the parameters of either of the 
two models. above. and e is an A' x s matrix of resid- 
uals. In the univariate case, s = 1, and y, b, and e are 
column vectors. The design matrix contains known 
constants denoting the contributions of particular pa- 
rameters to the expected value of an individual. We 
usually define the element X,, = 0 otherwise. Note that 
the interpretation of the elements of b depends on the 
parameterization. The least squares estimate of the set 
of parameters. b. is 

The superscripts, T and - 1. indicate matrix transpose 
and generalized inverse (Searle 197 1). respectively. This 
representation reveals that ANOVA can be viewed as 
a familiar problem of multiple regression analysis. 

When the means model (Eq. I) is used. the solution 
b, consisting of the estimates of the cell means, is readi- 
ly obtained. In contrast, the effects model (Eq. 2) is 
over-parameterized (that is, there are more parameters 
than can be estimated from the available information), 
so the XTXmatrix is singular, and infinitely many so- 
lutions, b, exist. This problem can be resolved by im- 
posing restrictions on the parameters of Eq. 2 (Searle 
197 1, 1987. Milliken and Johnson 1984:Chapter 6). 
Differing restrictions produce distinct estimates of b. 
Regardless of the choice of restrictions, however, iden- 
tical estimates are obtained for the estirnahlefunctions, 
linear combinations of the model parameters that by 
definition do not depend on the restrictions set on the 
parameters. For example, in the effects model specified 
above for the two-way crossed design (Eq. 2). estimable 
functions for each of the p cell means are obtained by 
summing the elements of b that estimate each effect 
contributing to a given mean (i.e., p + a, + h, + t,,). 
The important issues of estimability of the parameters 

in the effects model and estimable functions are con- 
sidered in more detail by Milliken and Johnson (1 984) 
and Searle (1 987). 

The investigator usually wishes to answer each of 
the following questions by testing the corresponding 
null hypothesis, I-I,,: 

1) Does the effect of one factor on the response vari- 
able(~) depend on the level of the other factor? I-I,,: 
There is no interaction between Factor A and Factor 
B. This null hypothesis is expressed as p,, - p , ,  - p,, 

+ p , ,  = 0 for all I ,  I ' ,  J, J', with ' indicating distinct 
states of a factor (means model). or as (t,, - t, + t ,  + 
t ) = 0 (effects model) (where . as a subscnpt indicates 
averaging over the levels of a given factor). 

2) Do the levels of Factor A differ in their effects on 
the response variable(s)? H,,: There is no main effect 
of Factor A on the response. In the means model. this 
null hypothesis is given as p ,  = p,  = . . . = p,, . The 
same hypothesis can be expressed in the effects model 
as all (a, + t ,) are equal. 

3) Do the levels of Factor B differ in their effects on 
the response variable(s)? H,,:There is no main effect 
of Factor B on the response This null hypothesis can 
be expressed in terms of the parameters as p , = p = 

. . . = p , ]  (means model) or (a, + t ,) are equal (effects 
model). 

Note that all hypotheses can be expressed in terms 
of either the means model or the effects model. Avail- 
able statistical packages are based on the effects model, 
but Milliken and Johnson (1 984) demonstrate the util- 
ity of the means model, particularly for unbalanced 
designs. They also show how standard packages can be 
used to conduct ANOVA in terms of the means model. 

The analysis of variance procedure is so named, be- 
cause it breaks down ("analyzes") the variance (actu- 
ally, the total sum of the squared deviations of the 
responses from their grand mean [i.e., ssT = (N - 1) 
times the variance]) into terms that quantify the mag- 
nitude of the overall variance in the response vari- 
able(~)attributable to the factors of the design, to their 
interaction, and to residual variability within cells of 
the design. There are several distinct methods for ac- 
complishing the breakdown of the ssT into the ss for 
the different factors. Computing formulae are available 
in many statistical texts (e.g., Milliken and Johnson 
1984:Chapters 9 and 10) and need not be repeated 
here. In the balanced case, as defined above, the meth- 
ods yield identical results. and interpretation is there- 
fore straightforward. When the design is balanced, 
moreover, the sums of squares corresponding to each 
of the factors, to their interaction, and to the residual 
variance are independent of one another, and these 
sums of squares are distributed according to the non- 
central x2 distribution with their respective degrees of 
freedom (do. In the cases we are considering. a model 
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having only fixed effects, the "importance" of a given 
factor is usually judged by comparison of the variance 
attributable to that factor to the residual (within-cell) 
variability. Thus, tests of each null hypothesis are de- 
veloped by constructing the ratio of the mean square 
(MS= ss//df) for the particular effect to the residual MS. 
(We urge caution here, however. With certain designs 
(e.g., nested, split-plot), tests of particular effects re- 
quire a denominator other than the residual MS: see 
Milliken and Johnson 1984:Chapters 5 and 24-32). 
When the null hypothesis holds, then, given a balanced 
design, this ratio of MS is distributed exactly according 
to the F distribution. When the design is unbalanced, 
the distinct methods of partitioning ss, do  not produce 
the same results, the resulting ss associated with the 
two factors and their interaction are not necessarily 
independent of one another, and the ratio of MS is no 
longer exactly distributed according to the F distri-
bution. Thus, loss of balance causes ambiguities that 
plague the processes of estimating the parameters, par- 
titioning the ss, and testing the hypotheses of interest. 
Although this is certainly a discouraging situation, a 
careful analysis can often overcome these impediments 
and can provide a reasonably clear picture of the bi- 
ology embodied in the data. 

We use the term "balance" to refer collectively to 
several dlstinct attributes of data structures. Balance 
can therefore be compromised in several different ways. 
whlch we describe in this section 

Given the balanced two-way factonal design de- 
scribed above, there are three ways that balance can 
be marred (1) the numbers of observations for the 
different treatment combinations may be unequal, (2) 
some of the cells (treatment combinations) may be 
missing altogether. and. (3) in multivariate data, some 
of the experimental units may have been measured for 
only a subset of the response vanables. We consider 
these in turn 

I'nequal sarnple size 

Probably the most common way in which data are 
unbalanced is by inequality of numbers of observations 
per cell. When the unit of observation is an individual 
organism. then mortality, emigration, or inability to 
relocate individuals for measurement can affect num- 
bers representing a given treatment. Even when the 
unit of observation is a group of organisms, it is some- 
times necessary to eliminate units due to accidents 
during application of the treatments or during mea- 
surement. 

If properties of the treatments are likely to be caus- 
ally related to the variation in sample size among cells. 
then analysis of only the available responses (e.g., of 

survivors). ignoring the missing observations, would 
reveal only part of the effect (or even obscure the effect) 
of the treatments applied. (See Little and Rubin 1987: 
8-9. and Maxwell and Delaney 1989:273, for further 
discussion of this point.) One way of achieving a more 
complete picture of the overall response to the treat- 
ments is to use categorical methods to explicitly ana- 
lyze the effects of the treatments on final numbers of 
individuals in each cell (e.g., Shaw 1986. 1987h). The 
necessity of separately analyzing the realized cell sizes 
and the responses measured on remaining individuals 
is unfortunate. because the two analyses cannot be re- 
garded as independent. and no joint analysis is readily 
available. However. we are optimistic that current re- 
search in theoretical statistics (e.g., Little and Rubin 
1987:Chapters 11 and 12) will eventually permit joint 
analysis of the pattern of missing data together with 
variables measured on the remaining experimental 
units. In the following. we assume that the treatments 
do not directly cause the variation in sample size or 
that the variation in sample size is analyzed separately. 

Regardless of the cause of the variation in numbers 
of observations, its consequence is that there are more 
observations for some combinations of levels of the 
factors, and hence more information on the effect of 
these combinations, than for other combinations. That 
is, the levels of the factors, often called "independent 
variables." are not independent in the realized data. 
As a result, the estimates and tests of the effects of 
factors are also not generally independent. Thus, the 
lack of balance impairs the ability of the experiment 
to accomplish the usual aim of such studies: that of 
distinguishing the effects of the factors. A related con- 
sequence of inequality of sample size is that the various 
methods of computing ss statistics no longer yield iden- 
tical results. Interpretations based on the diverse meth- 
ods can differ profoundly, and the method to be pre- 
ferred is often not obvious. 

LMissing cells 

Data in which there are no observations for some 
combination(s) of treatments are said to have missing 
cells. This situation may be considered simply an ex- 
treme case of unequal sample size. In the realized data, 
the factors are not independent, and hence, inferences 
about the effects of the two factors are also not inde- 
pendent. As also with unequal sample size, results of 
the diverse methods of calculating ANOVA tables do 
not coincide. However. the case of missing cells con- 
trasts with the case of unequal sample size in one im- 
portant respect: whereas unequal sizes provide varying 
amounts of information for the different treatment 
combinations, no information is available for treat- 
ment combinations that are not observed at all. Special 
care must be taken in analyzing data having missing 
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cells in order to take this absolute ignorance into ac- 
count. As we will point out below, the methods rec- 
ommended for analysis of the case of unequal sample 
size are not appropriate for analyzing data with missing 
cells. Moreover, general inferences about the effects of 
the factors are usually precluded entirely. 

.tfiss~ng responses 

The above two tqpes of imbalance refer to aspects 
of the design of the treatment combinations (a,, h,)and 
dlffer, albeit profoundly. only in the degree of imbal- 
ance. Alternatl\~ely. lack of balance maq impinge on 
the response (y).The investigator maq plan to measure 
several attributes of each organism in the experiment. 
Then, because analyses of the multiple measures on 
the same individuals are not independent, it is appro- 
priate to conduct a multivariate ANOVA (MANOVA) 
to investigate the effect of the treatments on the re- 
sponses jointly. While equal numbers of individuals 
maq represent each cell of the experimental design, the 
design may be unbalanced in the sense that not all 
response variables were measured on each individual. 
One obvious reason for incompleteness of multivariate 
observations is mortality of individuals during the 
course of the experiment, or inability to locate indi- 
\iduals for a particular census. As noted above. care 
should be taken to account for sqstematic effects of the 
treatment combinations leading to missing values 
within the multivariate responses of particular obser- 
vations. 

Because of the methodological difficulties that con- 
front the investigator analyzing unbalanced data, ef- 
forts have traditionally focused on irnposing balance. 
It is possible to delete observations chosen at random 
from those cells that have "extra" data, and then an- 
alyze a balanced subset of the data. Although statisti- 
cally valid. this approach is undesirable since it does 
not use all available data, and is therefore likely to 
reduce the precision of estimates and the power of 
hypothesis tests. Moreover. different estimates are ob- 
tained depending on which data are deleted. In the 
particular case of multivariate analysis, several existing 
statistical packages eliminate all observations for which 
any of the measures is missing, resulting in a potentially 
drastic loss of available information. The MANOVA 
of such a reduced data set reveals the effects of the 
factors on all the response variables taken on only part, 
perhaps only a small part, of the design. An alternative 
is simply to restrict the analysis to a subset of the 
response variables measured on most or all of the in- 
dividuals. Either procedure yields an analysis of less 
information than is available. The latter, however, per- 

mits the investigator to exercise control over the amount 
of data eliminated and the design of the data remaining. 

As an alternative to eliminating data, one may fill 
in values estimated ("imputed") from the data, pro- 
vided that only a few observations are missing. and 
then proceed with the standard ANOVA of the now- 
balanced data. Various methods have been proposed 
for obtaining such imputed values (e.g., substituting 
the cell mean for a missing observation, see Steele and 
Torreq 1980:209). Analqsis of the resulting set of bal- 
anced data using standard methods, leads to correct 
estimates of the parameters, but biased tests of signif- 
icance. More recently, novel methods of imputing 
missing values have been developed. These include. 
for the univarlate case. Bartlett's ANCOVA method 
and the EM (expectation-maximization) algorithm of 
maximum likelihood estimation, related methods that 
produce asymptotically correct estimates and signifi- 
cance tests (Rubin 1976, Little and Rubin 1987). The 
EM algorithm can be applied to a diverse array of 
problems. including the case of missing observations 
in a multivariate response. This is an active area of 
research. Unfortunately, to our knowledge, general 
computer programs employing either Bartlett's AN- 
COVA or the EM algorithm for fixed effects ANOVA 
are not readily available. 

Because the simple procedures for imposing balance 
are flawed. alternative methods for ANOVA were de- 
veloped by Yates (1934) to take account of lack of 
balance. (See Herr [1986], for an interesting history of 
attitudes toward the diverse methods Yates proposed.) 
In the next section we review the methods currently 
in use. See also Potvin and Roff (1993) (this feature) 
for a discussion of the application of resampling meth- 
ods as an alternative approach to ANOVA of unbal- 
anced data. 

ANOVA OF UNBALANCEDDATA 

A number of methods for computing SS and testing 
hypotheses are available in existing statistical pack- 
ages. Here we review them, using their designations 
from the SAS system as Type I-IV (Freund et al. 1986). 
Even for unbalanced data, they all produce the same 
ss and tests for the highest order interaction and the 
residual. For the main effects [and other interactions]. 
however, the four methods may produce strikingly dif- 
ferent results when the data are unbalanced. We con- 
tinue to use the example ofthe two-way factorial design 
with interaction. In order to illustrate that results ob- 
tained by the various methods may differ profoundly, 
we consider a small example data set (Table 1, see 
Burdick and Herr [I9801 and Milliken and Johnson 
[I 9841 for further examples). For the sake of discussion, 
we imagine an experiment to examine the effect on 
final plant height of removing conspecifics within a 
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TABLE1. Example hypothetical set of unbalanced data for 
comparing results using Types I. 11, and 111 analyses. Hy- 
pothetically defined initial size classes: 1 (small) and 2 (large). 
Hypothetical treatments: 0 = Control. n o  removal ofneigh- 
boring plants: 1 = Removal of neighboring conspecifics 
within a given radius. Entries are observed responses (e.g.. 
final plant height). Cell means and  marginal means (as sim- 
ple averages of the cell means) are given in brackets. These 
are the least squares means (Freund et al. 1986). 

Initial 
sire 

Treatment 

class 0 1 

1 50 5 7 [62.25] 
57 7 1 

85 

3-
[53.5] 
9 1 

[7 1 .O] 
105 [108.87] 

94 120 
102 
110 
[99.25] [ l  12.51 
[76.37] [91.75] 

given distance of a target plant (Factor A). Thus, there 
is a removal treatment and a control to which the 
removal is to be compared. In the interest of deter- 
mining whether there is also an effect of initial size on 
final height, and whether the effect ofthe removal treat- 
ment is independent of initial plant size, a second fac- 
tor, initial size (Factor B), is crossed with the first. In 
our example, there is a maximum of four observations 
for each of the four cells, but one cell has two and 
another has three observations. We have deliberately 
kept this example small, so that it is easy to examine 
details of the data. 

The Type I method sequentially fits each effect in 
the order that it appears in the model. It then computes 
ss accounted for by that effect. For example, assuming 
the model is given in the order specified in Eq. 2 ,  RSS, 
is the residual ss from the model, l,,, = p + e,,,, and 
RSS, is the residual ss from the model. y,,, = p + a,  
+ e,,,. The reduction in the residual ss due to factor A 
adjusted for the mean, R(a I p ) .  is calculated as RSS, 
- RSS, (We here employ the widely used R( I ) 
notation somewhat reluctantly, in view of its inherent 
ambiguities, discussed by Searle et al. [I 98 11. However. 
these ambiguities do not affect the discussion in the 
general terms used here.) For each additional factor in 
the model. the Type I ss attributable to that new effect 
is calculated as the further reduction in residual ss due 
to that factor (i.e., for Factor B, R(b I p, a), and for A 
x B, R(t I p, a ,  b)). For a given ordering of the effects 
in the model, the ss for the different factors are inde- 
pendent of each other and sum to the total ss. How-
ever. ss and tests of significance for each factor depend 
on the order of factors in the model. In most instances, 
there will be little biological justification for this ap- 

proach. Moreover. examination of the parametric ex- 
pressions for Type I hypotheses (Speed et al. 1978, 
Milliken and Johnson 1984, Maxwell and Delaney 
1989) reveals that Type I tests compare marginal means 
weighted by the cell sizes, and hence depend on realized 
sample sizes. Numerous authors have argued that de- 
tails of the sampling scheme should not be involved 
in inference of general effects. It has further been noted 
that the Type I method tests hypotheses that can only 
be specified (exactly, in parametric terms) after the data 
have been collected. While this may be appropriate 
when it is of interest to compare the effects weighted 
by the frequencies with which the cells are represented, 
as might be the case in observational surveys (see ex- 
ample in Maxwell and Delaney 1989:274ff.). the sta- 
tistical consensus is that Type I analyses of unbalanced 
data are not generally acceptable when inferences con- 
cern the effects themselves. 

Refening to our example (Table 2), we can see that 
the Type I analysis indicates that there is no statistically 
significant effect of the removal treatment on final 
height. The effect of initial size on final height is highly 
significant. In addition. this analysis indicates no sig- 
nificant interaction. This interpretation of the data de- 
pends very heavily on the order of entry of the factors 
in the model. If we reverse the order, entering Size 
before Removal. we find that the effect of Size changes 
slightly ( F  = 40.17: P = ,0004) and the effect of Re- 
moval is nearly significant ( F  = 5.52; P = ,051). The 
statistics concerning the interaction are as shown for 
the original ordering. 

The Type I1 method proceeds in a fashion similar 
to Type I, sequentially estimating effects and the ss 
associated with each effect as the amount that the re- 
sidual ss are reduced by including it in the model. 

TABLE2. Analyses. using three different types of  sums of 
squares (ss) in ANOVA. of the example of unbalanced data 
given in Table 1. Results are from SAS GLM procedure. 
P = probability of a greater F value. 

Source df  Type I ss F P 
-

Treatment 1 35.3 0.33 ,583 
Sire 1 4846.0 45.37 ,0003 
T x S 2 11.4 0.1 1 ,753 
Error 6 747.7 

Source df  Type 11 ss. - I.' P 

Treatment 1 590.2 5.52 ,051 
Si7e 
T x S  

1 
-3 

4846.0 
11.4 

45.37 
0.11 

,0003 
.753 

Error 6 747.7 

Source df T ) p e I I I s s  F P 

Treatment 1 597.2 5.59 ,050 
Si7e 1 4807.9 45.01 ,0003 
T x S  2 11.4 0.1 1 .7 53 
Error 6 747.7 
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While the Type I method computes RSS for a given 
effect based only on terms preceding it in the model, 
Type I1 computes RSS for all effects in the model that 
are at the same or lower level. For example, in the two- 
way factorial design. Type I1 ss for the main effects 
take account of all other main effects, rather than sim- 
ply accounting for those entered earlier in the model. 
Interaction effects take account of all main effects and 
all other interaction effects at the same level. To com- 
pare Type I and Type I 1  methods, the ss due to factor 
A equal R(u I p) using Type I but R(u I p. / I )  with 
Type I1 ss. Type 11 analysis is based on the assumption 
that the interaction is negligible or non-existent. and. 
in that case, is expected to achieve greater power for 
comparisons, relative to Type 111 (Burdick and Herr 
1980). However, as with Type I analysis, Type I1  meth-
ods test parametric hypotheses that involve the sample 
si/es. They are therefore subject to the same criticisms. 

For the example data, the results of the analysis using 
Type I1 ss differ quite markedly from those of the Type 
I method given in Table 2. These results indicate that 
the effect of the removal treatment is much greater than 
we inferred from our first Type I analysis. This differ- 
ence is due to the fact that the Type I1 method assesses 
the additional effect of a given factor (here, Treatment) 
beyond the effects of the remaining factors at the same 
or lower level (here, Size). While some would not re- 
gard this result as "significant." most would agree that 
the removal effect is substantial and worthy of further 
consideration. Considering the effects of Size, the Type 
I1 results agree with those of the Type I analysis. For 
the second factor specified in the model. the Type I 
and Type I1 ss are identical, by the definition above. 
and this is also true for the interaction. 

When all treatment combinations are observed, but 
the number of observations per cell varies. the Type 
111 method provides the most readily interpretable tests 
of the null hypotheses of no main effect of Factor A 
and B (Speed et al. 1978, Milliken and Johnson 1984). 
The Type 111 ss for each main effect is the sum of the 
squared differences of unweighted marginal means, i.e.. 
the least squares means (Table 1). The Type I11 ss do 
not. therefore. depend on details of the sampling struc- 
ture in the data at hand. For this reason, they answer 
questions of general interest. They quantify the effect 
of a particular factor adjusted for all other factors in 
the model. For each factor. the Type 111 ss is the es- 
timate that would be obtained from a Type I analysis 
of a model in which that factor appeared last. Thus. 
as with Type I1 analyses. Type 111 tests of the various 
factors do not depend on the particular order in the 
model. 

Returning to the example data, we see that the results 
of the Type 111 analysis are in close agreement, in this 
case. with those from the Type I1 analysis (Table 2). 

The effect of the removal treatment is. however. now 
significant at the level, P = .05. It is worth noting that 
the Type I1 approach was developed specifically for 
cases in which the interaction is absent. In that partic- 
ular case. Type I1 is more powerful than Type 111. 
However. in our example the Type 111 test is more 
powerful. Thus, because finding that the interaction is 
not significant does not guarantee that there is none, 
it also does not guarantee that a Type I1 analysis is 
more powerful than Type 111. 

There is one aspect ofthe Type 111 method that might 
be considered a drawback. Given that the factors them- 
selves are not generally independent, as a result of in- 
equality of cell sizes, the Type 111 tests of the main 
effects of the two factors are not independent. Thus, it 
is not possible to judge the independent effect of each 
factor. This is a general consequence of multicollinear- 
ity. i.e.. correlation among predictor variables. a widely 
recognized problem that plagues interpretation of mul- 
tiple regression analyses (Draper and Smith 198 l ,  Net- 
er et al. 1983; Mitchell-Olds and Shaw [I 9871 consider 
this problem in the context of inferring selection on 
multiple characters). The same problem lurks behind 
unbalanced ANOVA. When the imbalance is slight, it 
is unlikely to seriously complicate interpretation of the 
test statistics. However. the consequence of severe im- 
balance. leading to extreme multicollinearity, is that 
the power of the design is reduced. and it is therefore 
quite possible to overlook an effect (i.e.. judge it as not 
significant) when the effect truly exists. In the case of 
the two-way crossed design. one factor may indeed 
affect the response. while the second does not. If the 
two are highly correlated in the realized design. neither 
effect may appear significant according to the Type 111 
tests, whereas a Type I or Type I1 analysis would in- 
dicate a significant effect of whichever factor appears 
first in the model. Although we join many statistical 
texts in recommending Type 111 tests over Type I and 
I1 when the data are unbalanced without missing cells. 
we urge particular caution in interpretation of failure 
to reject null hypotheses. 

Beyond this general problem. Type 111 tests are in- 
valid in the specific instance when there are missing 
cells (Milliken and Johnson 1984: 185). In this partic- 
ular case it is not possible. using a Type I11 analysis or 
any other approach, to test the standard main effect 
hypotheses of equality of marginal means, because the 
marginal means are not all estimable, by virtue of the 
absolute lack of information about the means of cells 
for which no data are available. Type 111 analyses can 
nevertheless be produced even when there are missing 
cells. Milliken and Johnson (1 984: 185). however, call 
them the "worst hypotheses to consider in this situa- 
tion because there seems to be no reasonable way to 
interpret them." 
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Type IV ss are identical to Type I11 ss when all 
treatment combinations are observed. When some cells 
are empt). the Type IV approach takes into account 
the misslng treatment combinations to develop par- 
ticular testable hypotheses given the available data 
Considering our example (Table 1) and assuming now 
that there are no observations of individuals in size 
class 1 exposed to treatment 1. it is possible to compare. 
for control plants, the effect of initial size on final height. 
It is also possible to compare, for plants initially in the 
large size class. the effect of the removal treatment 
compared to the control. The Type IV method makes 
these particular comparisons, using the appropriate cell 
means. It is thus not possible to make general infer- 
ences of the effect of the treatment or of initial size on 
final height. Given a two-way design In which there 
are more levels of each factor, it would be possible to 
develop various, potentially many, testable hypotheses 
for each main effect. Which hypotheses could be tested 
would depend on which cell means can be estimated 
from the data at hand. The Type IV method "chooses" 
a subset from among the testable hypotheses and pro- 
vides ss and test statistics for these. Because there are 
other parametric hypotheses that correspond to each 
main effect, this should not be considered a complete 
analysis. (As the SAS output warns, "Other Type IV 
testable hypotheses exist which may yield different ss.") 
Milliken and Johnson (1 984: 187) point out that the set 
of hypotheses tested is arbitrary and may depend on 
the order that observations are entered in the data set. 
Thus, for a given analysis, the parametric hypotheses 
tested by default using Type IV methods rnuy be of 
interest. but it is very possible that other Type IV hy- 
potheses are of equal or greater interest. For data with 
mlssing cells, these authors recommend that the in- 
vestlgator carefully choose which combinations of cell 
means to compare (e.g.. H,:equality of particular com- 
binations of estimable cell means). Particular hypoth- 
eses to test can be specified in SAS using options ES- 
TIMATE or  CONTRAST (Freund et al. 1986). 
Alternatively, the data can be analyzed as a one-way 
des~gn. and tests can be carried out using confidence 
intervals of est~mates of the cell means. We emphasize 
the care necessary to properly analyze data with miss- 
Ing cells by quoting M~lliken and Johnson (1984 190): 
". . . a good analysis of data with missing treatment 
combinations requires a great deal of thought. An ex- 
perimenter or statistician cannot simply run a com- 
puter program on the data and then select numbers 
from that program to report in a paper. Unfortunately, 
this has been done and is being done by an extremely 
large number of experimenters and data analysts. We 
hope that anyone who has studied this chapter will 
never do it again." 

Speed et al. (1978), Searle et al. (1981). Milliken and 

Johnson (1 984: 157. 190). and Maxwell and Delaney 
(1 989:29 1) present more detailed comparisons of these 
four methods, including parametric expressions for the 
hypotheses tested by each and the correspondence be- 
tween the designations I-IV in SAS and the methods 
available using SPSS and BMDP. 

Analysis of unbalanced data in ecology will often 
present numerous difficulties, but some of these may 
be avoided with greater understanding of the methods 
and assumptions involved. Despite ample precedent 
for imposing balance on unbalanced data, either by 
eliminating values (and hence losing information) or 
by filling in missing values with cell means (leading to 
biased tests), it is generally preferable to use compu- 
tational methods that are specifically designed for un- 
balanced data. Generally, tests based specifically on 
the cell means model (Eq. 1) may be more readily 
interpretable. However. the available statistical com- 
puting packages are designed for the effects model (Eq. 
2). Milliken and Johnson (1984) show in detail how 
these packages can be used to obtain analyses in terms 
of the means model. Alternatively, careful analysis in 
terms of the effects model using Type I11 or Type IV 
methods can glean all the same information from the 
data at hand. 

Texts we have found especially useful in clarifying 
when and how to apply the various methods include 
Milliken and Johnson (1984) and Maxwell and Dela- 
ney (1 989). The three methods of analyzing unbalanced 
data, Types I through 111. are all available in SAS: Proc 
GLM. BMDP-P4V, and SPSS: ANOVA and MAN- 
OVA. However, the default method differs among these 
packages. For example. Type 11, which is not widely 
recommended, is the default method in SPSS-X ANO- 
VA. The Type IV approach for analyzing data with 
missing cells is available in SAS and, with some lim- 
itation. BMDP-P4V (Milliken and Johnson 1984). 
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