BACHELOR FINAL PROJECT

EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mechanical Engineering Systems Engineering Group

Student	J. Selen
Supervisor	Prof.dr.ir. J.E. Rooda
Advisors	Dr.ir. A.A.J. Lefeber Dr. Y. Nazarathy
Start	February 2010
Finish	May 2010
Title	Dynamics of an Abstract Cyclic Production System

Subject

Consider an abstraction of a production system. M machines numbered $1, \ldots, M$ produce M types of products numbered $1, \ldots, M$. Each product undergoes two steps. Products of type i are first *created* at machine i and then moved to machine i + 1 (in case i = M then interpret i + 1 as 1). At machine i + 1, products of type i are further *processed* and then leave the system. Thus each machine (i) can perform two types of operations: *creation* of products of type i and *processing* of products of type i - 1. Products queue at the machines while waiting for their *processing* step. Thus the system contains M queues which we denote by X_1, \ldots, X_M . Queue X_i is for products of type i and is next to machine i + 1. Student: make a drawing for M = 3 to ensure you understand (bring it to the first meeting).

The machines need to divide their time between *creating* and *processing*. Assume they do so by giving preemptive priority to *processing*. This means that when ever X_{i-1} is not empty, machine *i* will work on *processing*. Otherwise, the machine will work on *creating* and will be preempted (stopped) at the instant in which X_{i-1} becomes non-empty. It is evident that the machines never idle.

A general goal is to understand under which conditions such a production system may operate in a stable manner. This may shed a light on the understanding of more complex and realistic production systems. As an approximation, assume that material (products) are a continuous quantity. Associate the positive production rates λ_i and μ_i with product *i*. λ_i is the rate at which product *i* is *created* at machine *i*. μ_i is the rate at which product *i* is *processed* from queue X_i at machine i + 1. Thus for example if for $t \in [5.7, 10]$, X_i is not empty then $4.3 \times \mu_i$ units of product *i* are removed from X_i during this time. Denote by $X_i(t)$ the continuous non-negative quantity of material at queue X_i at time *t*. Further assume that the initial conditions $\{X_i(0)\}$ are given. This fully defines the dynamics of $\{X_i(t)\}$.

Assignment

(a) Create a useful computational tool (software) for generating the trajectories of $\{X_i(t)\}$ given different parameters, M, μ_i , λ_i and initial conditions. Attempt to characterize stability (this depends on M, μ_i, λ_i).

(b) Find and implement the system of equations for production rates under the assumption of stability.

Prof.dr.ir. J.E. Rooda

Dr.ir. A.A.J. Lefeber

Dr. Y. Nazarathy

Systems Engineering

Department of Mechanical Engineering