
Duality in Conic Programming

Thomas Anderson and Nathan D’Addio

April 28, 2016

This brief article introduces the conic programming problem in standard form and describes
some results and challenges associated with duality.

1 The Conic Programming Problem and its Dual

A standard conic programming problem, [1], takes the form

min
x∈Rn

〈c, x〉

s.t. Ax = b (P )

x ∈ K,

where c ∈ Rn, b ∈ Rm, A ∈ Rn×m, 〈·, ·〉 denotes the standard Euclidean inner product and
K ⊂ Rn is a convex cone. That is, K is a convex set with the property that for all x ∈ K,
λx ∈ K for all λ > 0.

The corresponding dual problem is

max
y∈Rm

〈b, y〉

s.t. A∗y + s = c (D)

s ∈ K∗,

where A∗ denotes the transpose of A and K∗ is the dual cone [3], defined by

K∗ = {s ∈ Rn : 〈s, x〉 ≥ 0, ∀x ∈ K}.

2 Deriving the Dual Problem

We will treat the problem as a constrained optimization problem in order to derive the dual. Let
y be the Lagrange multiplier associated with the constraint Ax = b. Then the Lagrange dual
problem of (P) is

L(y) = inf
x∈K
〈c, x〉+ 〈y, b−Ax〉

= 〈y, b〉+ inf
x∈K

[〈c, x〉 − 〈y,Ax〉]

= 〈y, b〉+ inf
x∈K
〈c−A∗y, x〉 [4].
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If c − A∗y ∈ K∗, then 〈c − A∗y, x〉 ≥ 0, so infx∈K 〈c − A∗y, x〉 = 0. If c − A∗y /∈ K∗, then
infx∈K 〈c−A∗y, x〉 = −∞. Thus, L(y) is given by

L(y) =

{
〈y, b〉, c−A∗y ∈ K∗,
−∞, c−A∗y /∈ K∗.

Let s = c − A∗y ∈ K∗. Then the Lagrangian dual problem is to maximise L(y), which can be
written as (D).

3 Weak Duality

Let x be a feasible solution to P and y a feasible solution to D. Then we say weak duality holds
if 〈c, x〉 ≥ 〈b, y〉. So a lower bound on the optimal solution of the primal problem can be obtained
by solving the dual problem. We have the following result:

Theorem 1. Let x be a feasible solution to P and y be a feasible solution to D. Then weak
duality holds.

Proof.

〈c, x〉 = 〈A∗y + s, x〉 = 〈A∗y, x〉+ 〈s, x〉 = 〈y,Ax〉+ 〈s, x〉 = 〈y, b〉+ 〈s, x〉 ≥ 〈b, y〉,

where 〈s, x〉 ≥ 0 follows since s ∈ K∗.

4 Strong Duality

If it happens that 〈c, x〉 = 〈b, y〉 where x is the optimal solution to (P ) and y is the optimal solu-
tion to (D), then we say we have strong duality. Unlike linear programming, strong duality does
not always hold in conic programming [5]. To see this, consider the following counterexample.
Let K be the cone

K = {x ∈ R4 : x21 + x22 ≤ x23, x3, x4 ≥ 0},

and note that K = K∗, so K is a self dual cone. Let the primal problem be

min − x1
s.t. x1 + x4 = 1

x2 + x3 = 0

x ∈ K.

Observe that for a feasible point (x1, x2, x3, x4) ∈ K, then

x21 ≤ x23 − x22
= (x3 − x2)(x3 + x2)

= 0,

as x2 + x3 = 0 in the primal problem, so x1 = 0. Therefore (0, 0, 0, 1) is an optimal solution to
the primal problem with objective value 0.
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Using the definition from above, the dual problem is

max y1

y1 + s1 = −1

y2 + s2 = 0

y2 + s3 = 0

y1 + s4 = 0

(s1, s2, s3, s4) ∈ K∗.

Representing y in terms of s and using the fact that K is self dual, the dual problem is equivalent
to

max y1

−(1 + y1, y2, y2, y1) ∈ K.

This implies that

(1 + y1)2 + y22 ≤ y22 and y1, y2 ≤ 0.

The first inequality implies (1 + y1)2 ≤ 0, which gives y1 = −1. So (−1, 0) is an optimal solution
to the dual problem with an objective value −1. Therefore the optimal objective of the primal
problem does not equal the optimal objective of the dual. Hence strong duality does not always
hold.

5 Slater Constraint Qualification

The following theorem provides a sufficient condition for strong duality in conic programming
problems.

Theorem 2. If there exists a point x in the relative interior of K such that Ax = b, then if the
primal problem has an optimal solution, then the dual problem has an optimal solution, and the
optimal values are equal, so strong duality holds.

See [2] for a proof of this theorem.

Note that for the counterexample to strong duality above, there are no points x in the relative
interior of K such that Ax = b, so we cannot apply the Slater constraint qualification.
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