
The Age of Information in Situation

Awareness Networks

Master internship report MN-420699

Jori Selen* 0637922
Supervisors Ivo Adan*, Lachlan Andrew�, Yoni Nazarathy��, Hai Le Vu �

September 22, 2012

*Manufacturing Networks Group, Department of Mechanical Engineering, Eind-
hoven University of Technology, Eindhoven, Netherlands

�Centre for Advanced Internet Architectures, Faculty of Information and Com-
munication Technologies, Swinburne University of Technology, Melbourne, Aus-
tralia

�School of Probability and Statistics, The University of Queensland, Brisbane,
Australia

Abstract

In this paper we derive analytical distributions up to a bounding box of the
age of information in situation awareness networks. Two special cases of
these networks are studied which leads to the derivation of two algorithms.
We find that each node in a tree structured network has a generalized neg-
ative binomial marginal distribution. Finally, we consider two branches of
nodes leading from source to a sink and design an algorithm (using the previ-
ous algorithms) that is capable of obtaining joint and marginal distributions
of these nodes. The algorithm iteratively computes segments of the total
joint distribution and therefore keeps time and memory usage manageable.

Contents

1 Introduction 3

2 A general model 5

2.1 Bernoulli channels 6

2.2 Bernoulli policies 7

2.3 Reception probabilities induced by Bernoulli channels and
policies 8

2.4 Implication of the transceiver and interference principles on
a homogeneous system 10

3 Single hop networks 12

3.1 One single hop 14

3.2 Two single hops 15

3.3 Three single hops 19

3.4 Arbitrary number of single hops 21

3.5 Minimum over a joint distribution of a single hop network 23

4 Line of relays 25

5 A network with two branches 30

5.1 The 3-dimensional case 32

5.2 The 4-dimensional case 35

5.3 Iterating over two branches 37

6 Conclusion 45

A Derivation of the covariance for a network with two single
hops 48

B M-file: Function for computing λj(B) 52

1

C M-file: Computing the 4-dimensional iterate 55

D M-file: Using the iteration scheme 60

2

Chapter 1

Introduction

In broadest generality, a situation awareness network or gossip network can
best be described as a network of nodes that can sense, transmit, relay and
receive information. The type of information can range from weather mea-
surements to road traffic conditions to enemy military vehicles. In such a
network, each node wants a most updated view of all the available informa-
tion. Deriving a policy on whether to sense, transmit, relay or receive is one
of the main topics of study.

Situation awareness networks are becoming more prevalent in the research
fields and in practice. A large part of this field is the study of road traffic
networks, where cars transmit, relay and receive information about con-
gestion or blockage. Information propagation in these networks is studied
extensively. A measure of performance for such networks is the time un-
til all nodes are fully aware of all information. These networks are usually
studied through the use of simulation and deriving conjectures from these
simulations that can later be proven.

This report focuses on an analytic approach of situation awareness networks.
We consider static communicating nodes and are interested in the age of
information one node has about another node. A general, abstract model
is introduced where the type of information is undefined. The model can
later be specialized towards one type of network, this is beyond the scope
of this study. The main goal is to design an algorithm capable of iterating
a joint distribution of ages of information along two branches of nodes from
a source to a sink. Using this algorithm, marginal and joint distributions of
ages of information with respect to a chosen source can be studied.

In the literature we find that queuing networks with catastrophes, such as
[2], are related to the age of information in situation awareness networks.
A study on gossip networks in [1] focuses on propagation of information in
networks with mobile nodes. Another link can be made to PERT, a project
planning analysis, which is a type of shortest (or critical) path problem.

3

Articles such as [3], [4] and [5] discuss PERT problems with dependent
activities and means of solving these. These different fields are all related to
our general model and can be used, yet differ enough for this to be a unique
study.

We commence with an introduction of the general model in Chapter 2, the
model will be made more specific by introducing a policy on the reception
and transmission behaviour in one of the later sections. Chapters 3 and 4
discuss two special cases of the general model, for both cases an algorithm
is sought. The penultimate chapter, Chapter 5, discusses the design of an
algorithm that can be used in iterating over two branches of nodes. The
report is concluded in the final chapter.

4

Chapter 2

A general model

In this chapter we introduce the general model of the situation awareness
network. More structure is given to this model throughout Sections 2.1
and 2.2 by introducing assumptions and policies on transmission and recep-
tion behaviour. The final sections investigate the effects of the proposed
assumptions.

Consider a network of N nodes, N = {1, . . . , N}. Each node performs
sensing, wireless communication and uses the information sensed by the
other nodes of the network. Each node attempts to maintain an updated
situation awareness view of the information sensed by all other nodes in
the network, yet it may be that the information is not always up to date.
Nodes communicate by broadcasting. When a node broadcasts, it sends
a packet that contains a subset of its situation awareness view. This may
contain the information sensed by the node, as well as information taken
from its situation awareness view regarding other nodes at earlier times.
Thus nodes essentially relay sensor information. Note that we assume that
if node i broadcast its situation awareness view about node j, it sent all of
the information regarding that node as well as a time stamp of the age of that
information. Nodes can not receive information when they are broadcasting
themselves, analogous to a transceiver.

We assume the network evolves in discrete (slotted) time n = 0, 1, 2,
The situation awareness age process is {Xn(i, j), n = 0, 1, . . . , (i, j) ∈ N 2}.
This is essentially the state of our system. The element Xn(i, j) is the age of
the information that node i has about node j at time n. Thus for example
if Xn(1, 3) = 15, we know that at time n, node 1’s most updated view
regarding the sensed information at node 3 is from time n− 15.

Given initial conditions, X0(·), the evolution of Xn(·) is driven by the fol-
lowing objects: the binary matrix sequence of information transmissions
{In(i, j), n = 0, 1, . . . , (i, j) ∈ N 2}, the binary vector sequence of infor-
mation sensing {Fn(i), n = 0, 1, . . . , i ∈ N} and the sequence of channel

5

functions {Cn, n = 0, 1, . . .} where Cn : {0, 1}N → {0, 1}N×N . For the infor-
mation transmission sequence, we have that In(i, j) = 1 if and only if at time
n node i has broadcasted its information regarding node j. For the sensing
sequence, we have that Fn(i) = 1 if and only if at time n node i has updated
its own sensor information (by sensing). For the operation of the chan-
nel functions, we use an additional variable, Tn(i) = 1{

∑N
j=1 In(i, j) ≥ 1},

where 1{} is the indicator function. This sequence determines if node i
broadcasted a packet at time n (note that all sensor information that i
broadcasts is assumed to sit on one packet). Now the function Cn(Tn) re-
sults in the matrix with elements Rn(i, j) where Rn(i, j) = 1 if and only
if j received a packet sent by node i. The diagonal elements Rn(i, i) are
meaningless and set to 0. Note that we restrict the sequence Cn to result in
Rn(i, j) = 1 only if Tn(i) = 1.

Given the above primitives, the evolution of the situation awareness age is
as follows:

Xn+1(i, j) =

{ (
Xn(i, j) ∧

∧
k:Rn(k,i)In(k,j)=1Xn(k, j)

)
+ 1 i 6= j,

(1− Fn(i))(Xn(i, i) + 1) i = j.

(2.1)

The symbol
∧
i is used to indicate taking a minimum over i. Observe that the

variables that drive the recursion are the initial conditions, X0, the broad-
casts In, the sensing actions Fn and the channel conditions Cn. A minimum
is taken over the set of information pieces regarding node j that have been
received by node i. Each node is only interested in the youngest information
and therefore compares the minimum age of information that was received
with the current age of information stored in node i. The channel plays a
role here in transforming In first to Tn (putting information pieces in trans-
mitted packets) and then through Cn (which models packet losses) to Rn.
Further note that if we ignore the sensing actions by assuming that each
node performs sensing at every time instant, we have that Xn(i, i) = 0.

The above model is very general and without probabilistic assumptions. We
narrow down, but still remain fairly general. First we ignore the degree of
freedom of sensing and assume Fn(i) ≡ 1, a node will always have perfect
information about itself and therefore Xn(i, i) = 0 as stated earlier. In the
next sections Bernoulli channels and policies are introduced. These govern
the transmission and reception behaviour.

2.1 Bernoulli channels

An approximation of real-life communication channels is made by introduc-
ing a Bernoulli variable governing reception of a signal. We shall assume
the channel functions, Cn are an i.i.d. sequence with the following structure:

6

for all i, j ∈ N and A ⊂ N , let pij(A) indicate the probability of successful
reception at node j of packet transmitted at node i when the set of trans-
mitting stations is A, where A = {k : Tn(k) = 1}. Require that pij(A) = 0
if i 6∈ A. Now assume that the i, j’th entry of Cn(Tn) is a bernoulli random
variable taking 1 with probability pij(A) and 0 otherwise, independent of all
other random variables. The probability pij(A) is a function of the trans-
mitting nodes to incorporate for interference and for the fact that we deal
with nodes that can not receive and transmit at the same time.

It is sensible to assume that if i ∈ A,B and A ⊂ B then pij(A) ≥ pij(B).
Thus pij({i}) is the success probability on i→ j without any possible inter-
ference from any other node. We denote this probability as pij for short.

We impose a graph structure between the nodes by specifying a set of di-
rected links. We can then define the set of neighbours of node j as Kj . The
nodes in the set Kj are the nodes that can influence the reception proba-
bility of node j, i.e. nodes that are close by or nodes that have a powerful
signal, disrupting other communication over large distances. We can model
interference of other broadcasting nodes by a decreasing interference func-
tion L, depending on the transmitting nodes that affect the receiving node.
Other broadcasting nodes, which are not neighbours, do not influence the
reception probabilities. The proposed success probability is defined as

pij(A) = 1{j /∈ A}L(A ∩Kj)pij . (2.2)

Note that pij(A) = pij(A ∩Kj) which is desired behaviour, and we cannot
receive if we are transmitting. A choice can be made for the interference
function L, one can think of mutual exclusiveness, which can be described as,
if some neighbouring node of node j is transmitting, node j cannot receive.
Another option is a decreasing function over the number of transmitting
neighbouring nodes, e.g. L = 1

|A∩Kj |+1 . One can also study the behaviour

when there is no interference by setting L to 1.

2.2 Bernoulli policies

The transmission control of the nodes in the network is governed by In(i, j).
Recall that In(i, j) = 1 if and only if at time n node i has broadcasted its
information regarding node j. A policy on the transmission probabilities is
an engineering decision, not a model of nature. One could opt for a different
policy that is not treated in the report. We shall now describe policies
where In is an i.i.d. sequence, independent of the state and refer to these as
Bernoulli policies. In greatest generality we have a probability distribution
function overN 2 indicating the probability of transmission of each subset. A
way to define this is to assume that In(i, j) equals 1 with probability qij and
0 otherwise, independent of all other i and j. This implies that each node

7

i transmits a random number of information updates, which can also be 0,
because qi = 1−

∏
j(1− qij) ≤ 1. An alternative way is to assume that each

node will transmit all bits of information with probability qi (independently
of all other nodes). In this report we solely focus on the first option and
look at just one type of information being sent or relayed, i.e. j is a node
that does not change, labeled as the source.

2.3 Reception probabilities induced by Bernoulli
channels and policies

In the previous two sections the Bernoulli channels and policies were intro-
duced. These channels and policies induce a successful reception probabil-
ity. Let {γj(B) : B ⊂ N} be the one-step probability distribution indicating
from which sensors reception will occur at node j, where B is the set of nodes
from which the successful reception occurs. We can write this in terms of
the given parameters as

γj(B) =
∑

D:B⊂D⊂N

∏
i∈N\D

(1− qi)
∏
i∈D

qi
∏
i∈B

pij(D)
∏

i∈D\B

(1− pij(D)). (2.3)

One can edit equation (2.3) by interchanging qi for qik for a specific node
k to obtain the probabilities of receiving a specific packet of information
(about node k). This is useful in assessing the probabilities of updates on
Xn(j, k). Let us also define, for B ⊂ C ⊂ N

γj(B;C) =
∑

D:D⊂N\C

γj(B ∪D).

This is the modified probability of reception γj , given that we only take the
nodes in set C into account, i.e. we look at a subset of the whole network
and want to know the probabilities of reception.

Equation (2.3) can also be altered to obtain the probability of successful
reception of one specific type of information throughout the whole network.
Let {λj(B) : B ⊂ N} be the one-step probability distribution over all
subsets of N indicating which sensor receives information about source j.
Specifically, this can only be used in networks that have a tree-structure. In
such networks, each node has only one possible incoming transmission but
is allowed to transmit to multiple nodes.

λj(B) =
∑

D:A⊂D⊂N

∏
i∈N\D

(1− qij)
∏
i∈D

qij
∏
i∈B

pi(D)
∏

i∈D\B

(1− pi(D)) (2.4)

Note that there is only a subtle difference between γj and λj . We have
introduced the probability pi(A) which denotes the probability of reception

8

at node i given that nodes A are transmitting. It is defined analogous to
(2.2), where Kj is now defined as the set of neighbours that could cause
interference at node j and pij is interchanged for pi. Recall that there is
only one possible incoming transmission at node i. The variable λj will be
used to great extent in analyzing networks that have a tree-structure. Once
again, let us also define, for B ⊂ C ⊂ N

λj(B;C) =
∑

D:D⊂N\C

λj(B ∪D). (2.5)

Throughout the rest of this report, tree structures will be studied to great
extent and therefore the variable λj(B) is used in numerous cases. The M-
file used to compute these probabilities of successful reception is shown in
Appendix B.

9

2.4 Implication of the transceiver and interference
principles on a homogeneous system

The general model introduced the principle of a transceiver, nodes cannot
receive information when they are transmitting information themselves. One
could argue that there should be some optimal value for probability of trans-
mission qi. If we set qi to either 0 or 1 for all i, there will not be reception on
any of the nodes. We illustrate this optimal value by treating an example.

We model a homogenous system without interference. Each node in the
system has a transmission probability q that is varied over the range [0, 1].
We specify a network with a tree-structure consisting of two branches with
4 links on each branch, contributing to a total of 8 links. Each node only
transmits to one node, except for the source, it transmits to the first node
on both branches. The term link refers to the directed transmission of
information from one node to the next. The reception probability of each
link is labeled pij({i}) = p for all i and j in the example model. The
following is obtained after running the M-file for computing λj(B) and we
plot the probability of have no reception on any of the nodes λ(∅), Figure
2.1.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Homogenous transmission probability q

P
ro

ba
bi

lit
y

of
 n

o
re

ce
pt

io
n

p = 0.1
p = 0.5
p = 1

Figure 2.1: Effect of the transmission probability on the probability of no
reception without interference

We can conclude that in a homogenous system without interference, the
value that minimizes the probability of no reception is 0.5 and one can clearly
identify a parabola over the domain. The ideal ratio between receiving and
transmitting is 1 if we want to minimize λ(∅).
We can study the other side of the spectrum as well, a homogenous system
with interference. We model the interference function as L = 1

|A∩Kj |+1 and

declare for each node j that the set Kj consists of all nodes that are not

10

directly communicating to node j. Figure 2.2 shows that for such a ’chaotic’
interference scheme, the optimal q value is a lot lower than the case without
interference.

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

Homogenous transmission probability q

P
ro

ba
bi

lit
y

of
 n

o
re

ce
pt

io
n

p = 0.1
p = 0.5
p = 1

Figure 2.2: Effect of the transmission probability on the probability of no
reception with interference

Whilst this section does not give any proof or theorem on optimal q values,
it does give insight into how the transceiver and interference principles affect
the probability of reception. One could derive that if there is a lot of in-
terference, somewhat lower q values achieve better information propagation.
Another simple, yet crucial observation is that for interference heavy net-
works, the probability of no reception rises, in accordance with what would
be expected.

Chapter summary

In this chapter we introduced the general model and Bernoulli channels and
policies without losing too much generality. An example was treated to show
the effects of the transceiver and interference in the general model. In the
next chapter we will look at a special case of the general network, the single
hop networks.

11

Chapter 3

Single hop networks

A single hop network is a network consisting of an arbitrary number of
sets of transmitter and receiver, where we do not look at the transmission
behaviour of the receiver (without loss of generality we can view the receiver
as a sink).

Source

X1

X2

Xk

p1

p2

...

pk

q

q1

qk

Source

Source

Source

X2

Xk

...

X1

...

p1

pk

q2

X1

X2

Xk

...

q1

qk

Source

Source

Source

q2

...

p1

p2

pk

p2

Figure 3.1: Three extreme types of single hop networks

We can identify three extreme types. The first identifiable type is a network
where a number of receiving nodes share a common source or transmitter.
This type is shown on the left in Figure 3.1. The second type is shown
in the middle of the figure. Here we have sources transmitting to the same
receiver. The last type is distinguished by the fact that no nodes are shared.
Due to the layout of the first network type, the age of information processes
X1, X2, . . . , Xk are dependent as long as the transmitter does not always
transmit (q < 1). The other two types can have dependence: interference
can still occur and cause dependence between the age of information pro-
cesses. The processes X1, X2, . . . , Xk all give the age of information of their
linked source, the subscript n has been omitted for clarity. The three types

12

of single hop networks share the same underlying Markov chains with the
same transitions, this allows us to group these types and derive a way to
analyze them. One can also think of combinations of the three presented
types, which will still give us the same structure.

On a side note, the underlying Markov chain is related to a queueing network
with arrivals to a number of workstations with a probability of a catastrophe
job arriving to a queue, ‘killing’ all the jobs in the line. The catastrophe in
a single hop network occurs when a packet of information is successfully re-
ceived at a receiver and it updates its age of information to 0, thus ‘emptying
the queue’.

In this chapter we start of by deriving analytic results for single hop net-
works with 1, 2 and 3 age of information processes. For the two single hops
we derive the equilibrium distribution and validate it by showing that the
marginal distribution information is still contained within the joint distri-
bution. An expression for the covariance is derived for the two single hops
case and it is shown how interference affects the joint distribution. Also, we
are interested in what reception probabilities allow for the joint distribution
to be the product of the two marginal distributions. We study the single
hop network with 3 age of information processes and continue to extend the
search for joint distributions of single hop networks to an arbitrary number
of links. The chapter is concluded with some remarks on how to compute
the minimum of a discrete joint distribution and an illustrative example.

13

3.1 One single hop

We look at the simplest model of a transmitter (node 1) and a receiver
(node 2), modeled by two nodes. Each timestep, the first node transmits
with probability q and the second node will receive this with probability p,
due to imperfect channel conditions. The situation awareness age process
is {Xn(2, 1), n = 0, 1, . . .}. Recall that Xn(2, 1) is the age of information
that node 2 has about node 1 at time n. Normally, the minimum value of
Xn(2, 1) is 1, equal to the minimum age of the previous node (in this case,
0) plus 1. We subtract the value 1 from Xn(2, 1) to obtain a neater model
without changing the system in any way. The state space of this Markov
chain is represented in Figure 3.2.

0 1 2 j-1 j j+1(1-pq) (1-pq) (1-pq) (1-pq)

pq

pq

pq

pq

pq (1-pq)

Figure 3.2: State space of the Markov chain of one single hop.

This Markov chain is irreducible, aperiodic and recurrent. We are inter-
ested in the equilibrium distribution of this Markov chain. We define the
probability that we are in state i (in equilibrium) as

πi = lim
n→∞

P(Xn(2, 1) = i).

The equilibrium equations can be derived from the above figure to obtain

π0 = pqπ0 + pqπ1 + . . . = pq
∞∑
i=0

πi, (3.1)

πi = (1− pq)πi−1 = (1− pq)2πi−2 = . . . = (1− pq)iπ0, i ≥ 1.

Which are subject to the normalization equation
∑

i πi = 1, due to the fact
that the probabilities have to sum up to 1. We can immediately see from
(3.1) and the normalization equation that π0 = pq and therefore the equi-
librium distribution of the model is a geometric distribution with parameter
(1− pq) and is given by

πi = (1− pq)ipq, i ≥ 0.

14

3.2 Two single hops

In this section we consider a model of two single hops, consisting of three
nodes. We identify two different age of information processes {Xn, n =
0, 1, . . .}, and {Yn, n = 0, 1, . . .}. We are interested in the joint equilibrium
distribution of these two processes and we will verify that the marginal
distributions are geometric, in accordance with the distribution of one single
hop. We will show that interference and covariance are related and this
affects the joint distribution.

The marginal distribution of one single hop is related to the two single hops
network. Once the marginal distributions of the two nodes with the correct
parameters are obtained, dependence does not affect these distributions, it
only affects the joint distribution.

We denote four reception probabilities, λ(∅) is the probability of no re-
ception, λ({1}), λ({2}) and λ({1, 2}) denote the probabilities of reception
only at Xn, only at Yn or at both, respectively. These four probabilities
sum to 1. Note that this model can include interference by allowing that
(λ({1}) + λ({1, 2}))(λ({2}) + λ({1, 2})) 6= λ({1, 2}). The joint distribution
we are looking for also possesses that property, it will be correct for both
dependent and independent systems. Once again, we subtracted the value 1
from both age of information processes. The state space of this model and
its transitions are shown in Figure 3.3.

Equilibrium distribution

We are interested in the equilibrium distribution of this Markov chain. We
define the probability that we are in state (i, j) (in equilibrium) as

πi,j = lim
n→∞

P(Xn = i, Yn = j).

The equilibrium equations were derived as

π0,0 = λ({1, 2})
∑
i,j

πi,j , (3.2)

πi,0 = λ({2})
∞∑
j=0

π(i−1),j , i ≥ 1,

π0,j = λ({1})
∞∑
i=0

πi,(j−1) , j ≥ 1,

πi,j = λ(∅) · π(i−1),(j−1) , i, j ≥ 1.

The first three equilibrium equations are boundary equations. The nor-
malization equation is given as

∑
i,j πi,j = 1, in combination with (3.2) we

obtain that π0,0 = λ({1, 2}) in the same manner as in the previous model.

15

Xn

Yn

0 ii-1

0

j-1

j

i+1

j+1

λ(Ø)

λ({2})

λ(Ø)

λ(Ø)

λ({2})
λ({2})

λ({1})

λ({1})

λ({1})

λ({1,2})
λ({1,2})

λ({1,2})

...

Figure 3.3: 2-Dimensional state space of the Markov chain of two single
hops.

In the second and third equation we sum over one entire coordinate, therefore
we can use the marginal distribution obtained in the previous section, given
as

π
(Xn)
i =

∞∑
j=0

πi,j = lim
n→∞

∞∑
j=0

P(Xn = i, Yn = j) = lim
n→∞

P(Xn = i)

= (1− (λ({1}) + λ({1, 2})))i(λ({1}) + λ({1, 2})),

π
(Yn)
j =

∞∑
i=0

πi,j = lim
n→∞

∞∑
i=0

P(Xn = i, Yn = j) = lim
n→∞

P(Yn = j)

= (1− (λ({2}) + λ({1, 2})))j(λ({2}) + λ({1, 2})).

We denote a marginal distribution by π
(.)
i , i.e. the marginal distribution of

parameters (.) at the value i. First we will introduce two new variables to
increase readability. These govern the behaviour of the joint and marginal

16

distributions

c1 = 1− (λ({2}) + λ({1, 2})),
c2 = 1− (λ({1}) + λ({1, 2})).

The physical interpretation of these variables is that c1 the probability of
having no reception on the second node, and c2 is the probability of having no
reception on the first node. Using these two new variables and the marginal
distributions, the equilibrium equations simplify to

π0,0 = λ({1, 2}),

πi,0 = λ({2})π(Xn)
i−1 = λ({2})ci−12 (1− c2) , i ≥ 1,

π0,j = λ({1})π(Yn)j−1 = λ({1})cj−11 (1− c1) , j ≥ 1,

πi,j = λ(∅) · π(i−1),(j−1) , i, j ≥ 1.

This can be rewritten to obtain a general geometric formula over the diag-
onals

πi,j =


λ(∅)iλ({1, 2}) for i = j,

λ(∅)jλ({2})ci−j−12 (1− c2) for i > j,

λ(∅)iλ({1})cj−i−11 (1− c1) for i < j.

(3.3)

Marginal distribution from the joint distribution

As a sanity check, we will show that the joint distribution indeed possesses
the two marginal distributions we used earlier. We can obtain the marginal
of Xn by summing over the Yn coordinate, namely j. The state space along
this line is partitioned into three sets, as the expression for πi,j also consists
of three parts.

π
(Xn)
i =

∞∑
j=0

πi,j =
i−1∑
j=0

πi,j + πi,i +
∞∑

j=i+1

πi,j

= λ({2})(1− c2)
i−1∑
j=0

ci−12

(
λ(∅)
c2

)j
+ λ(∅)iλ({1, 2})

+ λ(∅)iλ({1})
∞∑

j=i+1

(1− c1)c−(i+1)
1 cj1

= (1− c2)(ci2 − λ(∅)i) + λ(∅)iλ({1, 2}) + λ(∅)iλ({1}) = (1− c2)ci2.

The marginal distribution of Xn is, as expected, a geometric distribution
with parameter c2. Note that no assumptions were made on interference or
dependence, Xn and Yn could be dependent, yet still the same geometric
marginal distribution is obtained. Similar to the derivation of the marginal
distribution for Xn, we can derive the expression for Yn and find that is
geometric with parameter c1.

17

Interference and covariance

A measure of the dependence is the covariance between the two variables X
and Y (the subscript n is omitted for clarity). It is defined as

Cov(X,Y) = E((X − E(X))(Y − E(Y)))

= E(XY −XE(Y)− Y E(X) + E(X)E(Y))

= E(XY)− E(X)E(Y). (3.4)

Independent variables X and Y ensure the covariance is zero. However, a
covariance of zero does not mean that the two variables are independent,
it is a one-way relation. The expected value of the joint and the marginal
distributions are needed to calculate the covariance. See Appendix A for
the derivations. The covariance is symmetric and can then be expressed as

Cov(X,Y) =
λ(∅)λ({1, 2})− λ({1})λ({2})

(λ({1}) + λ({1, 2}))(λ({2}) + λ({1, 2}))(1− λ(∅))
.

If there is no interference between the two transmitters, the covariance has to
be equal to 0 and the joint distribution is the product of the two marginal dis-

tributions, πi,j = π
(X)
i π

(Y)
j . For no interference (λ({1})+λ({1, 2}))(λ({2})+

λ({1, 2})) = λ({1, 2}) has to hold, meaning that the probability of recep-
tion of both is the product of the (independent) probability that one of
them receives. As this is a quadratic equation, there are two possible val-
ues for λ({1, 2}) that satisfy this equation. These two values that satisfy
the previous equation, are also the only two values for λ({1, 2}) that satisfy
Cov(X,Y) = 0. We deduced that in the independent case one of the two
gave an infeasible result and thus we can conclude that the value

λ({1, 2}) =
1

2

(((
λ({1})− λ({2})

)2
− 2λ({1})− 2λ({2}) + 1

) 1
2

+ (1− λ({1})− λ({2}))
)

(3.5)

is the parameter value that sets the covariance equal to 0 and the joint
distribution is the product of the two marginal distributions. The infeasible
result for λ({1, 2}) indeed does not give a joint distribution that is the
product of the two marginal distributions. We can conclude that if and
only if (3.5) holds, the joint distribution is the product of the two marginal
distributions.

18

3.3 Three single hops

In this section we will briefly show that the explicit results obtained in the
two single hops case can also be extended to a three dimensional Markov
chain of the same structure. We consider a model with three age of informa-
tion processes, structured as three single hops. These processes are labeled
X1, X2 and X3. We denote by λ(A) the probability of reception on the
nodes in A, where A can be any set of the powerset of N = {1, 2, 3}. The
equilibrium equations are given and we argue that these can be written in
an explicit form.

Equilibrium distribution

We are interested in the equilibrium distribution of this Markov chain. The
probability that we are in state (i, j, k) in equilibrium is defined as

πi,j,k = lim
n→∞

P(X1 = i,X2 = j,X3 = k)

where the subscript n of each age of information process is omitted. Once
again, the value 1 is subtracted from the processes. The equilibrium equa-
tions were derived as

π0,0,0 = λ({1, 2, 3})
∑
i,j,k

πi,j,k = λ({1, 2, 3}),

πi,0,0 = λ({2, 3})
∑
j,k

πi−1,j,k = λ({2, 3})π(X1)
i−1 , i ≥ 1,

π0,j,0 = λ({1, 3})
∑
i,k

πi,j−1,k = λ({1, 3})π(X2)
j−1 , j ≥ 1,

π0,0,k = λ({1, 2})
∑
i,j

πi,j,k−1 = λ({1, 2})π(X3)
k−1 , k ≥ 1,

πi,j,0 = λ({3})
∑
k

πi−1,j−1,k = λ({3})π(X1,X2)
i−1,j−1 , i, j ≥ 1,

πi,0,k = λ({2})
∑
j

πi−1,j,k−1 = λ({2})π(X1,X3)
i−1,k−1 , i, k ≥ 1,

π0,j,k = λ({1})
∑
i

πi,j−1,k−1 = λ({1})π(X2,X3)
j−1,k−1 , j, k ≥ 1,

πi,j,k = λ(∅)πi−1,j−1,k−1 , i, j, k ≥ 1.

As one can see, the 3-dimensional joint distribution depends on known 1-
and 2-dimensional marginal distributions of combinations of the nodes. Note
that all edges and faces of the cube are calculated explicitly. The interior of
the cube can then be calculated by using the last equilibrium equation. The
structure of these equilibrium equations is in essence the same as the ones

19

obtained from the two single hops case. In that 2-dimensional Markov chain
the edges are known explicitly and the interior is computed from these edges.
Thus, using the same methodology a general geometric expression over the
diagonals can be obtained. One can split the state space into 13 subsets, in
the same manner the formula for πi,j was split into three parts. We refrain
from deriving these subsets and their corresponding explicit expressions as
there is little gain in showing them after it was derived that such explicit
formulaes exist.

20

3.4 Arbitrary number of single hops

We now look at a network of N sensors that transmit over one-hop to a
sink, equivalent to a network of N single hops, where the set of nodes is
N . Bernoulli policies and reception probabilities are used, which allow for
interference to be modeled. Recall that expressions (2.4) and (2.5) are used
to compute reception probabilities for all sets of the powerset of all nodes.
The latter equation is used when we are looking at a subset of the complete
network and do not want to take reception into account on the nodes that
are not in de subset. We allow C to be a proper subset of N in order to
consider smaller networks in the recursive specification that follows. We
specify the N -dimensional Markov chain X = (X1, X2, . . . , XN) and state
that all reception probabilities pi and transmission probability qi are strictly
positive and therefore X is a irreducible, non-periodic Markov chain over
the state-space ZN+ . Establishing positive-recurrence from the equilibrium
equations is obvious, as there is a positive probability to have a catastrophe
and return to the value 0 on one of theXi. Note that the value 1 is subtracted
from all ages without losing any information. The analysis of the stationary
distribution of X is constructed through marginal distributions of increasing
dimension.

Let C = {i1, i2, . . . , ı|C|} ⊂ N and the ages of information of each node in
the set C are ordered 0 ≤ xi1 ≤ . . . ≤ xi|C| . Then,

lim
n→∞

P(Xi1 = xi1 , . . . , Xi|C| = xi|C|) = π(C)
xi1 ,...,xi|C|

is constructed recursively as denote in algorithm 1.

ALGORITHM 1 - Joint distribution of |C| single hops.

0. Set k = min{j : xij ≤ xij+1}, taking k = |C| if xi1 = . . . = xi|C| .

1. if xi|C| = 0, set

π
(C)
0,...,0 = λ(C;C) (3.6)

elseif xi|C| > 0, set

π(C)
xi1 ,...,xi|C|

=


π
(C)
0,...,0,xik+1

−xi1 ,...,xi|C|−xi1
· λ(∅;C)xi1 xi1 > 0

π
(C\{ik+1,...,i|C|})
xik+1

−1,...,xi|C|−1
· λ(C\{ik+1, . . . , i|C|};C) xi1 = 0

(3.7)

21

If we want to compute the joint distribution of the nodes in C, we can find
this distribution from the above algorithm. From the 2- and 3-dimensional
case we know that the origin is always equal to the probability of reception
on all nodes in the network, this is also the case in this algorithm, see (3.6).
If we are in the interior of the state space, thus the smallest age is strictly
positive, xi1 > 0, we can compute this probability by moving back along to
the diagonal to the nearest (hyper) plane or edge and using the knowledge
that there is a geometric decay along the diagonals. This is shown in the
first part of equation (3.7). If we are already on a (hyper) plane or line, we
can use the marginal distribution of all the other nodes that have a strictly
positive age. This was derived from the equilibrium equations of the 2- and
3-dimensional single hop Markov chains. As an example, we show that for
N = 1 the algorithm derives the following equations

π(X1)
x1 = λ({1}; {1}) · λ(∅; {1})x1

which is equal to what was derived in Section 3.1. For N = 2 the algorithm
derives the following equations

π(X1,X2)
x1,x2 =


π
(X2)
x2−1 · λ({1}; {1, 2}) 0 = x1 < x2,

π
(X1,X2)
0,x2−x1λ(∅; {1, 2}) 0 < x1 < x2,

λ({1, 2}; {1, 2}) · λ(∅; {1, 2})x1 x1 = x2.

The above equation only covers half of the state space, but it can be noted
that when interchanging X1 and X2 the results can be obtained for the other
half of the plane. Note that these are the same equilibrium equations as the
ones obtained from the 2-dimensional case.

22

3.5 Minimum over a joint distribution of a single
hop network

Once one has obtained the joint distribution of the nodes that are within
a sink, e.g. think of the second type of single hop network in Figure 3.1,
where all sources share the same sensing information from a sensor, the
minimum has to be taken to get the marginal distribution of the sink. This
phenomenon is explained by the fact that a node always wants the most
updated information and if it receives from two previous at the same time,
it will only take the most up-to-date information. The minimum in a discrete
state space can be computed by setting one of the ages to a specific value
and summing over all larger values in the other dimensions. Setting an age
to a specific value should be done for all dimensions and the minimum for
that specific value is then equal to the summation of the computed sums.
One should note not to count any state more than once. An example is
treated to illustrate the above explanation.

We consider the two single hops network of Section 3.2. Recall that there
are two age of information processes Xn and Yn (with the value 1 subtracted
from their ages), if we consider these to be part of the sink we can take the
minimum to obtain the marginal distribution, let us define the corresponding
stochastic variable as

Zn = min(Xn, Yn).

We are interested in π
(Z)
z = limn→∞ P(Zn = z), the equilibrium distribution

of Zn. The minimum over the 2-dimensional Markov chain can be computed
by summing over 2 lines.

The computation of the equilibrium distribution can be expressed as

π(Z)z = lim
n→∞

(∞∑
k=1

P(Xn = z, Yn = z + k)

+

∞∑
k=1

P(Xn = z + k, Yn = z) + P(Xn = z, Yn = z)

)

=

∞∑
k=1

πz,z+k +

∞∑
k=1

πz+k,z + πz,z.

If we now use the derived expressions for πi,j , the above computation can

23

be expressed as

π(Z)z = λ(∅)zλ({1})(1− c1)
∞∑
k=0

ck1 + λ(∅)zλ({2})(1− c2)
∞∑
k=0

ck2

+ λ(∅)zλ({1, 2})
= λ(∅)z (λ({1}) + λ({2}) + λ({1, 2}))
= λ(∅)z(1− λ(∅)).

We can conclude that for two geometric stochastic variables and any depen-
dence structure, the minimum of these two variables also has a geometric
distribution. The interference can also be found in the above expression, as
λ(∅) is larger when there is interference and more probability mass is present
at higher levels.

The same methodology can be applied to an N -dimensional Markov chains
as long as their joint distribution is known.

Chapter summary

In this chapter we studied the single hop networks and finally we were able
to derive an algorithm that computes the joint distribution of an arbitrary
number of single hops. The 2-dimensional case was analyzed in greater detail
and it was found that the joint distribution is the product of its marginal
distribution for one value of λ({1, 2}). The chapter was concluded with an
explanation on how to obtain the marginal distribution of a sink. In the
next chapter a line of relays is studied and an algorithm is derived that
iteratively computes joint distributions of two succeeding nodes.

24

Chapter 4

Line of relays

We now consider a model in which nodes can only transmit information to
the next node. We are then able to follow the age of information with respect
to a given source. Such a model of N nodes is named a line of relays, as
N − 2 nodes relay the information from the first node to the last node. We
are interested in the joint distribution of two last nodes in the line and the
marginal distributions of each node along the line. Some of this information
is used when computing a marginal distribution for a node where two or
more of these branches come together and we have to take a minimum to
obtain its marginal distribution. We will now study a line of relays such as
shown in Figure 4.1 and present an algorithm to iteratively calculate joint
distributions of two succeeding nodes and all marginal distributions.

Source X1 X2 Xkp1 p2 pk

q1 q2 q3

Figure 4.1: Line of relays

It is important to note that the age of information of Xi depends on Xi−1,
as xi−1 ≤ xi, where we labeled the current age x. This means that the
joint distribution (Xi, Xi+1) depends on the joint distribution (Xi−1, Xi).
If we receive information from Xi−1 we will use the conditional stationary
distribution

π
(Xi−1|Xi)
xi−1|xi = lim

n→∞
P(Xi−1 = xi−1|Xi = xi) =

π
(Xi−1,Xi)
xi−1,xi

π
(Xi)
xi

for the current value xi and all possible values xi−1 to modify the transition
probabilities, recall that the subscript n was omitted.

Let λ({1}) be the probability of a successful reception at node Xi, λ({2})
the probability of a successful reception at node Xi+1, λ({1, 2}) at both and

25

λ(∅) the probability that no node receives. There are no absorbing states in
this 2-dimensional Markov chain and thus the probabilities of the outgoing

transitions should sum to 1. This is still the case, as
∑j

i=0 π
(Xi−1|Xi)
i|j = 1.

Figure 4.2 displays the transition probabilities in the state space of two
succeeding nodes. Superscripts of the conditional stationary distributions
were omitted. The blue contour indicates that each node within that contour
has the same structure of outgoing transitions.

Xi

Xi+1

1 43

2

4

5

5

6

3

2

7

6 7

λ({1,2}) π0|3

λ({1,2}) π1|3

λ({1,2}) π2|3

λ({1,2}) π3|3

λ({1}) π0|4
λ({1}) π1|4 λ({1}) π2|4

λ({1}) π3|4

λ({2})

λ({2})

λ({2})

λ(Ø)

λ({1}) π4|4

λ({1,2}) π0|3
λ({1,2}) π1|3

λ({1,2}) π2|3

λ({1,2}) π3|3

Figure 4.2: State space and transition probabilities of two succeeding nodes
in a line of relays

26

Equilibrium distribution

From the transition diagram we are able to derive the equilibrium equations.
The equilibrium equations are used in the algorithm to obtain an exact joint
distribution up to a bounding box of arbitrary size M . We split the state
space into five parts, the two points at the bottom, the two edges and the
interior points. If there is no superscript, the current joint distribution
(Xi, Xi+1) is intended.

π1,2 = λ({1, 2})π(Xi−1,Xi)
0,1 ,

π2,2 = λ({2})π(Xi)
1 + λ({1, 2})π(Xi−1,Xi)

1,1 ,

π1,j = λ({1})
j−1∑
k=1

π
(Xi−1|Xi)
0|k πk,j−1 + λ({1, 2})π(Xi−1,Xi)

0,j−1 , j ≥ 3,

πi,i = (λ(∅) + λ({1})π(Xi−1|Xi)
i−1|i−1)πi−1,i−1 + λ({2})π(Xi)

i−1

+ λ({1, 2})π(Xi−1,Xi)
i−1,i−1 , i ≥ 3,

πi,j = λ(∅)πi−1,j−1 + λ({1})
j−1∑
k=i−1

π
(Xi−1|Xi)
i−1|k πk,j−1

+ λ({1, 2})π(Xi−1,Xi)
i−1,j−1 , j > i, i ≥ 2.

Now that the equilibrium equations are known, we can iteratively compute
joint distributions with the use of algorithm 2.

ALGORITHM 2 - Joint distribution of two succeeding nodes in a line of
relays.

0. Use the known π
(Xi−1,Xi)
i,j and π

(Xi)
i and set π1,2 and π2,2.

1. Iterate until a bounding box of size M is reached.
for j = 3 : M

for i = 1 : j
Calculate πi,j using the above equilibrium equations

end
end

The number of operations required by this algorithm is roughly M2

2 . In
section 3.1 we showed that the marginal distribution of the first node of
the chain is geometric. We also know that the source always has perfect
information and thus the joint distribution of the source and the first node

27

is exactly the geometric distribution along the axis where the age of infor-
mation of the source is 0. Supplying this joint and marginal distribution to
the algorithm allows us to calculate all joint distributions of two succeeding
nodes of a line of relays.

A result of this algorithm is that we are able to obtain the marginal distri-
bution of each node. We see that the marginal distribution of Xi is a gener-
alized negative binomial with success probabilities λ({1}; {1}), λ({2}; {2}),
. . ., λ({i}; {i}) in the notation of (2.5). A generalized negative binomial is
a special type of a discrete phase-type distribution. The phase-type distri-
bution is the distribution obtained from a terminating Markov chain with
transition probability matrix

P =

[
T (I − T)T0

0 1

]
where T is a block matrix containing the transition probabilities of the tran-
sient states and T0 = (I−T)e and e is a row vector of ones of corresponding
size. In our case, the matrix T is defined as

T =


1− λ({1}; {1}) λ({1}; {1}) 0 · · ·

0
. . .

. . .

. . . λ({i− 1}; {i− 1})
0 1− λ({i}; {i})

 .
The probability mass function of the phase type distribution is given as

f(k) = αT k−1T0 , k = i, i+ 1, . . .

and α is the initial distribution, for our model this is
[

1 0 0 · · ·
]
. We

start at k = i because this is the least number of jumps you need to be able
to have k successes, i.e. the information about the source reaches Xi in a
minimum of i timesteps.

This can be interpreted as the marginal being a sum of all geometric dis-
tributions of the previous nodes, where the parameter of the j’th geometric
distribution is λ({j}; {j}). This is a clean result, allowing us to know all
marginal distributions in a network that has a tree-structure. Simulations
were ran for tree structures and the same results were obtained.

Chapter summary

In this chapter we derived an algorithm to iteratively compute joint distri-
butions of two succeeding nodes in a line. As a result, we are able to derive
the marginal distribution of each node. These marginal distributions are
generalized negative binomial distributions. So, for networks with a tree-
structure all single marginal distributions, i.e. of one node, are known. In

28

the next chapter we will analyze a network with two branches, where we use
the knowledge obtained in the previous chapters.

29

Chapter 5

A network with two branches

In the previous two chapters we derived the steady state distributions of
single hop networks and the joint distribution of two nodes in a line of relays.
We also looked at ways to compute the minimum over a joint distribution of
two nodes. This knowledge is used in obtaining the distribution of the age of
information at a sink given there are two routes from the source to the sink.
Note that we deal with a tree structure right up until the point we reach
the sink. Dependence between the links occurs due to the fact that the two
branches are connected at the source, as we have already discovered in the
single hops network. Interference can still occur between the two branches
or from other nodes in the surrounding network. Figure 5.1 shows the model
we are describing. The motivation for looking at such a model is the analogy
with an intelligent transport system in a city grid, where we want to send
information from one intersection to the next intersection through the two
shortest routes.

Source

X11 X12p12

q12 q13

p11

X21 X22p22 p2k

q22 q23

p21

q1

p1k X1k

X2k

Figure 5.1: Two branches of a tree-structured network

The main goal is to be able to iterate over these two branches by continually
calculating a four dimensional joint distribution, starting at the source. For
this iteration we first need to gain insight in the three- and four-dimensional
joint distributions. The first section of this chapter discusses the algorithm

30

and equilibrium equations used to calculate the three-dimensional distri-
bution. We continue by showing the four-dimensional case and finally we
present the main iteration algorithm.

31

5.1 The 3-dimensional case

The model we are looking at now is shown below in Figure 5.2. There are
two nodes on the first branch and one on the second. It is a matter of
notation where we put the second node, it could be placed on the second
branch as well.

Source

X1

X2

X3

p1

p2

p3

q3

q1

Figure 5.2: One source and two branches with 2 nodes on the first branch
and 1 on the second

The layout of the model dictates that the state space is

{(x1, x2, x3) : 0 ≤ x1 ≤ x3, 0 ≤ x2, 1 ≤ x3},

and we have dependence between X1 and X2 because they are connected
at the source and there is dependence between X1 and X3 as they are two
subsequent nodes in a line. The state space of this model can be visualised
by taking the state space of the two succeeding relays, which is a plane,
shown in Figure 4.1 and moving this in the third dimension and relabeling
the axes. We continue by describing the equilibrium equations in the next
subsection.

32

Equilibrium equations

Below we present the equilibrium equations for the 3-dimensional Markov
chain. Note that the value 1 has been subtracted from all ages, such that
the minimum of the first two nodes is 0.

π0,0,1 = λ({1, 2, 3})
∑
j,k

π0,j,k = λ({1, 2, 3})π(X1)
0 ,

π1,0,1 = λ({2, 3})
∑
j,k

π0,j,k = λ({2, 3})π(X1)
0 ,

πi,0,i = λ({2, 3})
∑
j,k

πi−1,j,k + λ({2})
∑
j

πi−1,j,i−1 , i ≥ 2

= λ({2, 3})π(X1)
i−1 + λ({2})π(X1,X3)

i−1,i−1 ,

π0,0,k = λ({1, 2})
∑
i,j

πi,j,k−1 + λ({1, 2, 3})
∑
j,l

πk−1,j,l , k ≥ 2

= λ({1, 2})π(X3)
k−1 + λ({1, 2, 3})π(X1)

k−1 ,

πi,0,k = λ({2})
∑
j

πi−1,j,k−1 = λ({2})π(X1,X3)
i−1,k−1 , i ≥ 1, k ≥ 2, i > k,

π0,j,1 = λ({1, 3})
∑
i,k

πi,j−1,k = λ({1, 3})π(X2)
j−1 , j ≥ 1,

π0,j,k = λ({1})
∑
i

πi,j−1,k−1 = λ({1})π(X2,X3)
j−1,k−1 , j ≥ 1, k ≥ 2,

π1,j,1 = λ({3})
∑
k

π0,j−1,k = λ({3})π(X1,X2)
0,j−1 , j ≥ 1,

πi,j,i = λ({3})
∑
k

πi−1,j−1,k + λ(∅)πi−1,j−1,i−1 , i ≥ 2, j ≥ 1

= λ({3})π(X1,X2)
i−1,j−1 + λ(∅)πi−1,j−1,i−1,

πi,j,k = λ(∅)πi−1,j−1,k−1 , i, j ≥ 1, k ≥ 2, i, j > k.

The only marginal distribution that is not known is π
(X2,X3)
j,k and we can

therefore not explicitly find the equilibrium distribution. We will use a sim-
ilar approach as the one used in algorithm 2. This approach is summarized
below in algorithm 3. The structure of the equilibrium equations allows us to
consequently compute the equilibrium probabilities of each plane (X1, X3),
in the exact same way as was denote in algorithm 2. The algorithm works
by computing the probabilities πi,j,k for the first plane, where x2 = 0, and
using this iterate for the next plane, where we continue to use the previous
plane to compute the probabilities of the current plane, until a bounding
cube of size M is filled.

33

ALGORITHM 3 - Joint distribution of a network with 2 branches, 2 nodes
on the first branch and 1 on the second.

0. Obtain the marginal and joint distributions π
(X1,X2)
i,j , π

(X1,X3)
i,k , π

(X1)
i , π

(X2)
j

and π
(X3)
k from earlier results or using algorithm 2 and set π0,0,1 and π1,0,1.

1. Find πi,0,k in the same fashion as algorithm 2, until a bounding box of
size M is reached.

for k = 2 : M
for i = 0 : k

Calculate πi,0,k
end

end

2. Iterate this plane by increasing j by one each step, until a cube of size
M is filled.

for j = 1 : M
Set π0,j,1 and π1,j,1
for k = 2 : M

for i = 0 : k
Calculate πi,j,k

end
end

end

This algorithm gives us the exact values for πi,j,k up until a bounding cube
of size M . We can validate the joint distribution by comparing it to the
joint distribution of two succeeding nodes in a line by summing out the
single node on the second branch. Another check that is performed, is ob-
taining the marginal for one node from the joint distribution and checking
this against the generalized negative binomial expression. Both validation
checks hold and the above algorithm has been shown to work correctly.

34

5.2 The 4-dimensional case

The final case we will be studying is a 4-dimensional Markov chain, shown
in Figure 5.3. The obtained joint distribution will be the main iterate used
in the iteration scheme, denoted in the next section.

Source

X1

X2

X3

p1

p2

p3

q3

q1

X4p4

q4

Figure 5.3: One source and two branches with 2 nodes on both branches

Once again, the layout of the model dictates that the state space is

{(x1, x2, x3, x4) : 0 ≤ x1 ≤ x3, 0 ≤ x2 ≤ x4, 1 ≤ x3, 1 ≤ x4},

where the value 1 is subtracted from the ages. One can imagine the state
space in the following way, take the 3-dimensional state space of the previous
model and set the maximum value of x2 to the current value of x4. If we
increment x4 by one, the next 3-dimensional state space contains one more
plane than the previous. We would then obtain a number of 3-dimensional
state spaces which together make the 4-dimensional state space.

The equilibrium equations are build analogously to the ones shown in the
subsection of the 3-dimensional model. However, there are 25 different re-
gions that we can identify and showing the equilibrium equations is overly
tedious. The structure of the equations allows us to first compute the first
triangular prism for x4 = 1 in almost the same way as in the 3-dimensional
case. The computed equilibrium probabilities are used to calculate the next
ones by incrementing x4. The algorithm to compute the joint distribution
works in the same way as algorithm 3, where the outer loop is over the x4
variable and the x2 variable loops from 0 until x4.

The results of this algorithm are compared to the 3-dimensional joint dis-
tribution by summing over either x3 or x4. The same validation checks as
for the 3-dimensional model were done as well. The results match and we

35

conclude that this algorithm is successful. In the next section we will use
the obtained knowledge on 3- and 4-dimensional joint distributions, together
with the conditioning used for the two succeeding relays, to iterate the latter
distribution over a tree network with two branches.

36

5.3 Iterating over two branches

Using the algorithms shown in the previous two sections, one can compute
the 3- and 4-dimensional joint distributions when the first two nodes are
connected to a source. We have seen how insight in the structure of the
equilibrium equations can be used to compute the equilibrium distribution
exactly. We would now like to be able to iterate this 4-dimensional joint
distribution over the two branches, such that the number of required opera-
tions is linear in the number of succeeding 4-dimensional distributions. The
number of computations for one distribution is in the order of M4. From the
line of relays we have learned that one can compute the joint distribution of
two succeeding nodes by using the conditional distribution of the previous
two succeeding nodes. Whenever there is successful reception on the first
node, we condition on the probability of the previous node having a certain
value given that we know the value of the first node, and alter the probabil-
ities of jumping to a state accordingly. The same alteration has to be made
to be able to compute the joint distribution of four nodes when they are
not connected to a source. The idea behind the iteration scheme is shown
below in Figure 5.4, where we are interested in the distribution of the nodes
in the green contour and the joint distribution of the nodes in red is used as
the conditional distribution. Looking at memory, the algorithm has to store
the previous joint distribution to compute the current joint distribution and
any intermediate arrays used in the computation of the current one.

Xi-1 Xi Xkpi

qi qk

Xj-1 Xj Xlpj

qj ql

pk

pl

Figure 5.4: Setup of the iteration scheme used to subsequently compute four
dimensional joint distributions

When using the conditioning for successful reception in nodes i and j, we
introduce a large number of new transitions, especially for λ({i, j}). These
transitions depend on the previous 4-dimensional conditional distribution,

which is in this case π
(Xi−1,Xj−1|Xi,Xj)

i−1,j−1|i,j . Due to the conditioning, most of
the transitions in the equilibrium equations do not sum to a marginal dis-
tribution anymore, as they are multiplied by different factors from the con-

37

ditional distribution. Therefore, equilibrium equations usually depend on a
large subset of the state space and there is no neat structure that can be
exploited with a previously obtained algorithm such as algorithm 3. Most
of the points in the state space have incoming transitions from states very
far away, which cannot be summed to a marginal distribution. Truncation
has to be used at a level M to be able to get a joint distribution. Then we
are able to construct a system of linear equations that is of the form

Ax = b

where x is a lexicographical ordering of the state,

x = [π0,0,1,1, π0,1,1,1, . . . , π0,M,1,1, π1,0,1,1, . . . , πM,M,1,1, π0,0,2,1, . . . ,

πM,M,M,1, π0,0,1,2, . . .].

Each row of the matrix A is an equilibrium equation, note that some rows
explicitly state that a value πi,j,k,l = 0, as they are outside the feasible state
space domain. One would expect the vector b only has zeros, as we are
dealing with a Markov chain. This is not the case for this system. If we
have reception on nodes k and/or l, we can sum out this variable and we
are left with a marginal distribution of nodes i, j and possibly node k or
l that did not receive a packet. These marginal distributions can be com-
puted beforehand and supplied to the algorithm that constructs the A and
b matrices, such that they end up on the right hand side of the equation.
Hence, the vector b has non-zero elements and using normalization is not
necessary; increasing the size of the bounding box will ensure the summation
over the equilibrium probabilities converges to 1, and thus the approximate
solution converges to the exact solution. The M-file that computes each
iterate can be found in Appendix C and the main M-file for running the
iteration scheme can be found in Appendix D. In the next subsection we
address memory and time constraint problems we encountered, the subsec-
tion after that validates the proposed iteration scheme and M-file. The final
subsection concludes with some remarks on the length of the two branches.

Memory and time constraints

In the iteration scheme we are dealing with a joint distribution of length M
in all four dimensions. This leads to an A matrix of size M4-by-M4. For a
moderate value for M , a full matrix would lead to out of memory errors on
a 2 GB RAM system. We therefore need to gain insight into how Matlab
handles memory and study the algorithm, as initially, the computation of
one iterate would take 18 hours on an Intel Dual Core T7200 2.00 GHz
laptop. We use [6] as a guide to the optimization.

Matlab uses copy on write, which means that in an assignment of one vari-
able to the other, it only passes a pointer as long as the data is unaltered.

38

Once we change the contents, it copies the array to a different memory lo-
cation and implements the changes, hence the name copy on write. In most
newer versions of Matlab the in-place computation functionality has been
added. In an assignment A = A + 1, Matlab does not have to copy the
matrix A to a new memory location and add the value 1 to each entry, it
notices we are using the same memory address and it will append the matrix
without having to copy it. This is especially useful when working with large
matrices which would flood the memory when they need to be copied.

Matlab is column oriented and it therefore prefers to store elements column
by column, or use vectors instead of row vectors. For small arrays no real
difference can be noted, in our case where we are constructing the A matrix
a significant difference can be seen when storing elements row or column
wise.

Matlab prefers matrix and vector multiplication over loops, hence the name
Matrix Laboratory. As of version 6.5 (2002), MathWorks introduced a Just-
In-Time (JIT) Accelerator that accelerates loops by an enormous amount,
decreasing computation time by a factor 80. Still, Matlab prefers matrix
multiplication over loops with JIT acceleration by a fair margin.

In a coding situation that cannot be optimized any further, keep in mind
that the Matlab language is intended primarily for easy prototyping rather
than high-speed computation. In some cases, an appropriate solution is
Matlab Executable (MEX) external interface functions. With a C or For-
tran compiler, it is possible to produce a MEX function that can be called
from within Matlab in the same way as an M-function. The typical speed
improvement over equivalent M-code is easily ten-fold.

The profiler tool in Matlab allows us to identify bottlenecks in the code, after
running the code it shows a report of what lines where called, the number of
times these lines were called and where the most time was spent. This is an
extremely useful feature when trying to optimize an M-file. While using this
tool, a lot was learned about what functions are slow when pushing memory
usage and computation time to its limits. Some of the main findings are
discussed below.

Do not concatenate. Matlab has to find a new continuous block of memory
of a larger size and it has to copy the contents. Preallocating vectors and
matrices can be used to avoid this problem. If the final size of the matrix
is unknown, one can run the code a few times and get an upper bound on
the dimensions, which can then be used in the preallocation. If this is not
an option, there are user-supplied M-files that handle memory management
in a more efficient way than Matlab, adding a predefined size of memory to
the current memory address when the vector or array is nearly filled.

Do not predefine a sparse matrix and index into a sparse matrix afterwards,
this is computationally expensive. Instead, use three vectors that describe

39

the row, column and value of each element in the sparse matrix and use
these three vectors to build the sparse matrix afterwards.

Some built-in functions can be slow, these functions have to perform checks
and should work for many more different types of input than the single one
we are supplying to the function. Inlining a function such that it does not
have to perform any checks and specifically writing it for one purpose is a
good way to save computation time. As an example, the find function was
used on a vector of size M4, by instead using logical indexing on a vector
ind = 1 : M4 a simpler approach was introduced and the computation time
was reduced by a factor 10. The methodology of writing own versions of
functions and reducing time was used for numerous other built-in functions
as well. In one part of the code, some transpose of a 4-dimensional array was
needed, this was solved by using the built-in function permute. It appeared
to be slow, so, when constructing this 4-dimensional array, indexing into the
matrix was swapped and the array was already transposed when outputted
to the main function again.

The only remaining bottleneck is the logical indexing of a large vector, which
can not easily be modified in a computationally attractive way. The logical
indexing is called in the order of M4 times and takes up about 91% compu-
tation time of the algorithm. When trying to improve the code, one could
look into using a MEX function.

After having studied the memory management and using the profiler exten-
sively, the computation time has been cut by more than a factor 30 and we
can handle systems for which the bounding box is of size M = 27, all on the
same system as described before. Using a better system and the newest ver-
sion of Matlab allows us to increase the size of the bounding box. For now,
this maximum size works well and it captures almost all of the equilibrium
probabilities.

40

Validation of the iteration scheme

The iteration scheme does not give us an exact 4-dimensional distribution
because of the truncation that has to be used. A validation of the model is
therefore even more important. For increasing M , more equilibrium prob-
abilities are computed on the outskirts of the state space and all the equi-
librium probabilities will become more accurate, due to a higher truncation
level. For the validation, we use a model with 3 nodes on both branches,
this allows us to compute two 4-dimensional iterates. The first iterate is
the joint distribution of the first two nodes on both branches and the second
iterate is the joint distribution of the last two nodes on both branches. Some
random values are taken for the λ(A) probabilities, such that they sum up
to 1.

A measure for the accuracy of the joint distribution is the summation of the
distribution, once it gets closer to 1 it is a better approximation. Figure
5.5 shows the summation over the two iterates. Note that even the exact
distribution would not sum to 1 for low levels of M , as there is probability
mass on the outside of the bounding box as well. We are able to compute
the first iterate for higher values of M as the first two nodes are connected to
a source and using the conditional distribution does not introduce new tran-
sitions, i.e. this gives the exact distribution. For large M , the summation
of the first iterate is equal to 1.

10 15 20 25 30
0.4

0.5

0.6

0.7

0.8

0.9

1

M

su
m

()

Summation of the first and second iterate for various values of M

First iterate
Second iterate

Figure 5.5: Summation of the first and second iterate, closer to 1 means a
better approximation

The second validation we use is a comparison with the exact values that were

41

obtained from the knowledge that the marginal distribution is a generalized
negative binomial distribution. We use a system with the maximum value
for M . Node 3 is the second node on the first branch and node 5 is the third
node on the first branch. Figures 5.6 and 5.7 show this comparison. For
node 3, both iterates can be used, for node 5 only the last iterate can be
used. What is good to note, is that the exact solution is an upper bound to
the obtained marginal distribution from the iterates and the one from the
first iterate is always above the one from the second iterate. All of these
remarks are as expected. As no validation check is unsuccessful, it can be
concluded that the algorithm is indeed correct and can be used to iterate
the 4-dimensional joint distribution from a source to a sink over 2 branches.

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

i

P
(π

i =
 i)

Marginal distribution of node 3

Exact distribution
Iterate 1
Iterate 2

Figure 5.6: Exact marginal distribution of the third node compared with
the ones obtained from the first and second iterate

42

0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

i

P
(π

i =
 i)

Marginal distribution of node 5

Exact distribution
Iterate 2

Figure 5.7: Exact marginal distribution of the third node compared with
the one obtained from the second iterate

Branches of different length

The algorithm needs a previous 4-dimensional iterate to be able to compute
the current joint distribution. In the current scheme, we are only able to
handle branches that have the same length, where the length is expressed in
the number of hops. If we reach the last hop on one branch, we intuitively
shift up a node on the second branch and keep the same two nodes on the
first branch, creating a diamond shape contour if we use the methodology
presented in Figure 5.4. This intuition is incorrect, as the algorithm now
demands a different, unknown, 4-dimensional distribution. An easy way to
solve this problem is by introducing dummy nodes on the shorter branch
such that the length of both branches are the same. These dummy nodes
always receive from the node before and therefore have the same age of
information distribution as the node before, shifted by the value 1, as we
moved up by 1 hop. The iteration scheme can then be used with the same
rectangular contour discussed before. To correct for the extra hops that were
introduced, one has to shift one, or possibly two, of the axes. Keep in mind
that this technique does not give the correct 4-dimensional distribution as
the first node is usually also a dummy node and not the correct one but
last node on the first branch. However, it is still useful as we are interested
in the joint distribution of the last node on both branches to obtain the
distribution of the sink.

43

Chapter summary

This chapter discussed a network consisting of two paths leading from source
to the sink. We were interested in the marginal distribution of the sink.
An algorithm was derived and validated to iteratively compute joint dis-
tributions of four dimensions, such that the number of operations is linear
in the number joint distributions. Problems concerning memory and time
were tackled by gaining insight into Matlab routines and memory manage-
ment. We have validated the iteration scheme and the obtained results are
as expected. Finally, it was shown that the algorithm is able to derive the
marginal distribution for branches of different length.

44

Chapter 6

Conclusion

In this report we have introduced an abstract model of situation awareness
networks and have specifically limited us to Bernoulli channel and reception
policies. Even though this is a simplification of policies used in practice,
the performance analysis done still gives great insights into possible solving
methods. Using this model, the age of information was studied in great
detail.

We have distinguished between two types of models. The first type are the
single hop networks, consisting of sets of two nodes. By using the knowledge
obtained from small numbers of single hops, an algorithm was derived that
can compute the joint distribution of an arbitrary number of single hops.
The second type is the line of relays. By studying this network, it was found
that the marginal distribution of a node in a tree-structured network is a
generalized negative binomial. An algorithm capable of finding joint distri-
butions of sets of succeeding nodes in these lines of relays was introduced
and validated as well.

Finally, a network consisting of two branches from source to sink was studied.
We have succeeding in deriving an algorithm that computes joint distribu-
tions of four dimensions, such that the number of operations is linear in the
number of joint distributions. Each iterate we move one hop closer (on each
branch) to the sink. Problems concerning memory and time were tackled by
gaining insight into Matlab routines and memory management. The algo-
rithm is also capable of handling branches of different length by introducing
dummy links, without changing the joint distribution of the last two nodes,
needed for the marginal distribution of the sink. This iteration scheme was
validated with the help of the generalized negative binomial expressions and
the already validated algorithms of the single hop networks and the line of
relays.

A first step has been set in the field of analysis of age of information in
situation awareness networks. For future work, one should improve the

45

algorithm to be able to deal with an arbitrary number of paths from source
to sink. Ultimately, a scheme should be used that can obtain mean ages of
information and marginal distribution for every layout of the network. If
one succeeds herein, the next thing to do is tackle real-time control problems
concerning the transmission probabilities q where the age of information
is minimized. Another option would be to study different, more complex
policies or even moving nodes such as in road traffic situation awareness
networks. The analysis could be coupled with more extensive simulations
to give evidence for the algorithms.

46

Bibliography

[1] Augustin Chaintreau, Jean-Yves Le Boudec, Nikodin Ristanovic The
Age of Gossip: Spatial Mean Field Regime. SIGMETRICS ’09, 2009, pp.
109-120.

[2] Xiuli Chao A queueing network model with catastrophes and product form
solution. Operations Research Letters 18, 1995, pp. 75-79.

[3] Gideon Weiss Stochastic bounds on distributions of optimal value func-
tions with applications to pert, network flows and reliability. Annals of
Operations Research 1, 1984, pp. 59-65.

[4] Pierpaolo Pontrandolfo Project duration in stochastic networks by the
PERT-path technique. International Journal of Project Management 18,
2000, pp. 215-222.

[5] Arunava Banerjee, Anand Paul On path correlation and PERT bias.
European Journal of Operational Research 189, 2008, pp. 1208-1216

[6] Pascal Getreuer Writing fast MATLAB code. MathWorks, 2009

47

Appendix A

Derivation of the covariance
for a network with two single
hops

In this appendix the covariance of zero mean of the joint distribution is
obtained, secondly the expected value of the marginal distributions of a
model with two single hops are derived, these are used in computing the
covariance between the two single hops. Recall that the joint distribution is

πi,j =


λ(∅)iλ({1, 2}) for i = j

λ(∅)jλ({2})ci−j−12 (1− c2) for i > j

λ(∅)iλ({1})cj−i−11 (1− c1) for i < j

Where we have introduced two variables for readability, as

c1 = (1− (λ({2}) + λ({1, 2})))
c2 = (1− (λ({1}) + λ({1, 2}))).

Covariance of the joint distribution with zero mean

The covariance of zero mean, otherwise expressed as the covariance plus the
product of the means is defined as

E(XY) =
∞∑
j=0

∞∑
i=0

ijπi,j .

The joint distribution πi,j is split into three parts, we therefore split the
summation into three corresponding parts.

E(XY) =

∞∑
j=0

j−1∑
i=0

ijπi,j + j2πj,j +

∞∑
i=j+1

ijπi,j


48

For clarity, we solve the summations part by part.

∞∑
j=0

j−1∑
i=0

ijπi,j =
∞∑
y=0

y−1∑
i=0

ij
λ({1})(1− c1)

c1
λ(∅)i c

j
1

ci1

=
λ({1})(1− c1)

c1

∞∑
j=0

jcj1

j−1∑
i=0

i

(
λ(∅)
c1

)i
=
λ({1})(1− c1)
c1(

λ(∅)
c1
− 1)2

∞∑
j=0

jcj1

(
j

(
λ(∅)
c1

)j
(
λ(∅)
c1
− 1)

−
(
λ(∅)
c1

)j λ(∅)
c1

+
λ(∅)
c1

)
=
λ({1})(1− c1)
c1(

λ(∅)
c1
− 1)2

(
−
λ(∅)(λ(∅) + 1)(λ(∅)c1

− 1)

(λ(∅)− 1)3

− λ(∅)2

c1(λ(∅)− 1)2
+

λ(∅)
(c1 − 1)2

)
If we use

∞∑
j=0

∞∑
i=j+1

ijπi,j =

∞∑
i=0

i−1∑
j=0

ijπi,j

and the above result for the first part of the summation, we can analogously
derive the expression for the last part of the summation, where i > j.

∞∑
j=0

∞∑
i=j+1

ijπi,j =
λ({2})(1− c2)
c2(

λ(∅)
c2
− 1)2

(
−
λ(∅)(λ(∅) + 1)(λ(∅)c2

− 1)

(λ(∅)− 1)3

− λ(∅)2

c2(λ(∅)− 1)2
+

λ(∅)
(c2 − 1)2

)
The simpler term of the summation is the second term, where i = j, which
can be expressed as

∞∑
j=0

j2πj,j =

∞∑
j=0

λ({1, 2})j2λ(∅)j = λ({1, 2})−λ(∅)(λ(∅) + 1)

(λ(∅)− 1)3
.

49

The summation of these three terms is equal to E(XY).

E(XY) =
λ({1})(1− c1)
c1(

λ(∅)
c1
− 1)2

(
−
λ(∅)(λ(∅) + 1)(λ(∅)c1

− 1)

(λ(∅)− 1)3
− λ(∅)2

c1(λ(∅)− 1)2

+
λ(∅)

(c1 − 1)2

)
+ λ({1, 2})−λ(∅)(λ(∅) + 1)

(λ(∅)− 1)3

+
λ({2})(1− c2)
c2(

λ(∅)
c2
− 1)2

(
−
λ(∅)(λ(∅) + 1)(λ(∅)c2

− 1)

(λ(∅)− 1)3
− λ(∅)2

c2(λ(∅)− 1)2

+
λ(∅)

(c2 − 1)2

)

Expected value of the marginal distributions

Recall that the marginal distributions were given as

π
(X)
i = (1− (λ({1}) + λ({1, 2})))i(λ({1}) + λ({1, 2})) = (1− c2)ci2
π
(Y)
j = (1− (λ({2}) + λ({1, 2})))j(λ({2}) + λ({1, 2})) = (1− c1)cj1.

The expected value of the two discrete marginal distributions are obtained
as follows

E(X) =

∞∑
i=0

iπ
(X)
i = (1− c2)

∞∑
i=0

ici2 =
c2

1− c2

E(Y) =

∞∑
j=0

jπ
(Y)
j = (1− c1)

∞∑
j=0

jcj1 =
c1

1− c1
.

Covariance

A measure of interference of two random variables X and Y is the covariance.
Covariance is defined as

Cov(X,Y) = E((X − E(X))(Y − E(Y)))

= E(XY −XE(Y)− Y E(X) + E(X)E(Y))

= E(XY)− E(X)E(Y).

50

If we now use the expected value of the joint distribution and the marginal
distribution, we get

Cov(X,Y) =
λ({1})(1− c1)
c1(

λ(∅)
c1
− 1)2

(
−
λ(∅)(λ(∅) + 1)(λ(∅)c1

− 1)

(λ(∅)− 1)3
− λ(∅)2

c1(λ(∅)− 1)2

+
λ(∅)

(c1 − 1)2

)
+ λ({1, 2})−λ(∅)(λ(∅) + 1)

(λ(∅)− 1)3

+
λ({2})(1− c2)
c2(

λ(∅)
c2
− 1)2

(
−
λ(∅)(λ(∅) + 1)(λ(∅)c2

− 1)

(λ(∅)− 1)3
− λ(∅)2

c2(λ(∅)− 1)2

+
λ(∅)

(c2 − 1)2

)
− c2

1− c2
c1

1− c1
.

Using the symbolic toolbox in Matlab, we can simplify this expression to

Cov(X,Y) =
λ(∅)λ({1, 2})− λ({1})λ({2})

(λ({1}) + λ({1, 2}))(λ({2}) + λ({1, 2}))(1− λ(∅))

51

Appendix B

M-file: Function for
computing λj(B)

This M-file computes the probability of successful reception for networks
that have at most one coupled node. Note that some lines were broken off,
such that they fit on the page.

1 function [lambdaSet lambdaProb] = lambdaLinks(link,coupled,
2 nodeTransProb,K)
3 %%
4 % Computes lambda for links, the input arguments are
5 % o link = [ID From To Prob], the last two should always be dummy
6 % links with p = 1 and their correct q.
7 % o coupled are sets of nodes (supplied as a cell) that are connected to
8 % the same transmitting node.
9 % o nodeTransProb is the probability 'q' of transmission for all nodes,

10 % note that we include the source, node 0, as the first element of
11 % this vector and therefore all indices are shifted by 1.
12 % o K is a cell with neighbouring nodes for all nodes
13 %%
14

15 Nlink = link(:,1);
16 linkFrom = link(:,2); linkTo = link(:,3); linkProb = link(:,4);
17

18 lambdaSet = nchoose(Nlink);
19 lambdaProb = zeros(numel(lambdaSet),1);
20

21 for i = 1:numel(lambdaSet)
22

23 B = lambdaSet{i};
24

25 clear DSet DSubSet
26

27 DSubSet = nchoose(setxor(Nlink,B)); DSubSet(end+1) = {[]}; %#ok<AGROW>
28

52

29 DSet = cell(numel(DSubSet),1);
30 for ii = 1:numel(DSubSet)
31 DSet(ii,:) = {[B DSubSet{ii}]};
32 end
33

34 for iii = 1:numel(coupled)
35 DSet = cellfun(@(c)addTx(c,coupled{iii}),DSet,
36 'UniformOutput',false);
37 end
38

39 DSet = uniqueCellArray(DSet);
40

41 for j = 1:numel(DSet)
42 D = DSet{j};
43

44 setTx = unique(linkFrom(D));
45 setNoTx = setxor(linkFrom,setTx);
46 setRx = B;
47 tmpSet = [];
48 for jj = 1:numel(setTx)
49 tmpSet = [tmpSet find(linkFrom == setTx(jj))']; %#ok<AGROW>
50 end
51 setNoRx = setxor(setRx,tmpSet);
52

53 tmp = 1;
54 for k = 1:length(setNoTx)
55 tmp = tmp*(1−nodeTransProb(setNoTx(k)+1));
56 end
57 for k = 1:length(setTx)
58 tmp = tmp*nodeTransProb(setTx(k)+1);
59 end
60 for k = 1:length(setRx)
61 tmp = tmp*rInt(setRx(k));
62 end
63 for k = 1:length(setNoRx)
64 tmp = tmp*(1−rInt(setNoRx(k)));
65 end
66

67 lambdaProb(i) = lambdaProb(i) + tmp;
68

69 end
70

71 end
72

73 lambdaProb(end+1) = 1 − sum(lambdaProb);
74 lambdaSet(end+1) = {[]};
75

76 [lambdaSet lambdaProb] = lambdaSmallerNetwork(lambdaSet,
77 lambdaProb,Nlink(1:(end−1)),Nlink);
78

79 function pInt = rInt(j)
80

81 if ismember(linkTo(j),linkFrom(D))
82 pInt = 0;

53

83 else
84 L = intFact;
85 pInt = L*linkProb(j);
86 end
87

88 function L = intFact
89 L = 1/(numel(intersect(D,K{linkTo(j)}))+1);
90 end
91

92 end
93

94 end

54

Appendix C

M-file: Computing the
4-dimensional iterate

This M-file computes the main 4-dimensional iterate. Note that some lines
were broken off, such that they fit on the page.

1 function piJoint = jointDist4DArbitraryFast(marg2DBothBranches,
2 marg2DBranch1,marg2DBranch2,marg3DBranch1,
3 marg3DBranch2,marg4D,
4 g0,g1,g2,g3,g4,g12,g14,g23,g34,M)
5 %%%
6 % This function computes the joint distribution of 4 nodes in a system with
7 % 2 branches. There are 2 nodes on each branch and the nodes on a branch
8 % have to be succeeding nodes.
9 %

10 % The nodes are labeled as follows
11 % o Node 1 is the node closest to the source on the first branch;
12 % o Node 2 is the node closest to the source on the second branch;
13 % o Node 3 is the succeeding node of node 1;
14 % o Node 4 is the succeeding node of node 2;
15 %
16 % Note that this only gives us an approximation of the joint distribution,
17 % by increasing the size of the bounding box (M), the approximation becomes
18 % more accurate. A measure for the accuracy of the approximation is the
19 % summation of the 4−dimensional joint distribution, the closer to 1 this
20 % is, the more accurate it is.
21 %%%
22

23 % We need the conditional marginal distributions to compute the transition
24 % probabilities.
25

26 % Conditional distribution of (node before 1 | node 1)
27 cond2DBranch1 = zeros(M,M);
28 for j = 1:M
29 if sum(marg2DBranch1(:,j)) 6= 0
30 cond2DBranch1(:,j) = marg2DBranch1(:,j)./sum(marg2DBranch1(:,j));

55

31 end
32 end
33

34 % Conditional distribution of (node before 2 | node 2)
35 cond2DBranch2 = zeros(M,M);
36 for j = 1:M
37 if sum(marg2DBranch2(:,j)) 6= 0
38 cond2DBranch2(:,j) = marg2DBranch2(:,j)./sum(marg2DBranch2(:,j));
39 end
40 end
41

42 % Conditional distribution of (node before 1, node before 2
43 % | node 1, node 2)
44 condMarg4D = zeros(M,M,M,M);
45 for k = 1:M
46 for l = 1:M
47 if sum(sum(marg4D(:,:,k,l))) 6= 0
48 condMarg4D(:,:,k,l) = marg4D(:,:,k,l)./sum(sum(marg4D(:,:,k,l)));
49 end
50 end
51 end
52

53 % Preallocating memory space for the b vector.
54 b = zeros(Mˆ4,1);
55

56 % Preallocating memory for the vectors that will later construct the sparse
57 % matrix A. The triplet (iA,jA,sA) gives us a row, a column and a value,
58 % respectively.
59 % Constructing an empty sparse A matrix and indexing into this matrix is
60 % also an option, but that appeared to be very slow.
61 iA = zeros(round(0.8*Mˆ5),1); jA = zeros(round(0.8*Mˆ5),1);
62 sA = zeros(round(0.8*Mˆ5),1);
63

64 % Current index that we are using to index into the vectors iA, jA and sA.
65 indSparseVects = 0;
66

67 % Vector used as an alternative to the find() function to speed up the
68 % program; find() is slow for large vectors.
69 indJrow = 1:Mˆ4;
70

71 % Here we start the construction of the matrix A by adding elements to the
72 % vectors iA, jA and sA.
73 for l = 1:(M−1)
74 tic
75 for j = 1:(l+1)
76 for k = 1:(M−1)
77 for i = 1:(k+1)
78

79 % The variable 'id' states in what row we are going to
80 % store the obtained equilibrium equation in the matrix A.
81 % This in done in a way, such that it corresponds to the
82 % lexicographical structure of the vector x.
83 id = 1 + (j − 1) + (i − 1)*M + (k − 1)*Mˆ2 + (l − 1)*Mˆ3;
84

56

85 % The state space is split into 25 different regions, each
86 % region has its own incoming transitions. We call a
87 % nested subfunction tr4D (transition probabilities in
88 % 4 dimensions) to compute a J matrix and an entry in the b
89 % vector.
90 % The J matrix is M−by−M−by−M−by−M, it contains the
91 % coefficients of the equilibrium equation in matrix form.
92 if isequal([i j k l],[2 2 1 1]) % 7
93 [J b(id)] = tr4D([0 0 0 1 0 0 0 0 0]);
94 elseif isequal([i j k],[2 1 1]) && l ≥ 2 % 8
95 [J b(id)] = tr4D([0 0 1 0 0 0 0 0 0]);
96 elseif isequal([i k],[2 1]) && j == (l+1) && j ≥

3 % 9
97 [J b(id)] = tr4D([0 0 1 1 0 0 1 0 0]);
98 elseif isequal([i k],[2 1]) && l ≥ j && j ≥ 2 % 10
99 [J b(id)] = tr4D([0 0 1 0 0 0 1 0 0]);

100 elseif isequal([i j l],[1 2 1]) && k ≥ 2 % 12
101 [J b(id)] = tr4D([0 1 0 0 0 0 0 0 0]);
102 elseif isequal([i j],[1 1]) && k ≥ 2 && l ≥ 2 % 13
103 [J b(id)] = tr4D([1 0 0 0 0 0 0 0 0]);
104 elseif i == 1 && k ≥ 2 && j == (l+1) && j ≥ 3 % 14
105 [J b(id)] = tr4D([1 1 0 0 1 0 0 0 0]);
106 elseif i == 1 && k ≥ 2 && l ≥ j && j ≥ 2 % 15
107 [J b(id)] = tr4D([1 0 0 0 1 0 0 0 0]);
108 elseif i == (k+1) && i ≥ 3 && isequal([j l],[2 1]) % 17
109 [J b(id)] = tr4D([0 1 0 1 0 0 0 1 0]);
110 elseif i == (k+1) && i ≥ 3 && j == 1 && l ≥ 2 % 18
111 [J b(id)] = tr4D([1 0 1 0 0 1 0 0 0]);
112 elseif i == (k+1) && i ≥ 3 && j == (l+1) && j ≥ 3 % 19
113 [J b(id)] = tr4D([1 1 1 1 1 1 1 1 1]);
114 elseif i == (k+1) && i ≥ 3 && l ≥ j && j ≥ 2 % 20
115 [J b(id)] = tr4D([1 0 1 0 1 1 1 0 1]);
116 elseif k ≥ i && i ≥ 2 && isequal([j l],[2 1]) % 22
117 [J b(id)] = tr4D([0 1 0 0 0 0 0 1 0]);
118 elseif k ≥ i && i ≥ 2 && j == 1 && l ≥ 2 % 23
119 [J b(id)] = tr4D([1 0 0 0 0 1 0 0 0]);
120 elseif k ≥ i && i ≥ 2 && j == (l+1) && j ≥ 3 % 24
121 [J b(id)] = tr4D([1 1 0 0 1 1 0 1 1]);
122 elseif k ≥ i && i ≥ 2 && l ≥ j && j ≥ 2 % 25
123 [J b(id)] = tr4D([1 0 0 0 1 1 0 0 1]);
124 else
125 [J b(id)] = tr4D([0 0 0 0 0 0 0 0 0]);
126 end
127

128 % The matrix J has to rearranged into a row and the
129 % non−zero elements (J only contains non−negative values)
130 % are stored in sA, the location of the element is stored
131 % in iA (row) and jA (column).
132 Jrow = J(:);
133 JrowPos = indJrow(Jrow > 0);
134 JrowPosNum = numel(JrowPos);
135

136 iA((indSparseVects+1):(indSparseVects+JrowPosNum)) =
137 id*ones(1,JrowPosNum);

57

138 jA((indSparseVects+1):(indSparseVects+JrowPosNum)) =
139 JrowPos;
140 sA((indSparseVects+1):(indSparseVects+JrowPosNum)) =
141 Jrow(JrowPos);
142

143 % We update the index used to store the positive values of
144 % J in iA, jA and sA.
145 indSparseVects = indSparseVects + JrowPosNum;
146

147 end
148 end
149 end
150

151 % Iteration progress and memory usage is printed to the command window
152 display(sprintf('Iteration %d out of %d \t−−\t %0.5g seconds\n'
153 'Storage used \t %0.5g, \t out of \t %0.5g\n'
154 ,l,M−1,toc,nnz(iA),length(iA)))
155

156 end
157

158 % Clear all temporary files, such that we have more memory available for
159 % the matrix A to be added to the memory.
160 clear Jrow JrowPos JrowPosNum indSparseVects J
161 clear condMarg4D cond2DBranch1 cond2DBranch2
162

163 % Construct the matrix A by using the indices iA and jA and the
164 % corresponding values sA. We subtract the value 1 from each row, as we
165 % want all variables x on one side.
166 % (The system is actually Ax − b = x, which leads to (A−I)x = b)
167 A = sparse(iA(1:nnz(iA)),jA(1:nnz(jA)),sA(1:nnz(sA)),Mˆ4,Mˆ4);
168 A = A − spdiags(ones(Mˆ4,1),0,Mˆ4,Mˆ4);
169

170 % Solve the system
171 x = A\b;
172

173 % Reconstruct the 4−dimensional joint distribution by obtaining the i, j, k
174 % and l value from the row number.
175 piJoint = zeros(M,M,M,M);
176 for n = 1:Mˆ4
177 l = ceil(n/Mˆ3);
178 k = ceil((n − (l−1)*Mˆ3) / Mˆ2);
179 i = ceil((n − (l−1)*Mˆ3 − (k−1)*Mˆ2) / M);
180 j = n − (l−1)*Mˆ3 − (k−1)*Mˆ2 − (i−1)*M;
181 piJoint(i,j,k,l) = x(n);
182 end
183

184 %% Nested function to compute the transition probabilities
185

186 function [J, b] = tr4D(r)
187 % The variable r is a list describing type of incoming transitions
188 % [lambda(1,2) lambda(1,4) lambda(2,3) lambda(3,4) ...
189 % lambda(1) lambda(2) lambda(3) lambda(4) lambda(\emptyset)]
190

191 % Preallocating memory for J and b.

58

192 J = zeros(M,M,M,M);
193 b = 0;
194

195 % Indices used for the conditional distribution, this has to be used
196 % due to the structure of the equilibrium equations.
197 iB = max(i−1,1):k; jB = max(j−1,1):l;
198

199 % We check for all possible incoming transitions and compute the ones
200 % that are needed for that region.
201 if r(1)
202 J(jB,iB,k−1,l−1) = J(jB,iB,k−1,l−1) + ...
203 g12*reshape(condMarg4D(i,j,iB,jB),numel(iB),numel(jB))';
204 end
205 if r(2)
206 b = b − g14 * cond2DBranch1(i,iB) * marg3DBranch1(iB,j−1,k−1);
207 end
208 if r(3)
209 b = b − g23 * cond2DBranch2(j,jB) * marg3DBranch2(i−1,jB,l−1)';
210 end
211 if r(4)
212 b = b − g34 * marg2DBothBranches(i−1,j−1);
213 end
214 if r(5)
215 J(j−1,iB,k−1,l−1) = J(j−1,iB,k−1,l−1) + g1 * cond2DBranch1(i,iB);
216 end
217 if r(6)
218 J(jB,i−1,k−1,l−1) = J(jB,i−1,k−1,l−1) + g2 * cond2DBranch2(j,jB)';
219 end
220 if r(7)
221 b = b − g3 * marg3DBranch2(i−1,j−1,l−1);
222 end
223 if r(8)
224 b = b − g4 * marg3DBranch1(i−1,j−1,k−1);
225 end
226 if r(9)
227 J(j−1,i−1,k−1,l−1) = J(j−1,i−1,k−1,l−1) + g0;
228 end
229

230 end
231

232 end

59

Appendix D

M-file: Using the iteration
scheme

This M-file is used to run the iteration scheme, it calls all the necessary
functions. In the current state, it runs the example shown in the proof of
concept section. Note that some lines were broken off, such that they fit on
the page.

1 %% Iteration run file
2 %
3 % We look at a model consisting of 2 branches, both connected to the same
4 % source.
5 % o The node closest to the source on the first branch is node 1;
6 % o The node closest to the source on the second branch is node 2;
7 % o The succeeding node on the first branch is node 3;
8 % o The succeeding node on the second branch is node 4.
9 %

10 % This file iteratively computes a 4−dimensional joint distribution of two
11 % succeeding nodes on the first branch and two succeeding nodes on the
12 % second branch.
13

14 clc, clear all
15

16 %% System parameters
17

18 % Homogenous system
19 p = 0.9;
20 q = 0.5;
21

22 % Specifying the links [ID from to prob]
23 link = [1 0 1 p ;
24 2 0 2 p ;
25 3 1 3 p ;
26 4 2 4 p ;
27 5 3 5 p ;

60

28 6 4 6 p ;
29 7 5 7 p ;
30 8 6 8 p ;
31 9 7 9 p ;
32 10 8 9 p ;
33 11 9 10 1]; % dummy link
34

35 Nmax = link(end,1); N = 1:(Nmax − 1);
36

37 Nhops = 4;
38

39 % The two links that are coupled at the source
40 coupled = { [1 2] };
41

42 % Probability of transmission for each node
43 nodeTransProb = ones(Nmax+1,1)*q;
44

45 % Neighbouring nodes that affect successful reception probabilities
46 K = cell(Nmax,1);
47

48 [lambdaSet lambdaProb] = lambdaLinks(link,coupled,nodeTransProb,K);
49

50 %% Iteration parameters
51

52 % Size of the bounding box
53 M = 20;
54

55 %% Creating the input for the iteration scheme
56

57 % Reception probabilities for the first four nodess of the system
58 [lambdaSetCurr lambdaProbCurr] = lambdaSmallerNetwork(lambdaSet,
59 lambdaProb,[1 2 3 4],N);
60

61 l0 = lambdaProbCurr(fI(lambdaSetCurr,[]));
62 l1 = lambdaProbCurr(fI(lambdaSetCurr,[1]));
63 l2 = lambdaProbCurr(fI(lambdaSetCurr,[2]));
64 l3 = lambdaProbCurr(fI(lambdaSetCurr,[3]));
65 l4 = lambdaProbCurr(fI(lambdaSetCurr,[4]));
66 l12 = lambdaProbCurr(fI(lambdaSetCurr,[1 2]));
67 l14 = lambdaProbCurr(fI(lambdaSetCurr,[1 4]));
68 l23 = lambdaProbCurr(fI(lambdaSetCurr,[2 3]));
69 l34 = lambdaProbCurr(fI(lambdaSetCurr,[3 4]));
70

71 % Joint distribution of (node 1, node 2)
72 marg2DBothBranches = jointDistSameTx(l0+l3+l4+l34,l1+l14,l2+l23,l12,M);
73

74 % Joint distribution of (source, node 1)
75 marg2DBranch1 = zeros(M,M);
76 marg2DBranch1(1,:) = sum(marg2DBothBranches,2);
77

78 % Joint distribution of (source, node 2)
79 marg2DBranch2 = zeros(M,M);
80 marg2DBranch2(1,:) = sum(marg2DBothBranches,2);
81

61

82 % Joint distribution of (source, source, node 1, node 2)
83 marg4D = zeros(M,M,M,M);
84 marg4D(1,1,:,:) = marg2DBothBranches;
85

86 % Joint distribution of (node 1, node 2, node 3)
87 marg3DBranch1 = jointDist3DArbitraryFast(marg2DBothBranches,
88 marg2DBranch1,marg2DBranch2,marg4D,
89 l0+l4,l1+l14,l2,l3+l34,l12,l23,M);
90

91 % Joint distribution of (node 1, node 2, node 4)
92 marg3DBranch2 = jointDist3DArbitraryFastAlt(marg2DBothBranches,
93 marg2DBranch1,marg2DBranch2,marg4D,
94 l0+l3,l1,l2+l23,l4+l34,l12,l14,M);
95

96 %% First iterate
97

98 display(sprintf('\n\t Iterate number: \t %g',1))
99

100 % Joint disitrubtion of (node 1, node 2, node 3, node 4)
101 marg4DIter = jointDist4DArbitraryFast(marg2DBothBranches,marg2DBranch1,
102 marg2DBranch2,marg3DBranch1,marg3DBranch2,marg4D,
103 l0,l1,l2,l3,l4,l12,l14,l23,l34,M);
104

105 sum(sum(sum(sum(marg4DIter))))
106

107 %% Obtaining the input for the next iterate
108

109 for iter = 2:Nhops
110

111 % Number of the links we are considering for this iterate
112 n = [2*(iter−1)+1 2*(iter−1)+2 2*(iter−1)+3 2*(iter−1)+4];
113

114 % Reception probabilities for the current iterate
115 [lambdaSetCurr lambdaProbCurr] =
116 lambdaSmallerNetwork(lambdaSet,lambdaProb,n,N);
117

118 l0 = lambdaProbCurr(fI(lambdaSetCurr,[]));
119 l1 = lambdaProbCurr(fI(lambdaSetCurr,[n(1)]));
120 l2 = lambdaProbCurr(fI(lambdaSetCurr,[n(2)]));
121 l3 = lambdaProbCurr(fI(lambdaSetCurr,[n(3)]));
122 l4 = lambdaProbCurr(fI(lambdaSetCurr,[n(4)]));
123 l12 = lambdaProbCurr(fI(lambdaSetCurr,[n(1) n(2)]));
124 l14 = lambdaProbCurr(fI(lambdaSetCurr,[n(1) n(4)]));
125 l23 = lambdaProbCurr(fI(lambdaSetCurr,[n(2) n(3)]));
126 l34 = lambdaProbCurr(fI(lambdaSetCurr,[n(3) n(4)]));
127

128 % Setting up for a new iterate
129 marg4DIterPrev = marg4DIter;
130

131 % 2−dimensional joint distributions
132 marg2DBothBranches = squeeze(sum(sum(marg4DIterPrev,2),1));
133 marg2DBranch1 = squeeze(sum(sum(marg4DIterPrev,4),2));
134 marg2DBranch2 = squeeze(sum(sum(marg4DIterPrev,3),1));
135

62

136 % 3−dimensional joint distributions
137 marg3DBranch1 = jointDist3DArbitraryFast(marg2DBothBranches,
138 marg2DBranch1,marg2DBranch2,marg4D,
139 l0+l4,l1+l14,l2,l3+l34,l12,l23,M);
140 marg3DBranch2 = jointDist3DArbitraryFastAlt(marg2DBothBranches,
141 marg2DBranch1,marg2DBranch2,marg4D,
142 l0+l3,l1,l2+l23,l4+l34,l12,l14,M);
143

144 % New iterate
145 display(sprintf('\n\t Iterate number: \t %g',iter))
146 marg4DIter = jointDist4DArbitraryFast(marg2DBothBranches,
147 marg2DBranch1,marg2DBranch2,marg3DBranch1,
148 marg3DBranch2,marg4DIterPrev,
149 l0,l1,l2,l3,l4,l12,l14,l23,l34,M);
150

151 sum(sum(sum(sum(marg4DIter))))
152 end

63

