Evaluation of On-Line Scheduling Rules for

High Volume Job Shop Problems,
a Simulation Study

Yoni Nazarathy

THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE M.A. DEGREE

University of Haifa
Faculty of Social Sciences
Department of Statistics

September, 2001



Evaluation of On-Line Scheduling Rules for

High Volume Job Shop Problems,
a Simulation Study

By: Yoni Nazarathy
Supervised by: Professor Gideon Weiss

THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE M.A. DEGREE

University of Haifa
Faculty of Social Sciences
Department of Statistics

September, 2001

Approved by: Date:
(Supervisor)

Approved by: Date:
(Chairman of M.A Committee)




Thank you page goes here

i



Contents

Abstract vii
List of Tables viii
List of Figures ix
List of Symbols and Abbreviations X
Overview 1

1 The Job Shop Problem
1.1 The General Job Shop Problem . . . ... ... .. ... ......... 4
1.2 Feasible Schedules, Objective Functions
and Lower Bounds . . . . ... ... ... ... ... ... ... ..
1.2.1 Idle Time Decomposition . . . . . . . . . . .. ... ... .....
1.3 The High Volume Job Shop Problem . . . .. ... ... ... .. ....
1.3.1 Probabilistic Statements Regarding the High Volume Job Shop

Problem and the Machine Lower Bound . . . .. ... ... ... 9
1.3.2 Using the Machine Lower Bound to Estimate
the Effectiveness of a Heuristic . . . . . ... .. ... .. .... 11
1.4 A Survey of Job Shop Scheduling Techniques . . . . . . . ... ... ... 11
1.4.1 The Disjunctive Programming Formulation . . . . . . . ... ... 12
1.4.2 Heuristics and Approximations . . . . . . .. .. ... .. .... 13
1.5 Real World Applications of the
Job Shop Problem . . . . . .. ... ... 0 16

2 On-line Scheduling Heuristics 17

il



2.1
2.2

2.3
24

2.5

2.6

The
3.1
3.2
3.3

3.4

3.5

The
4.1
4.2

On-Line Scheduling Algorithms . . . . . . .. ... ... ... ... ... 17

Fluid Models . . . . . . . . . 19
2.2.1 Fluid Solution of Crpgze - - - - - o o« o o . Lo 20
2.2.2  Weighted Flow Time Minimization by Means

of a Fluid Model . . . . . .. ... ... o 21
The Fluid Imitation Algorithm . . . . . .. ... ... ... ... .... 21
Fluid Motivated Pipelining Schemes . . . . . . . . .. .. ... .. .. .. 23
2.4.1 Pipelining the R < J Proportional Problem with C.V.=0. . . . . 25
2.4.2 Probabilistic results: The Dai-Weiss Fluid Heuristic . . . . . . . . 26
2.4.3 Bertsimas and Gamarnik’s Heuristic . . . . ... ... ... ... 27
Random Dispatching Rules. . . . . . .. ... ... ... ... ... 27
2.5.1 The Random Buffer Scheduling Rule . . . . . ... ... ... .. 27
2.5.2 The Proportional Random Buffer Scheduling Rule . . . . . . . .. 28
2.5.3 The Random Job Scheduling Rule . . . . . ... ... ... .. .. 28
Buffer Priority Dispatching Rules . . . . . .. ... ... ... ... ... 29
Job Shop Simulation Project 30
The Use Cases and Configurations of the JSSP . . . . . . . .. ... ... 30
An Overview of the Design of the JSSP . . . . . . . ... ... ... ... 31
Implementing the Simulation Kernel . . . . ... .. ... ... .. ... 35
3.3.1 The Event Queue . . . . . . . ... ..o 35
3.3.2 Implementing the Heart of the Simulation Kernel . . . . . .. .. 36
Collecting and Recording Results in
the Simulation Results Database . . . . . . ... ... .. ... .. .... 39
3.4.1 Collecting Statistics . . . . . . . .. ... Lo oL 39
3.4.2 The Simulation Results Database . . . . . .. .. ... .. .... 41
The Job Shop Simulation Project’s
Front End GUI: The Job Shop Simulator . . . . . . ... ... ... ... 42
3.5.1 The User Controlled Algorithm . . ... ... .. ... ...... 44
Simulation Experiments 45
Conceptual View of the Job Shop Simulation . . . . . .. ... ... ... 45
The Classes of Experiments . . . . . . ... ... ... ... ....... 47
4.2.1 The Meaned Topologies . . . .. ... ... ... ... ...... 47
422 The R~ J Topologies . . . . .. .. ... .. ... ........ 48
4.2.3 The Processing Time Distributions . . . . .. .. ... ... ... 48
4.2.4 The Multiplicity . . . . . .. ... ... L 49

v



4.3 Enumeration of the Experiments Performed . . . .. .. ... ... ...
4.3.1 The Number of Replicates . . . . . . . ... ... .. ... ....
4.4 The Experimental Results . . . . . . .. ... .. ... ... ... ...
4.4.1 Summary of the Results . . . ... ... ... .. ... ... ..

Interpretation of the Simulation Results
5.1 Previous Results Regarding the R< J Case . . . . ... ... .. ....
5.2 A Stochastic Model and a Fluid Solution for Re-entrant Lines . . . . . .
5.3 The Fluid Imitation Algorithm for Makespan . . . . . . . ... .. .. ..
5.4 Random Buffer Scheduling . . . . .. ... .00 oL
5.5 Decreasing Starve Times . . . . . . . ... .. 0o
5.6 Non-optimal Scheduling Rules:

FBFS, LBFSand RJSR . . . . . ... ... ... .. ... ........
57 R~ JProblems. . . .. . ... . . ... ...

Multiple Bottleneck Machines
6.1 The Motivation and the Questions. . . . . . . . .. ... ... ... ...
6.2 Simulation Experiment Results . . . . .. ... ... ... ........
6.3 The 2 Machine 2 Opposite Routes Problem . . . . . . . . ... ... ...
6.4 The Push-Pull Model . . . . . . .. . ... .. ... . ... ... ....
6.5 An Infinite Horizon Model of 2M20OR

Using Crax FIA . 0 0 0 0 L 0 o

6.6 Discussion of Queueing Models having Infinite Virtual Queues . . . . . .

7 Summary and Future Directions

Bibliography

Appendixes

A Full Simulation Results

Al The R< J Identical Case . . . ... ... ... ... ... ........
A1l CV.=0 ... . e
Al12 CV.=0.25 ... . . e
A13 CV.=1.0 .. . . .
Al4 Weibull 1/2 . . .. o000
A1D Pareto 3 . . . . . L

57
o8
28
62
63
64

64
67

69
69
70
72
74

75
76

78

81



A1.6 Pareto 2 . . . . . . o, 103

A2 The R < J Proportional Case . . . . .. ... ... ... ... ...... 108
A21 CV. =0 ... e 108
A22 CV.=0.25 ... . . e 112
A23 CV.=1.0 ... . . . e 114
A24 Weibull 1/2 . . . . ..o 118
A25 Pareto3 . . . . .. 120
A2.6 Pareto2 . . . . . . .. 121

A3 The R~ J Casewith RJSR . . . .. ... ... ... ... ... ... 126

B Simulation Details 127

B.1 Generation of Random Variables. . . . . . .. ... ... ... .. ... 127

B.2 Selection of the Number of Jobs on
Each Route in the R < J Proportional Case . . . . . .. ... .. .... 128

B.3 Creation of R ~ J Job Shop Problems . . . .. ... ... ........ 129

C User Instructions

for the Job Shop Simulator 130
C.1 Using the Job Shop Simulator . . . . ... .. ... ... ... .. ... 130
C.2 Creating Your Own .jbs Files . . . . ... .. ... ... ... ... ... 131
D Source Code Listing 135

vi



Evaluation of On-Line Scheduling Rules

for High Volume Job Shop Problems,
a Simulation Study.

Yoni Nazarathy
Abstract

We discuss scheduling of high volume job shop problems with respect to makespan
using simple on-line scheduling rules. We say that a job shop problem is high volume if
the number of jobs is large relative to the number of machines and the maximal route
length. We focus on an algorithm which imitates the optimal fluid solution of this
problem, which we name the Makespan Fluid Imitation Algorithm (Cyay FIA). To learn
more about Ch.x FTA, we designed the Job Shop Simulation Project, a software package
that is designed to simulate high volume job shop problems that are driven by on-line
scheduling heuristics.

Our simulation results show that the makespan that is achieved by the Cn., FTA
heuristic is equal to the machine lower bound plus a constant that is independent of
the number of jobs. This is true for a variety of processing time distributions, including
heavy tailed distributions. For job shop problems with several bottleneck machines, our
results are the same, given that for each bottleneck machine, there is a route which starts
at that machine. In addition, our results hint that a simple heuristic that operates by
selecting buffers at random yields a makespan that is asymptotically optimal. While the
performance of this random scheduling scheme is not as good as the Cp,, FIA, it is now
evident that asymptotically optimal scheduling for the high volume job shop problem is
easily achievable.

We summarize our results in a set of conjectures that are based on the extensive simu-
lation study. These conjectures are yet to be proved. In addition we discuss the relation-
ship between the stability of MCQNs and asymptotically optimal job shop scheduling in
terms of makespan. Attempting to investigate a simple yet interesting special case, we
present a steady-state model of a job shop with 2 machines, and 2 routes which run in
opposite directions. While we do not solve it, we believe that this model has a steady

state solution. Our belief is based on the simulation results.

vii



List of Tables

4.1

4.2

4.3

4.4
4.5

The maximum log-multiplicities of the R < J identical simulation exper-
iments . . . . . . L
The maximum log-multiplicities of the R < J proportional simulation
exXperiments . . . . . . ... ..o e e
The maximum log-multiplicities of the R ~ J simulation experiments

Result summary of the R < J identical simulation experiments . . . . .

Result summary of the R < J proportional simulation experiments

viii



List of Figures

2.1
2.2

3.1
3.2

4.1

5.1
5.2
9.3
0.4
9.5

6.1
6.2
6.3
6.4

Pipelining: deterministic problem . . . . . . .. ... .. ... L.
Pipelining: stochastic problem . . . .. . ... ... ... 0000

The GUI of the JSS . . . . . . . . . o o

The user controlled algorithm . . . . ... ... ... .. ... ...
An example of a simulation experiment result . . . . .. ... ... ...

The fluid solution of the LBFS algorithm . . . . .. .. ... ... ...
The infinite horizon fluid solution . . . . . . . . . . ... ... .. ....
The relative gap of C.V. =0, MT10 using RBSR . . .. ... ... ...
The relative gap of C.V. = 0, MT10 using PRBSR . . . . ... ... ..
The relative gap of Pareto 2, MT10 identical using FBFS . . . . .. ..

The relative gap of C.V.=0.25, MT10-bal, identical using C.« FIA . . .
The relative gap of C.V.=1.0, MT10-bal, identical using C\,.x FIA

The relative gap of Pareto 2, MT10-bal, identical using Cp,,x FIA . . . .
The 2M20R topology as seen in the JSS . . . . . .. .. ... ... ...

1X



List of Symbols and Abbreviations

The Job Shop Problem

The number of JoObs ... ... J
The number of machines ........... ... . . . e I
The number of routes .. ... ... R
The number of operations in route 7 ........ ... i e K,
The number of jobs on route 7 ....... ... e N,
The o’'th operation in route r ........ ... ... . . (r,0)
The machine on which operation (r,0) is processed .............. ..., o(r,o0)
The route of JOD J ..ot ()
The operations performed on machine i (the constituency of machine 7) ........... C;
The processing time of job j on operation (7,0) ............ccooiiiiiiio... X0 (9)
The mean processing time of operation (7,0) .........c.ci i, M(r,0)
The bottleneck machine ......... ... . . 7

Schedules and Objective Functions

A schedule ... S
Start time of operation (r,0) for job j ... . ... . i S(r,0)(7)
The completion time of operation (r,0) for job j ....... ... t(r0)(4)
The completion time of job j ... ... cj
The amount of jobs at buffer (r,0) at time ¢ ......... ...t Q(r,0)(t)
The amount of upstream jobs for buffer (r,0) at time¢ ...................... Q?;',o) (t)
The makespan . .......... oo e Chnax
Work-in-process inventory costs (also known as weighted flow time) ............. WIT



The machine lower bound . ..........c i T

The Cpax generated by a heuristic ................ i, TH
The Cpax generated by the optimal schedule ................ ... ... ... ... ...... Tort
The gap: T — T g
The starve time .. ... ... e 3
The run-out time . ... .. e R
The voluntary rest time ... ... ... e O

The High Volume Job Shop Problem

A high volume job shop problem with a fixed number of routes ............... R J
A high volume job shop problem with arbitrary routes ........................ R~J
The multiplicity ... ... ..o N
The log-multiplicity ....... ... e log N

Scheduling Algorithms / Heuristics / Rules

A scheduling algorithm . ... . . T
The optimal scheduling algorithm ........... .. . ... ... . . . . ... Yort
Fluid imitation algorithm for makespan ......... ... ... ... ... .. ... .. ..., Crax FIA
Random buffer scheduling rule ....... ... .. . .. RBSR
Proportional random buffer scheduling rule ......... ... ... ... .. oL PRBSR
Random job scheduling rule ...... ... . . RJSR
First buffer first serve ... .. FBFS
Last buffer first serve .. ... ... LBFS

Fluid Models

The amount of fluid in buffer (r,0) at time ¢ ....... ... ... .. ... ... ... ..., U(r,0) (1)
The amount of upstream fluid for buffer (r,0) at time ¢ ....................... q(*;’o) (t)
The rate of flow out of buffer (r,0) at time ¢ ...... ... .. ... ... ... ... U(r,0) ()
The lag of buffer £ as used by the FIA ... .. . . Ly,

xi



Simulation Experiments of the Job Shop Problem

A job shop problem instance ......... ... . ©
The population of all job shop problems ........ ... .. .. .. .. .. P
A sub-population of job shop problems (for given class i) ......................... P;
Job shop problem instances of multiplicity N from P; ........................... Pin
A schedule generated by applying T t0 @ ...oovineiii i Sy(p)
The number of replications ... ...... ... . i n

Analysis of LBFS Non-idling policy on a Re-entrant Line (Section 5.2)

The number of iterations of the calculating algorithm .............................. L
The buffer that is set as the initial bottleneck buffer in the [’th iteration .......... a®
The number of jobs that are finished on £ after working for a duration of ¢ ..... Sk(t)
The amount of time that machine o(k) works on buffer k& during [0,¢) .......... T (t)

Probability and Stochastic Processes

Random variable . ... ... . . e R.V.
Coefficient of variation (standard deviance divided by the mean) ................ C.V.
Independent and identically distributed random variables ....................... i.i.d.
Central limit theorem ......... .. . CLT
Moment generating function .......... .. ... i MGF
Multi class queueing networks .......... .. MCQN

Software Design, JAVA and the JSSP

Object oriented . ........oiiiiii i e 00
OO0 deSIgN .o oottt 0O0OD
Graphical user interface .......... .. . GUI
JAVA virtual machine ........... .. e JVM
Job Shop Simulation Project ........ ... ... . JSSP
Job Shop Simulator . ........ e JSS
Simulation results database .......... ... SRDB

xii



Overview

This reports summarizes a simulation study that investigates solution methods of the
high volume job shop problem (a job shop problem with a large number of jobs). We
categorize instances of the problem into two main categories: The R < J case and the
R = J case. In the former, the number of routes (R) is much smaller than the number
of jobs (J). In the later, each job may follow any route.

The main goal of this study was to investigate how well simple on-line schedul-
ing heuristics are able to schedule the R < J high volume job shop with respect to
makespan (Cmax). Recent results by Bertsimas and Gamarnik [4], Dai and Weiss [14]
and Boudoukh, Penn and Weiss ([6] and [7]) have shown that it is possible to obtain
schedules that obtain a C,,, that is close to the optimal schedule. These results are based
on the machine lower bound (7™*), achieving makespans that are equal to 7%+ o(N). We
call such schedules asymptotically optimal due to the fact that the ratio (Ciax —7*)/T*
approaches 0 as the number of jobs increases. Note that some of these results (Boudoukh
et. al. and Bertsimas and Gamarnik) are minimax results while others (Dai and Weiss)
are probabilistic results.

We performed an extensive computer simulation of job shop problem instances using
the following on-line scheduling heuristics: random job scheduling rule (RJSR), random
buffer scheduling rule (RBSR), proportional random buffer scheduling rule (PRBSR),
first buffer first serve (FBFS), last buffer first server (LBFS) and the fluid imitation
algorithm for makespan (Cmax FIA). It was the performance of the last heuristic (Cimax
FTA) that we were extremely interested in investigating. For the purpose of the sim-
ulation, we created the Job Shop Simulation Project (JSSP), a software package that
allowed for easy and efficient execution of R < J job shop simulations.

The RJSR, RBSR and PRBSR are simple to execute, randomly behaving scheduling
rules. We describe these within the body of the text. The FBFS and LBF'S scheduling
rules are also simple to execute, deterministic scheduling rules. We examined these
rules for the sole purpose of showing that some scheduling rules are not asymptotically
optimal. The Chax FIA scheduling rule was presented as the greedy fluid algorithm
(GFA) in [6] and [7]. This scheduling rule is based on the fluid solution to the fluid

1



relaxation of the job shop problem, to be presented in the text. It attempts to schedule

the job shop such that it emulates an optimal fluid solution.

We define the gap (G) as the makespan obtained by the heuristic minus the machine

lower bound (G = Cpax — T*). Our study is based on the behavior of the gap relative

to the number of jobs. We simulate a variety of problems using the heuristics presented

above and empirically measure the growth of the gap. Our analysis is an empirical

probabilistic analysis. This means that we use empirical data (from simulations) to

make probabilistic statements for which we currently do not have any proof. We are

primarily interested in answering the following questions:

How well does a fluid imitation algorithm (FIA) for minimization of makespan
perform? The simulation conducted by Boudoukh [6] has shown that when there
is an equal number of jobs on each route and when the variability of the processing
times is mild (exponential moments exist) then the algorithm generates schedules
with a gap that is bounded by a constant (with respect to the problem size).
Does this still hold when the processing times are generated from heavy tailed

distributions?
Does it hold when the number of jobs on each route is not identical?

How well does the FIA function on problems that have multiple bottleneck ma-
chines? The positive trait of a bottleneck machine is that it may be utilized for
one hundred percent of the time. The negative trait is that it may slow down the
operation of the job shop. A job shop with several bottleneck machines is desired
given that there is an assurance that these machines will work without starving.
Can this be achieved?

In what way does the application of on-line scheduling heuristics differ between job
shop problems with several routes and job shop problems with a single route (re-
entrant lines)? This is an interesting question because of recent results regarding
stability and instability of re-entrant lines when modeled as MCQNs (see [3], [12],
[13] and [33]).

How well do random on-line scheduling algorithms perform? If it could be shown
that extremely simple random scheduling rules do as good a job as more advanced
scheduling rules, then the importance of the advanced scheduling rules should be

questioned.

This report is organized as follows: We start off in Chapter 1 with an introduction

to the job shop problem, the high volume job shop problem, methods of solution of the



problem and real life applications of the problem. In Chapter 2 we focus on on-line
scheduling algorithms that attempt to approximate the optimal solution of the R < J
high volume job shop problem. We introduce fluid models and discuss the theoretical
effectiveness of such algorithms. The algorithms presented in this chapter are the ones
that were tested by means of simulation. In chapter 3 we introduce the software package
that was developed to allow for investigation of the high volume job shop problems: the
Job Shop Simulation Project. We discuss both the design and implementation issues
that were encountered during the development of the project. In Chapter 4, we lay
out the framework for the simulation experiments that were performed. We discuss the
theory behind the experiments, and enumerate all of the runs that were made. We
also summarize the results of the experiments, specifying the observed rate of growth
of the gap. In Chapter 5 we discuss the results of these experiments, and attempt to
explain some of the observed phenomena. We discuss theoretical justifications and make
conjectures based on the results. In Chapter 6 we continue our analysis, discussing the
case where there are multiple bottleneck machines. Here, we analyze a simple special
case: a 2 machine, 4 operation job shop problem with 2 opposite routes. We summarize
results regarding simulation experiments that were run for this model. We also lay
the foundation for a steady-state queueing network model that is based on this finite-
horizon job shop model and the FIA scheduling rule. Finally in Chapter 7 we conclude
our results and pinpoint the interesting questions that were raised during study and

should be answered in the future.



Chapter 1

The Job Shop Problem

In this chapter we introduce the job shop problem, a well known problem in the fields
of operations research, industrial engineering and computer science. In Section 1.1 we
define the general job shop problem and in Section 1.2 we introduce the basic concepts
relating to the problem. In Section 1.3 we introduce the high volume job shop problem,
this is the type of job shop problem that we analyze in this study. In Section 1.4,
we survey existing job shop scheduling techniques. This is a survey of algorithms and
heuristics that are used to schedule the job shop problem without making use of the fact
that it may be high volume. We finish off this chapter in Section 1.5 where we briefly

discuss real world applications of the job shop problem!.

1.1 The General Job Shop Problem

The job shop problem is a model of a generic factory that produces products. Each
product is called a job because it traverses through the machines in the factory on its
way to completion. There is a known fixed route for each job. A route is described by
a sequence of operations. Each operation is characterized by the machine on which it
is performed and the duration of time that it takes (sometimes mean duration). We
allow for re-entry (sometimes known as recirculation). This means that each route may
be composed of several operations on the same machine. We also allow for immediate
re-entry, meaning that two consecutive operations on the same route may be processed
on the same machine.

We define the general job shop problem as follows: J jobs are to be scheduled on ma-

chines i = 1, ..., I. Each job follows a route r, composed of operations (r,1),..., (r, K,).

INote that the term job shop problem is widely used in the literature. This is opposed to the general
job shop problem and the high volume job shop problem which are terms that we are introducing in this
study and defining in this chapter.



The routes are numbered r=1,...,R and the jobs are numbered j=1,...,J. It may be that
R = J and in that case each job follows its own distinct route. It may also be that
R < J and in that case one or more jobs share a route. Note that in the former case,
the problem does not require the concept of a route and the terms job and route are
synonymous. We define p(j) to be the route of job j. We define o(r,0) as the machine
on which operation (r,0) is performed. We denote by C; the constituency of machine i:
C; = {(r,0) : o(r,0) = i}. We denote the processing time of job j on operation (r,0)
by X0 (7), thus the processing times of job j on all the operations that it requires:
(p(5),1),- -+ ,(p(4),K () are denoted by X(p(;),1)(4); - - > X(p(s),k,;9) (7). We denote the
average processing time of operation (r,0) by m.,) (this is an average over all of the
processing times of jobs that require this operation). We label the amount of jobs at
buffer (r,0) (waiting for operation (r,0) besides machine o(r,0) or actually performing
operation (r,0)) at time ¢ by Q(r.)(t).

We name the above model general because it does not impose restrictions requiring
an equal number of jobs per route or many jobs to follow the exact same route. It also
does not require all of the jobs sharing a route to share the same processing times.

It should be noted that the general job shop is a relativity poor model of a real
world factory. If one was interested to create a more accurate model of a real world
manufacturing or processing situation, one may want to add some more features to the
model.

These are some of the features that may enhance the general job shop model, making

it a more reasonable approximation of a real-life factory:

Machine Breakdowns : Certain machines may not be operating at certain

times of maintenance or repair.

Non-unique Routes : A job may have the option of traversing one of several

different routes on its way to completion.

Set-up Twmes : Machines that are designated to perform several operations
may have to spend time setting up between one job and another. The dura-
tion of the set up times may depend on both the job which has just finished
and the job that is to be processed.

Transfer Times : The transfer of jobs between machines requires a given

amount of time.

Awailability Dates : Not all jobs are available for processing at the start of

the execution of the job shop.



Due Dates : Jobs are to be completed by certain times. If not, a penalty

may be incurred.

See [44] for an introductory discussion on the above and other features that may
be found in scheduling problems. While the above features are required to create a
model that truly mimics a real world factory, we focus on the general job shop model
as presented above. This is due to the fact that there are still many open questions
regarding the general job shop model. See Section 1.5 for a discussion of real world

applications of the general job shop problem.

1.2 Feasible Schedules, Objective Functions
and Lower Bounds

A schedule for the General Job Shop Problem uses all the data in the problem. It
specifically determines the start and finish times s(.,)(j), t(r0)(j) of each operation as
well as the job completion times, ¢; (note that ¢; = (), ;) (4)). These are subject to
a one to one assignment of jobs to machines, order of steps, release times and processing

times as summarized in the equations and inequalities below:

tro)(J) = 5(r0)(J) + X(r,0)(4) (1.1)
S(r,0)(J) = t(r,0-1)(7) (1.2)
I((r0).0)(t) € {0, 1} (1.3)
L(r,0),) (1) =1 = $(r,0)(J) <t < t(r,0)(4) (1.4)
I((ro (t) = ]2::1 L(r,0,)(t) (1.5)
> o €{0,1} (1.6)

(r,0)EC;

Constraint 1.1 ensures that there is no preemption in the schedule. Constraint 1.2
ensures that a job is processed in the required order and at one operation at a time.
The definitions and constraints 1.3, 1.4, 1.5 and 1.6 ensure that a machine processes at

most one job at a time. Denoting a schedule as &, it can be seen that given the above



constraints, the minimal information that is needed to specify S is the set of s(, o) (j)
values.

Solving a job shop problem means finding a feasible schedule which optimizes some
objective function. We examine two objective functions, both of which are to be mini-

mized (such objective functions are referred to as cost functions).

Makespan (Cpneq) © max; c;.

This is the time at which the last job is completed. It is the most widely
discussed objective function within the context of job shop scheduling. The
makespan is important when the number of jobs is finite. This objective
is closely related to maximum throughput in the sense that schedules that

feature a low makespan usually tend to maximize the throughput rate.

Work-in-Process Inventory Costs (WIT) : 32, wjc;.

This is a weighted sum of the completion times of each job. The weights w;
are to be set based on the inventory costs incurred by having job j in process.

This measure is also frequently referred to as weighted flow time.

See [45] and [44] for a description of the above objective functions along side several
other objective functions. While we believe that in a manufacturing setting, the WIT
objective is often more important than the C,,« objective, the discussion in this paper
and the experiments of this study are mostly related to Cp.x. This is due to the fact that
until recently, WIT optimizing job shop schedules were nearly impossible to obtain. In
Section 2.2.2 we briefly discuss recent advances that may lead to near optimal scheduling
for minimization of WIT.

Given a Job Shop Instance, and a cost function, our goal is to find a schedule that
minimizes cost. Before attempting to tackle this difficult task, we first find lower bounds

for the cost function. For the C},,, cost function, two well known lower bounds exist:

The Machine Lower Bound (T*) : By looking at the problem data, we may
find the machine 7* that has the most work to do. We call i* the bottleneck
machine (there may be several bottlenecks and in that case we use i}, 5, . . .).
We denote 1™ the duration of the work of +*. Thus:

T* = maxi=1,...1 Y(ro)ec; 2ojin(j)=r X (r0)(J)-



The Job Lower Bound : This is the duration of processing of the slowest job:
K, .
max; 2,1 Xp().0) (7)-

Note that we are not aware of any solid lower bounds for the WIT cost function?.

1.2.1 Idle Time Decomposition

We call the duration of time during which a machine is not performing any operation
(and the job shop has still not terminated) the idle time of the machine?.

Any machine may be idle because of one of two main reasons: (1) It has reached a
state in which its buffers are empty. (2) The scheduling algorithm has decided that it
should perform a voluntary rest (even though its buffers are not empty).

We denote the duration of time during which a machine’s buffers are empty as vacant
time. We denote the duration of time that a machine performs voluntary rest as the
voluntary rest time.

We can further decompose idle time by decomposing the vacant time. Notice that
during the period in which a machine’s buffers are empty one of two states may occur: (a)
Not all of the operations have been performed on the machine. (b) All of the operations
have been performed (the machine has finished). We call the duration of time during
which state (a) occurs the starve time. We call the duration of time during which state
(b) occurs the run-out time.

Thus the starve time, run-out time and voluntary rest time decompose (add up to)
the idle time of a machine. As we perform the simulation experiments of this study, we
record these times for each simulation run that is performed (see Chapter 4).

We define a non-idling policy as a scheduling policy that produces a schedule with a

voluntary rest time equal to zero.

1.3 The High Volume Job Shop Problem

We say that a job shop problem is high volume, if the number of jobs exceeds the number
of machines by a huge factor while the maximal route length remains bounded. There

are two types of high volume job shop problems that we deal with:

R < J : This is the case in which the number of routes is much smaller than

the number of jobs, implying that there are many jobs following the same

2In [5], Bertsimas et al. show that F(N)— O(N) is a lower bound for the WIT cost function. Where
F(N) is a solution to a fluid model that is formulated.
3For a bottleneck machine, the idle time equals Crpax — T*.



route. We allow the processing times of each of the steps of each of the J

jobs to vary.

R ~ J : This is the case in which the number of routes is just about equal
to the number of jobs, meaning that each job (or almost each job) follows
a distinct route. In this case, even though max, K, and I are small with
respect to J (as specified for the high volume job shop problem), the number
of possible routes of length K is IX. Thus even for moderately sized I and

max, K, instances of the type R ~ J are obtainable.

In the R < J case, we denote by N, the number of jobs on route r. We decompose
the R < J case into two sub cases, identical and proportional. We say a problem is
identical if all N, are equal. In that case we define N, = N. We say the problem is
proportional if it is not identical. In the proportional case we denote N = % N,. Note
that in the proportional case, J = N whereas in the identical case J = RN.

We call N the multiplicity of the problem. In the R =~ J case, N = J = R denotes the
multiplicity. We denote log N as the log-multiplicity. In the experiments we performed
in this study, we increase the multiplicities exponentially thus we are increasing the
log-multiplicities linearly. Note that throughout the study we use base 2 logarithms.

It is important to point out a special case of the R < J problem: the re-entrant line.
This is a high volume job shop problem with a single route (R = 1) and more operations
than machines (K; > I). It has been studied within the context of multi class fluid

networks, see [33], [12] and [13]. We will refer to it at occasions within the text.

1.3.1 Probabilistic Statements Regarding the High Volume Job
Shop Problem and the Machine Lower Bound

All of the experiments that we perform and conjectures that we formulate are of a
probabilistic type. When we make statements regarding the behavior of scheduling
algorithms on job shop problems, we are actually referring to a population of job shop
problems drawn from some distribution (see Chapter 4 for a formal description). For the
R < J case, we assume the existence of mean processing times my,, for each operation
(r,0). This assumption implies that as we increase the multiplicity, thus creating more
jobs on each route, each job has a processing time X, ,)(j) sampled from a distribution
having the mean m(, ). For the R~ J case, there is only one job performed on each
operation (r,0). In this case we assume that the means m; exist, these are the mean
processing times of all jobs on machine i. As we increase the multiplicity, we assume

that the means remain constant. This is a reasonable assumption in a manufacturing



setting. Note that we also assume that the processing times have a finite variance (finite
second moment).

It is important to understand the difference between a probabilistic analysis and a
minimax analysis. In a a minimax analysis one tries to make statements regarding the
worst case problem instance that may occur. In the probabilistic analysis, statements
that are true with a high probability are made (a probability that usually approaches 1
as the multiplicity increases). For an example of a probabilistic study of the job Shop
problem see [14].

We will be evaluating scheduling algorithms that attempt to approximate the optimal
schedule of high volume job shop problems. We denote the Cy,., generated by an optimal
schedule as T°*. A schedule that achieves TP always exists because of the finiteness of
the problem (it is always possible to enumerate all of the feasible active schedules* and
see which are the ones that minimize Cy,,y). In fact, we believe that for high volume
problems, there often exists more than one such schedule. As will be made evident in the
next sections, finding 7" is a tough combinatorial optimization problem. The optimal
schedule of problems as small as 20 jobs are almost impossible to compute. Instead of
finding the optimum, we use heuristics that make use of the fact that the problem is
high volume, and attempt to find a solution that is almost as good as TPt

For the general job shop problem, there is no a-priori indication on which of the lower
bounds is higher, the machine lower bound or the job lower bound. On the contrary,
for the high volume job shop problem, the machine lower bound is higher than the job
lower bound (given a large enough N). This is because as we increase N, the expected
processing time on each machine grows linearly while the expected processing time of
each job grows at a rate that is typically O(log N) and is bounded by O(v/N) (see [15] for
a description of the growth of the expected maximum of a sequence of random variables
with a finite second moment). It is important to understand that a R < J or R~ J
problem of any size may be assigned processing times such that the job lower bound
dominates the machine lower bound. Thus, when we say that it is the machine lower

bound that dominates we are using a probabilistic argument.

4 An active schedule is a feasible schedule in which no operation can be completed earlier by altering
processing sequences on machines and not delaying any other operation.

10



1.3.2 Using the Machine Lower Bound to Estimate
the Effectiveness of a Heuristic

We denote the Cpay of a schedule that is generated by a heuristic as 7. Remembering

that 7™ denotes the machine lower bound, the following holds:

T <TP <TH (1.7)

We denote the gap: TH —T* as G. Thus if G is small, we know that the sub-optimality
of a scheduling heuristic is small. Note that if G grows in N with a rate that is less than
linear (o(NN)), then the ratio G/T* tends to 0 as N increases and we may say that the
heuristic is asymptotically optimal. This is due to the fact that 7™ increases linearly in
N. In this study, we analyze the rate of growth of G, we conjecture that for some very
simple heuristics it grows at a rate of O(log V) (with a high probability), while for other

heuristics it is actually constant: O(1).

1.4 A Survey of Job Shop Scheduling Techniques

Solving the general job shop problem is not an easy computational task, the problem
is categorized as NP-complete®. In the early 1960’s Muth and Thompson [42] produced
the MT10 problem. This is an instance of the job shop problem that has 10 machines
and 10 routes. Finding the optimal schedule in-terms of C,, for the problem served
as a challenge that the scheduling community faced for many years. Only in 1989 were
Carlier and Pinson [10] able to find the optimal solution for MT10. They used a branch
and bound method (discussed below).

We now review some of the techniques and results regarding the solution of the general
job shop problem with respect to Cha.. We start off in Section 1.4.1 where we review
the disjunctive programming formulation of the problem and briefly discuss branch and
bound solutions. We then continue to Section 1.4.2 which is a quick tour through some of
the heuristics and approximations that have been devised. It is important to understand
that all of the methods that are presented in this section are designed to solve the general
job shop problem. None of the methods and results make use of properties that are found
in the high volume job shop problem, specifically the R < J case. Also note that most
of the algorithms and heuristics that we describe below, have not been formulated for
problems that allow re-entry but rather for problems in which the operations of each

route are performed on a permutation of the machines.

5See [20] for a discussion of NP-completeness.

11



1.4.1 The Disjunctive Programming Formulation

The job shop problem may be formulated by using a weighted directed graph. Define
G = (0,C, D) to be a graph where O are the nodes, C' are conjunctive arcs and D are
disjunctive arcs. These names are part of the terminology of disjunctive programming.
In this type of mathematical programming, a constraint is called conjunctive if it must be
satisfied; a set of constraints is refereed to as disjunctive if at least one of the constraints
has to be satisfied.

The nodes, O correspond to all of the operations that are performed on the J jobs;
there is one node for each operation (r,0) and also a source node (s) and a sink node (t).
The conjunctive arcs, C' represent the precedence relationships between the operations
on a single job/route. This means that for every two nodes, (r,0-1) and (r,0) there is
a conjunctive arc in C starting at (r,0-1) and ending at (r,0). The disjunctive arcs, D
connect operations that share a machine. If two nodes, say k; and ks, represent oper-
ations that belong to the same machine (o(k;) = o(ky)) then there are two disjunctive
arcs between k; and ko (facing opposite directions). The weights of each of the arcs
are set to be the processing times of the corresponding nodes (the node at the start of
each arc). The arcs emanating from the source node have a weight of zero. A selection
of exactly one disjunctive arc from each pair such that the resulting directed graph is
acyclic corresponds to finding a feasible schedule®. The makespan for this schedule is
the length of the longest path from source to sink. See [2], [45] and [44] for details.

We now formulate the problem as a disjunctive programming problem”: Minimize
Cmax subject to the following constraints:

S(r,0) > S(r,0—1) + X(r,o—l) (18)

Cmax 2 S(,,-,KT) +X(7',KT) r = 1,...,R (19)

(O(Tlﬂ 01) = 0(7”2, 02)) = (8(7"1,01) Z S(ra,02) + X(Tz,oz)) \/(S(Tz,oz) Z S(r1,01) + X(Tl,ol))
(1.10)

S(r,0) = 0 (1.11)

6Tt actually corresponds to finding an active schedule, see [45] for details.
"We omit j from s(,.0)(j) and X(,,)(j). This is because in the general job shop problem there is only
one job per route (route and job are synonymous).

12



Here constraints 1.8, 1.9 and 1.11 are conjunctive constraints. Constraint 1.10 is
a disjunctive constraint. It is actually composed of two constraints for each pair of
operations that share a machine. Of the two, one must be satisfied.

A solution to this problem is only obtainable by enumeration of all of the possible
active schedules. Methods that a perform this enumeration are called branch and bound
techniques. See [35] for a review of the various branch and bound algorithms that have
been devised for job shop scheduling. The performance of branch and bound solutions is
quite limited, even small problems are sometimes computationally impossible to solve.
See [37] and [9] for benchmark times.

While most of the branch and bound techniques enumerate solutions to the dis-
junctive programming problem stated above, Martin and Shmoys [39] suggest a new
approach: they use a time oriented branching scheme. Tests conducted using this al-
gorithm have obtained optimal solutions or best known solutions for several benchmark
problems. In addition, the time-oriented approach allows extension of the problem to

incorporate additional constraints such as release dates and deadlines for jobs.

1.4.2 Heuristics and Approximations

With the absence of the ability to efficiently solve the job shop problem in realistic time,
approximating heuristics are introduced.

One of the most successful heuristic procedures that were developed is the shifting
bottleneck heuristic (Adams, Balas and Zawack [1]). The heuristic operates by using an
iterative process that sequences one machine at a time®. Every time a new machine
has been sequenced, the heuristic re-optimizes the sequence of each of the previously
sequenced machines that are susceptible to improvement by again solving a one machine
problem. We label the one machine problem by P(i,I). Here i denotes the machine
that is currently being scheduled and I, denotes the set of machines that have already
been scheduled. P(i, Iy) is formulated so that solving it is equivalent to minimizing the
maximum lateness in a one-machine scheduling problem (for machine ¢) with due dates
(see details in [1]). Here is an overview of the heuristic:

Step 0 - Set Iy = (.

Step 1 - Identify the current bottleneck machine, i, among the machines I \ I,.

Step 2 - Sequence ¢ optimally (Solve P(i, Iy)).

Step 3 - Set Iy = Iy U {i}.

Step 4 - Re-optimize the sequence of each critical machine | € Iy in turn, while
keeping the other sequences fixed. Do this by setting I, = Iy \ {I} and solving P(I, I,).

8The term “sequencing a machine” means selecting the disjunctive arcs for that particular machine.

13



Step b - If Iy = I stop, otherwise goto step 1.

The identification of the “current bottleneck machine” in step 1 is done by finding
the machine that had the highest objective value in P(i, Iy) (had the maximum lateness).
Thus the heuristic is called shifting bottleneck. Computational comparisons have shown
that for many problems, this heuristic achieves an optimum (note though that it does
not produce a proof that it did so).

Williamson et al. [57] show that when the processing times are taken to be integers,
deciding whether a given problem instance has a schedule that features a Cp,,x of at most
3 is a polynomial problem; they also show the same thing for a length of 4 or above is an
NP-complete problem. This result quickly yields the following: Finding a near-optimal
schedule with a makespan of T# such that TH# < pT°"* and p < 5/4 is an NP-complete
problem. This means that the best performance that may be achieved by a polynomial
heuristic is bounded from below by 5/4 of the makespan of the optimal schedule®.

The reasoning is as follows: Suppose that for some p < 5/4 we have a polynomial-time
approximation algorithm that is guaranteed to produced a schedule with a makespan of
at most pT°?. Now look at all of the possible problem instances. Some have T < 4
while others have T°" > 4. For the first type of problem instances, the approximation
algorithm will yield a schedule with a length of less than 5/4 -4 = 5 . For the second
type of problem instances the approximation algorithm yields a schedule with a length
of at least 5. Thus such an approximation algorithm supposedly does in polynomial time
what is proved in [57] to be achieved by an NP-complete algorithm. Aslong as P # NP,
this is a contradiction.

In [51], Sevast’janov presents a survey of solutions to scheduling problems that are

based on geometrical ideas'®.

For the general job shop problem, Sevast’janov presents
three polynomial time approximation algorithms whose bound is independent of the
number of machines (a gap of O(1)). We will arbitrarily refer to the algorithms as the
first, second and third algorithms and refer to their gaps as G*, G and G respectively.
We also refer to Xpax as the processing time of the longest operation and K is the
number of operations on each route (we assume constant K,). Note that while the
first and second algorithms are designed for the general job shop problem, the third
is designed for the general job shop problem without re-entry. Sevast’janov shows the

following:

G' < K(PK?+ K — 2) Xpax

9Note that this is a statement regarding all of the possible problem instances. There exist many
instances that are scheduled optimally by some heuristics such the shifting bottleneck heuristic
10Gee Sevast’janov [50] for the original paper.

14



G < (K —1)(IK?+ 2K — 1) Xpax

G < (P +2)(I —1)Xpax

These results are important because the gap is O(1) with respect to the number of
jobs. This means that for R &~ J problems, an asymptotically optimal solution exists.
Nevertheless, the polynomial complexity of the solution and the dependence of the gap
on the number of machines, maximal processing time and the number of operations
may be problematic. See [6] for a discussion and numerical comparison. Note also that
Sevast’janov’s results do not contradict those of Williamson et al. [57]: Sevast’janov’s
results are asymptotically optimal only with respect to the number of jobs.

Jansen, Solis-Oba and Sviridenko [29] present a linear time approximation scheme.
Their algorithm partitions the jobs into three sets: big, small and tiny. The sets of big
and small jobs are set so that they have constant size. The algorithm then constructs
relative schedules for the big jobs; since the number of big jobs is constant, the total
number of relative schedules is also constant. In any relative schedule for the big jobs,
the starting and completion times of the jobs define a set of time intervals, into which
the small and tiny jobs are to be scheduled. The algorithm uses linear programming to
find a compact assignment of small and tiny jobs to these time intervals. The algorithm
then uses a novel rounding technique to reduce the number of jobs that receive fractional
assignments to a constant. Since only small and tiny jobs receive fractional assignments,
it is possible to use a very simple rounding procedure for them to get a non-preemptive
schedule without increasing the length of the solution by too much. This solution is not
feasible though, since in each interval there might be conflicts among the small and tiny
jobs. To achieve feasibility, the algorithm finds a feasible schedule for the small and tiny
jobs in each time interval by using one of Sevast’janov’s algorithms.

In [29], the authors show that by selecting properly the sets of big, small and tiny
jobs, it can be proven that the total length of the schedule is at most (1 + €)7°P*. All of
the steps of the algorithm can be performed in linear time except two of them: solving
the linear program and running Sevast’janov’s algorithm. Since the algorithm does not
solve the job shop problem exactly, the linear program isn’t to be exactly solved. They
use an approximation to the linear program. The algorithm then uses an elegant idea
of merging certain subsets of jobs together to form larger jobs to decrease the running
time of Sevast’janov’s algorithm to O(N). Thus they find an algorithm whose overall
complexity is linear in N. Note though that as expected by Williamson’s result, the

complexity is not polynomial in 1/e.

15



There exist many algorithms that use local search methods to approximate a solu-
tions for the problem. The algorithm by Van Laarhoven, Arts and Lenstra [53] is just
one example; this algorithm uses the method of simulated annealing't. The algorithm
presented by Dell’Amico and Trubian [16] and the algorithm presented by Nowicki and
Smutnicki [43] use taboo search methods'?. See [28] for a discussion regarding the various
tabu search, genetic algorithms and simulated annealing job shop scheduling techniques
that have been explored.

All of the above procedures were designed to solve the general job shop problem.
These procedures do not take into account the fact that the problem may be a high
volume R < J problem (as defined in Section 1.3). In Chapter 2 we present scheduling

heuristics that attempt to approximate an optimal solution to the R < J problem.

1.5 Real World Applications of the
Job Shop Problem

As stated in the beginning of this chapter, the job shop problems formulation lacks some
of the details that are required to accurately model a real world factory (transfer times,
set up times, etc ...). In addition, there is another important difference between job shop
problems and manufacturing scenarios that arise in industries: job shop problems are
finite horizon while real world factories tend to want to continuously work. Nevertheless,
studying and analyzing the basic bare models should serve as a basis for more efficient
scheduling in the real world.

Applications of the general job shop problem include scheduling of operations that
robots need to perform to complete a certain task and scheduling of processes in a con-
current computing environment. See [45] for a description of various other applications
of the general job shop problem

Applications of the high volume job shop problem, specifically the R < J case are
quite different. Solutions of this problem may be applicable to any mass manufacturing
settings in which there are many operations for each job and many jobs (products) that
share a common route. The semi-conductor industry may serve as an example. A typical
semi-conductor manufacturing plant (wafer-fab) features processes that require hundreds
of operations. In this case, the routes usually re-enter the same machine several times.

See [33] for attempts to model re-entrant lines.'3

HGimulated annealing is a random optimization method that combines elements of classical descent
methods and random walk optimization methods.

12 An introduction to the concept of tabu search methods may be found in [22].

13Gee Hilton [27] for a discussion regarding some more practical aspects.

16



Chapter 2

On-line Scheduling Heuristics

This chapter surveys, presents and summarizes scheduling heuristics that attempt to
approximate the optimal solution of the R < J problem. All of the heuristics presented
are of an on-line type (defined in Section 2.1). Some of the heuristics are based on the
optimal solution to the fluid approximation of the large job shop problem (presented
in Section 2.2). These are the fluid imitation algorithm (presented in Section 2.3), the
Dai-Weiss fluid heuristic (presented in Section 2.4.2) and several other fluid motivated
algorithms (presented in Section 2.4). We also present on-line heuristics that are simple
dispatching rules. These are the random dispatching rules (Section 2.5) and the buffer
priority dispatching rules (Section 2.6). Note that the terms algorithm, heuristic, rule
and policy are used interchangeably throughout the chapter.

2.1 On-Line Scheduling Algorithms

A scheduling algorithm is a procedure that generates a feasible schedule based on an
input job shop problem instance (see [20] for a formal definition of an algorithm). If one
was to use a scheduling algorithm to determine the order of operations of a job shop,
one could first execute the algorithm and then use the generated schedule to actually
run the shop.

An on-line scheduling algorithm is an algorithm that continuously monitors the state
of the job shop and generates scheduling commands as the job shop progresses. This
means that if one was to apply an on-line scheduling algorithm to a real world (physical)
job shop problem instance, one would have to continuously “consult” the algorithm while
the job shop is running.

Thus, an algorithm is called on-line if it is makes scheduling decisions in accordance
with the state of the shop as the job shop progresses over time. The following definitions

formalize the concept of an on-line scheduling algorithm:



Busy Machine : A machine that is currently working (performing some op-

eration) and may not be stopped.

Scheduleable Machine : A machine that is eligible and waiting for the algo-
rithm to make a scheduling decision regarding which job it is to process next.
It is required that the machine be idle (not a busy machine) for at least a
period of 0 time units. It is also required that at least one of the machine’s

buffers is non-empty.

Shop State : A description of the job shop at any time instance. The descrip-
tion may incorporate the location of each of the jobs, the duration that has
passed since each of the jobs has started processing and any other information

that is relevant for the proper operation of the on-line algorithm.

Scheduling Epoch : A time instance at which the shop state has been altered

and there exists at-least one scheduleable machine in the shop.

Schedule Command : A command given to a scheduleable machine regarding
which job to process from the available jobs in its buffers. The command

may also be of a voluntary rest command type, meaning not to do anything.

An on-line scheduling algorithm operates by monitoring (and possibly altering) the
shop state at each scheduling epoch. At each such epoch, a schedule command is passed
to each of the scheduleable machines. Once all of the scheduleable machines have received
schedule commands, the on-line algorithm hibernates until the next scheduling epoch.

We denote any algorithm that is not of an on-line type as an off-line algorithm.
Note that by defining a rich enough shop state, any scheduling algorithm may actually
be formalized as an on-line algorithm. For example, consider any off-line algorithm
presented in Section 1.4. Such an algorithm may be implemented as an on-line algorithm
by first generating a schedule when it is initially called (at the first scheduling epoch)
and storing it in the shop state. Now, when ever a scheduleable machine is waiting for a
schedule command, the algorithm dispatches the command based on the schedule stored
in the shop state.

The opposite is also true: every on-line algorithm may be implemented as an off-line
algorithm. This may be achieved by running a simulation of the the job shop problem
(as is done in this study). The output of the simulation is a feasible schedule generated
by the on-line scheduling algorithm.

This on-line, off-line duality is true only when all of the details of job shop problem

(processing times and such) are completely known prior to the execution of the job shop.

18



In practice, this may not be the case; some data may not fully be known or in some
cases only processing time averages may be known. In such cases, it is clear that using
an on-line algorithm is much more practical than using an off-line algorithm.

Note that in the scheduling literature, on-line algorithms are sometimes refereed to as
priority dispatching rules (see [28]). See [55] for a brief discussion regarding the benefits
of on-line scheduling algorithms in comparison to combinatorial optimization methods

and optimization in Markov decision processes.

2.2 Fluid Models

A fluid model is a mathematical model that describes the flow of fluid through a system
of buffers powered by pumps. In the context of job shop scheduling, each machine may
be viewed as a pump and each queue of jobs may be viewed as a fluid buffer. In a fluid
model, the jobs are not modeled as discrete entities but rather as a continuous stream.
Fluid models can be used to approximate both queueing systems (see [12]) and job shop
problems (see [4], [54] and [55]).

We denote the assumption that the jobs are a stream of continuous fluid as the
fluid relazation. The fluid relaxation is composed of the following assumptions: (1) The
randomness of the job durations is evened out and disappears. (2) A machine may
work on more than one job (stream of fluid) at a given instant, dividing up its effort.
(3) Machines may operate even though their buffers are empty, this is achieved by a
continuous flow of fluid through the machine.

In (1), we assume that that the time required to pump a unit of fluid through
buffer/pump (r,0) is m(.0). In (2) we allow machine 7 to divide its pumping efforts
between the buffers in C;. We denote the rate of flow out of buffer (r,0) (and through
the machine o(r,0)) at time ¢ by u(,)(t). We denote the amount of fluid in buffer (r,0)
at time ¢ by g(0)(t). We denote the amount of upstream fluid of buffer (r,0) at time ¢

by q?;‘,o) (t) :

o
Aoy () = D 4y (2)
i=1

We denote the initial conditions (state of the system in time 0) of the fluid model as

follows:

q(’”al)(o):Nr r=1,...,R
Uo(0)=0 r=1,...,Ro=2,...,K,

In addition we impose the following constraints':

(2.1)

1See [54], [6] or [7] for an explanation.

19



. _ t
3(2)1(75). - fg,n(o) Jo uirp)(s)ds (2.2)

Ur,0) (1) = Qo) (0) — Jo Ugro) (8)ds + J5 uro-1)(5)ds (2.3)
r=1,....Ro=2,... K, :
Y ro)ec; Miro)Uiro)(t) < 1
i=1,...,1 (2.4)
Uro)(t) 20 garo(t) >0
r = ,...,R 0= ""aKr (25)

There are several cost functions that may be minimized. Given a cost function we
define the fluid problem as follows: find measurable v, (t) that maintain the constraints
2.1 through 2.5 for all t while minimizing a given cost function. The problem may also
be formulated with a given time horizon: T' > 0. In such cases, the constraints are to be
maintained for the interval [0,7]. We shall refer to the functions, w0 (%), g0 (t) and
q(t,o) (t) that optimize the fluid problem as the fluid solution.

Note that it is sometimes more convenient to enumerate all of the buffers (r,0) to the
set of numbers £k = 1,..., K where K = Zle K,. Throughout the continuation of this

report, we may refer to a buffer as either buffer (r,0) or buffer k.

2.2.1 Fluid Solution of C,,,,

In [54], Weiss showed that the fluid model for the Cy,,x objective function is easily solved.
Using the notation of the previous section, the C\,., objective for the fluid model may

be written as follows:

min /0 "1 00(t) dt (2.6)

Here 1,40(¢) is a function that equals 1 for times t during which there exists a non-
empty buffer; it equals 0 for all other t.

Each of the machines (: = 1,...,I) must work for a duration of at least

Ti= Y Modrn(0)-
(T‘,O)EC;’

Thus we obtain the machine lower bound 7™ = max;—_1,.. 1 T;.
It can be seen ([54]), that by using the constant flow rates

20



4r,1) (0)
T*
for all ¢ € [0,7%], the system is drained by time 7. Since this is a feasible solution

U(r,0) (t) = (27)

that attains the lower bound, it is an optimal solution. The amount of upstream fluid
in the fluid solution obtained by the flow rates 2.7 is

t

- =) (2.8)

q(tm) (1) = q(t,1)(0)(1
2.2.2 Weighted Flow Time Minimization by Means
of a Fluid Model

As stated in the previous chapter, the WIT objective may sometimes be more suitable
than the Cp., objective. For the fluid model and for a finite time horizon 7', the WIT

objective may be written as follows:

min | " wt) dt (2.9)

Here w is a K dimensional vector of weights and ¢(t) is the vector of buffers g/(t).

Finding the optimal solution for the fluid problem using this objective is not as trivial
as for the C.x objective. The problem may be formulated as a separated continuous
linear program (SCLP) problem. SCLP problems have been discussed by Pullan ([46]
and [47]). A finite algorithm for solving SCLP is introduced by Weiss [56]. See [56]
for a formulation of the job shop problem as an SCLP problem and a solution to the

problem?.

2.3 The Fluid Imitation Algorithm

With the presence of optimal solutions for the fluid approximation of the job shop prob-
lem (either Cyax or WIT), it is natural to define a fluid imitation algorithm (FIA). Such
an algorithm attempts to imitate the optimal fluid solution.?

The FIA has the following components:

Q™ (t) : A K dimensional vector where the k’th element represents the num-
ber of jobs (discrete) that still have to pass through buffer k (the number of

upstream jobs).

2Bertsimas, Gamarnik and Sethuraman [5] propose an alternative approximation algorithm.
3This algorithm was previously called Greedy Fluid Algorithm (GFA) (see [6] and [7]).

21



gt (t) : A K dimensional vector where the k’th element represents the amount
of fluid that still needs to pass through buffer k& (the amount of upstream
fluid).

Li(Q*(t),q"(t)) : The “lag” of buffer k. This function specifies by how much
the real job shop (specified by Q) is lagging behind the optimal fluid solution
(specified by q) in buffer k. Note that the value of Lg(Q"(t),q"(¢)) is an
ordinal amount: for every time instance t, it is comparable for all k having
the same o (k).

Tie Breaking Rule : In cases where there is more than one buffer that reaches

the minimal lag, a well defined rule that breaks the tie is to be defined.

The FIA on-line scheduling algorithm is specified as follows: At each scheduling
epoch issue a schedule command to each scheduleable machine 7, in the following manner:
Calculate the lag Ly for all non-empty k € C}, then select the buffer £ that maximizes
the lag (argmax Lg). Schedule the next job on argmax Lg. Use the tie breaking rule if
needed.

Note that the shop state required for the FIA is Q@ and ¢*.

In all of our examples we will use a lag function of the following type:

Qi —a ()

Le(QF (), (1)) ¥

0 (2.10)

Below are some notes regarding the FIA:

e See [6] for a comparison of the lag function 2.10 with several other alternatives.
e The shop state required for the FIA is Q1 and ¢*.

e Observe that there should be some rule that decides what to do when the argmax

Ly, is not composed of a single buffer (a tie breaking rule).

e We call an FIA algorithm that uses the C,, fluid solution presented in Section
2.2.1 the Ciyax FIA. Note the fluid solution is only specified for the range [0, 7*].
Nevertheless, an implementation of Cy,,x FIA may take longer than 7*. We thus
define ¢7(t) to be 0 for T* < t. For such scheduling epochs, the tie breaking rule is

often used because the lag is often infinity.

e In Section 5.3 we continue discussion of the C,., FIA when we analyze the simu-

lation results.

22



2.4 Fluid Motivated Pipelining Schemes

We shall now describe a series of results regarding pipelining algorithms for the R < J
problem (or slight variants of it). Pipelining (to be fully explained shortly) is a cyclic
scheduling scheme that allows a high utilization of all of the machines during each cycle.
In Section 2.4.1 we describe the algorithms by Boudoukh, Penn and Weiss [7]. In Section
2.4.2 we describe the results obtained by Dai Weiss [14]. Finally in Section 2.4.3 we
describe the heuristics by Bertsimas and Gamarnik [4]. What makes these algorithms
important is that there is no clear indication in the theory that a problem with many jobs
and a small number of routes is easier to solve optimally than a problem with the same
number of jobs in which all of the jobs follow different routes. Thus if we can find an
asymptotically optimal scheduling rule, we will probably be able to do much better than
attempting to schedule the problem using combinatorial optimization methods. The
algorithms that we describe show that it is relatively easy to obtain good approximate
solutions to such problems®.

Pipelining is an abundant concept within the theory and practice of microprocessor
architecture. To pipeline means to split up a job (a calculation in the context of micro-
processors) into several operations; each performed at a different machine (or unit) of
the factory (or microprocessor). Several jobs of the same type may now be repeatedly
sequenced. Once the pipe is full (all of the operations have ready jobs), the factory (or
microprocessor) may begin to cycle with each cycle length being the duration of the
bottleneck operation. Now for a large amount of jobs the scheduling scheme is efficient
because the bottleneck machine is working almost all of the time (it is not working during
the initial and final phases of the scheduling scheme).

In itself, pipelining is not a difficult concept, nevertheless there are difficulties and
challenges that are to be handled. The difficulties that arise in the computer architecture
setting are sequencing, control and overhead problems (see [34] and [26]). In an opera-
tions research setting, the difficulties that arise are problems of inaccurate (or random)
processing times for each operation.

It does not take a lot of imagination to see the connection between pipelining and
the fluid solution for C\,,, presented in Section 2.2.1. In the fluid solution, each of the
machines/pumps is operating at the rate that keeps the bottleneck machine/pump fully
busy, this is what pipelining is all about.

In Figures 2.1 and 2.2 gantt charts of a simulation run of a job shop with 3 machines

4The algorithms that we describe are very similar: they are all pipelining schemes that are moti-
vated by the optimal fluid solution for Ci,ax, presented in Section 2.2.1. It is the the theorems and
corresponding proofs that distinguish the three papers that we cover ([7], [14] and [4]).

23



Figure 2.1: Pipelining: deterministic problem

Figure 2.2: Pipelining: stochastic problem



are displayed®. The gantts show the execution of a job shop when scheduled by a
pipelining scheme. Each of the 3 red and blue rows in the chart show the evolution of
machines 1, 2 and 3 (from top to bottom) over time. A red time interval means that
the machine is working, a blue time interval means that the machine is idle. For this
specific problem instance, machine 3 is the bottleneck machine. Notice that except for
a duration of about 20 time units near the start of the schedule, the bottleneck machine
is constantly working.

Until a time of a bit over 50, the pipeline is still being “filled”, at time 50, the job
shop began to cycle such that the bottleneck machine is constantly working. Notice that
in the deterministic problem (Figure 2.1) during each cycle, machines 1 and 2 work for
the exact same time intervals. For the stochastic problem (Figure 2.2), the processing
times are random and thus the duration of work within each cycle is random. Thus in the
stochastic case there is a possibility that the bottleneck machine will “starve”. In Section
2.4.2, we summarize an important probabilistic result that states that the probability of

the bottleneck machine starving is small for high volume job shop problems.

2.4.1 Pipelining the R < J Proportional Problem with C.V.=0

In [7], Boudoukh, Penn and Weiss describe a scheduling algorithm for the R < J pro-
portional problem with deterministic (C.V.=0) processing times®. The formulation of
the algorithm assumes that there are integer constants, py,...,p, such that N, = p.N.
The formulation also adds operations with 0 processing times at the end of some of the
routes such that all routes have the same number of operations X = max, K,. Since
all of the jobs that share an operation (r,0) have an identical processing time for that
operation we can denote X, 0)(j) = X,0)- A cycle time C, is defined by

¢ = max (T’o)zeq PrX(r,0)

The algorithm defines a complete cycle to be a cycle in which each operation (r,0) is
performed on exactly p, jobs. Thus the duration of a complete cycle is C'. A partial cycle
is defined such that if at the initial time of the cycle, t, Q) (t) < p, then operation
(r,0) is not performed throughout the cycle.

The algorithm now operates by performing K — 1 partial cycles that build safety
stocks, then performing N — (K — 1) complete cycles that utilize and maintain the safety

stocks and finally performing K — 1 partial cycles that empty the safety stocks.

5These were generated by the JSS (see the next chapter).
6Several other algorithms are also described in [7].

25



Since the number of partial cycles at the start and the end of the schedule is indepen-
dent of N, and since the bottleneck machine is fully utilized throughout the N — K +1
partial cycles the heuristic’s gap is O(1)".

2.4.2 Probabilistic results: The Dai-Weiss Fluid Heuristic

Dai and Weiss [14] treat the R < J problem with random processing times and a single
bottleneck machine. They assume that the processing times of jobs at each operation
(r,0) are independently identically distributed with some general distribution F{, ;. The
analysis in [14] also assumes that F{,,) possesses exponential moments (the MGF exists
in an interval around 0).

The authors present an algorithm for a kitted job shop problem. This is a job shop
problem in which all of the routes have been concatenated into a single long re-entrant
route. The kitted problem has the same machine lower bound as the original problem.
Since the kitted problem is the original problem plus an addition of constraints, any
solution to the kitted problem is also feasible for the original problem.

Here is the algorithm:

Phase 1 : Creation of safety stocks of Sy jobs in buffer k, for all of the buffers.
S, is of order O(log N).

Phase 2 : Performing N’ complete processing cycles such that N' = Q (¢ 7)
where ¢; is the completion time of phase 1. In each cycle, each machine per-
forms one operation on each of its buffers. The bottleneck machine performs
the processing of the operations by a cyclic order such that each operation
starts as early as possible (the bottleneck machine is only idle when the next
buffer according to the cyclic order is empty). All other machines start oper-
ation on cycle /, not before the bottleneck machine has started the I’th cyclic

cycle. In this manner, the bottleneck machine sets the pace.

Phase 8 : After the completion of the N’ complete cycles, it is not possible
to perform any additional complete cycles. At this phase, the system is to

“empty” using any feasible non-idling policy.

If the time that is required to complete phases 1 and 3 is O(log N) and if during
phase 2 the bottleneck machine is constantly working, then the gap is O(log N). The
safety stocks of size O(log N) were designed such that the bottleneck machine hardly

"In theorem 3.3 in [7], the authors show that T — NC < (K —1)C. Note T* = NC.

26



starves. While there is a possibility that this isn’t the case (since the processing times
are random), Dai and Weiss prove the following: there exist constants ¢; > 0 and ¢y > 0

such that when using constant safety stocks Sy = [colog NV1:
1
P{G(N) <c logN} >1—- N

2.4.3 Bertsimas and Gamarnik’s Heuristic

Bertsimas and Gamarnik [4] propose a heuristic called the synchronization algorithm.
Upnaz is defined as as the maximum of the workloads on all machines when the multiplicity
is 1. They also use a constant € real value (to be defined soon). The algorithm works
in time intervals of length €2 + U,,4;. In each such interval, each machine is to schedule

a fixed amount of jobs from route r. This amount is denoted by a,:

N,nQ1
T*
If at the start of any interval, the number of jobs of route r at any of the machines

ar = [ (2.11)

is less than a, then the machine is to process only the jobs that are available and idle

until the start of the next interval.

It is shown that when Q = \/ T*Upaz/ max, K, the heuristic is asymptotically optimal
with a gap of O(v/N). Note that while Dai and Weiss have a O(log N) gap, the Bertsimas
and Gamarnik results relates to the worst case (minimax) while Dai and Weiss’s approach
is probabilistic. Also note that this result allows the >~ N, to increase with any arbitrary
mix of Ny,..., Ng.

2.5 Random Dispatching Rules

In this section we discuss non-deterministic on-line scheduling rules. These are the
random buffer scheduling rule (RBSR) in Section 2.5.1, the proportional random buffer
scheduling rule (PRBSR) in Section 2.5.2 and the random job scheduling rule (RJSR)
in Section 2.5.3.

2.5.1 The Random Buffer Scheduling Rule

The random buffer scheduling rule (RBSR) is very simple: at each scheduling epoch and
for each scheduleable machine, enumerate all of the non-empty buffers for the specific
machine and select a buffer at random (using a equal probability for each buffer). After

selecting a buffer, schedule the next job from the selected buffer.

27



During the design phase of the Job Shop Simulation Project (see Chapter 3) we used
this easy to program rule in order to perform initial tests of the software. Surprisingly
we found that it performs quite well (it appears to be asymptotically optimal) for a large
class of problems, see Chapter 5 for details.

We believe that this rule should be used as a benchmark for heuristics that attempt to
optimize C\,,, in the R < J problem. It does not seem reasonable to promote heuristics

that are extremely complicated and are unable to perform better than this rule.

2.5.2 The Proportional Random Buffer Scheduling Rule

The previous rule (RBSR) used equal probabilities to decide from which buffer/operation
to schedule at each epoch. We now propose a rule, the proportional random buffer
scheduling rule (PRBSR), that uses a probability distribution that depends on the initial
amount of jobs in each route (XV,), giving a higher probability to buffer with a higher
corresponding NV,. The reasoning behind the rule is this: “give buffers that belong
to routes that have more operations to perform a higher chance of being selected“.
The implementation is as follows: At each scheduling epoch t and for each scheduleable

machine calculate:

e 5 N, (2.12)
(T,O)Eci Q('r,o) (t)>0

Now select a buffer at random using probability N, /A for buffer (r,0). After selecting
a buffer, schedule the next job from the selected buffer.

Note that for problem instances in which N, are equal, this rule is identical to the
RBSR rule.

2.5.3 The Random Job Scheduling Rule

The random job scheduling rule (RJSR) is as simple as it sounds. This scheduling rule is
also known as service in random order (SIRO), see [44]. Under this rule, each scheduleable
machine i, chooses a job at random (with equal probability) from all of the queued jobs.
Note that for the R < J case, this rule may also be implemented as follows: select an
operation/buffer at random by using the probability
Qo) (t)

Y(ro)ec; Qro)(t)

for buffer (r,0). Then schedule the next job from the selected buffer.

This scheduling rule is somewhat similar to a Serve the Longest Queue Scheduling

Rule since it gives a higher probability to queues/buffers with more jobs.

28



Remember that in the R &~ J case, the term buffer is irrelevant because each of the

jobs performed on machine i, is unique. In this case the RJSR and RBSR are the same.

2.6 Buffer Priority Dispatching Rules

Buffer priority dispatching rules are a class of scheduling rules that are as simple as the
random buffer scheduling rules that were discussed in the previous sections. A buffer

priority dispatching rule uses a priority function
7 :{(r,0): (r,0)eCii=1,..., I} —m N
to assign a priority to each buffer. The priorities are unique:

(r1,01) # (r2,09) = 7((r1,01)) # 7((r2,02))

The priorities are assigned to the buffers have an ordinal meaning: we say that a buffer
has a high priority when 7 is a small integer®. The on-line scheduling rule compares all
of the non-empty buffers on each scheduleable machine and schedules the buffer with the
highest priority.

Two special cases of buffer priority scheduling rules are last buffer first serve (LBFS)
and first buffer first serve (FBFS).

Under LBFS the priorities maintain the following:

7T((’I"1, 01)) > 7T((7'2, 02)) if 01 < 09
. (2.13)

w((r1,01)) > w((re,00)) if 01 = 05 and 71 > 19
Thus operations that are closer to the end of the route are given higher priority and
ties are broken by using the route number. The FBFS rule does the opposite, operations

that are near the start of the routes are given higher priorities:

m((r,01)) < 7((re, 02)) %f 01 < 0y (2.14)
7w((r1,01)) > w((re,00)) if 01 = 05 and 71 > 79

Note that for the re-entrant line (a high volume job shop problem with a single route
and more operations than machines), the LBFS and FBFS problems are defined using
the first inequality only. These buffer priority disciplines have been studied within the

context of multi class queueing networks, see [33], [12] and [13].

8This notation is adapted from [13].

29



Chapter 3

The Job Shop Simulation Project

With the lack of theoretical results (theorems) regarding answers to some of the questions
that we introduced in the overview (page 1) we set out to perform a simulation study’.
After investigating the possibilities of using professional simulation software and failing
to find a software package that met our needs, we designed and implemented the Job
Shop Simulation Project (JSSP), a software package designed specifically for simulation
of R < J job shops driven by on-line heuristics?.

In this chapter we describe some of the aspects of the JSSP from a software design
perspective. In Section 3.1 we describe the use cases and configurations of the JSSP.
In Section 3.2 we present a short overview of the design of the JSSP. In Section 3.3
we discus some of the issues regarding the implementation of the simulation kernel. In
Section 3.4 we describe how the JSSP is used to create a database of simulation results.
Finally in Section 3.5 we present the Job Shop Simulator (JSS), this is the front end GUI
(Graphical User Interface) that may be used for interactive experimentation of on-line

algorithms for job shop scheduling.

3.1 The Use Cases and Configurations of the JSSP

The JSSP is designed for the following use cases®:

1. Perform large scale simulation studies regarding a wide range of on-line scheduling

heuristics using a variety of job shop problem instances and varying multiplicities.

2. Act as a teaching and/or self exploring aid regarding scheduling methods of job
shop problems.

1See [8] for an introduction to the concept of computer simulation.

2The JSSP may also simulate R = J job shops, but it does this inefficiently. It can be done by
treating the R =~ J shop as a R < J shop with only one job on each route and many routes.

3For a description of the term use case and other software design terms, see [18].



3. Allow for neat visual presentation of new scheduling heuristics in-front of both

professional and dilettante audiences.

4. Allow for visual demonstration of scheduling heuristics through the Internet.

The JSSP has two components: the simulation kernel and a front end (there are
several types of front ends). The simulation kernel is the engine that performs the
discrete event simulation of job shop problems. The front end is the application that
may be used by users to explore the dynamics of job shop problems graphically or to
control the simulation experiments. The front end is available in several configurations,
one of which is the Job Shop Simulator (JSS) (see Section 3.5 for details) another is
a simple batch application (not covered in this chapter) and a third is a Mathematica
notebook that is connected to JAVA through J/Link (see [58] and Section 3.4).

The JSSP is packaged in three configurations:

1. JAVA Classes that are not specifically bound to any certain application. These
are the simulation kernel classes. These classes may be used by any ”driver”
application. They are used for "heavy duty” simulation of job shops. These classes

constitute the simulation kernel and may be bound to any front end.

2. A stand alone application, the JSS. This application may be easily installed and
run on almost any machine, Linux, MS-Windows or Solaris. It is equipped with a
robust GUI. It is not designed to be used for multiple heavy duty simulations but

rather for exploratory and demonstration purposes.

3. An applet (this is also the JSS in applet form). An applet is a JAVA program
running inside an Internet browser. The applet’s GUI is almost identical to the
application’s GUI. It runs through an Internet site, and may easily be configured

by a web-site builder to sit on any Internet page.
All three configuration may be down-loaded or run from this Internet site:

http://rstat.haifa.ac.il/~yonin/thesis/jobshopsim/shopsim.html

3.2 An Overview of the Design of the JSSP

In this section we present an overview of the implementation of the software. Note that
an understanding of this section may require some knowledge of both object oriented
design (OOD) and the JAVA language. For an introductory book on both subjects,

31



see [17]. For a more advanced book regarding OOD and the UML (Unified Modeling
Language) see [18]. For a classic book on design patterns see [19].

The JSSP is designed and coded in a completely OO manner using the JAVA language
and JAVA API (see [23], [17] and [21]). Several reasons were the driving force for writing
the code in JAVA (as opposed to C++):

1. JAVA allows for extremely fast application development.
2. JAVA allows for multi-platform compatibility.
3. JAVA allows for applets.

The main draw back in JAVA is that it is supposedly slow, (it is interpreted rather
than compiled). Nevertheless it should be noted that the computational intensive sec-
tions of the software are actually compiled during runtime (using JAVA Hot-Spot).

The JSSP spans around 100 classes and interfaces. These classes are packaged in
several packages:

e package haifa.shopsim - Contains the fundamental classes and interfaces that

define the framework of the simulation.

e package haifa.shopsim.fastkernel - Contains the classes that implement the

simulation kernel?.

e package haifa.shopsim.lab - Contains R.V. generation, statistics collection, and

batch execution classes.

e package haifa.shopsim.algorithms - Contains implementations of specific schedul-

ing algorithms.

e package haifa.shopsim.UI - Contains, the classes that implement the GUI of
the JSS.

e package haifa.shopsim.UI.shopanim - Contains the classes that are relevant for

the animation of the job shop.

e package eduni.simdiag - Contains the gantt chart classes (imported from Fred

Howell’s simjava, see [41]).

4This package is the successor of the haifa.shopsim.kernel package that was used in earlier versions
of the JSSP, see Section 3.3 for details.

32



We now expand on the contents of the haifa.shopsim package (the other packages
are not covered in this section). The haifa.shopsim package contains the basic building
blocks of the JSSP. It defines the following classes/interfaces:

e interface ShopData - The information regarding the job shop problem being
simulated. Specifies the routes of the job shop and the mean processing times in
each of the operations on each route. There are several classes that implement
this interface. Some are classes that read the shop data from a text file using a
predefined format, the .jbs format (see Appendix C for a specification). Others
are used to automatically generate random job shop problem instances (such as
R =~ J problems).

e interface ShopState - The information of the job shop being modeled at a certain
point in time. Specifies, the simulation time, the state of each of the machines (idle
or working on a job from a certain buffer), Q(¢) and Q" (¢). This class is part of a
scheme that uses the observer design pattern (as specified in the Design Patterns
book [19]). As specified in the observer pattern it is the subject; it notifies observers

(statistics collectors and such) whenever changes to the state occur.

e interface ShopAlgorithm - Looks at the ShopState and decides what to sched-
ule. This interface uses the command design pattern [19] with the whatNow()

method as ezecute().

e interface ShopSimulation - Maintains an event queue and data structures that
represent the job shop (see [49] for a review of discrete event simulation tech-
niques). Has the responsibilities of starting and stopping the simulation, setting
the multiplicity of the problem and selecting a random number generator. Note
that a single class may implement both this interface and the ShopState interface

(such is the FastShopRun class that is explained in Section 3.3).

e class ShopCommand - Returned by an algorithm to the ShopSimulation whenever
the ShopSimulation queries the algorithms regarding what to schedule. (This is
the return type of the whatNow() method). The class holds the information of the
schedule command as specified in the definition of an on-line algorithm in Section
2.1.

In order for a simulation run to occur, instances of classes that implement the above
interfaces are to be created and properly linked (this is the responsibility of the front

end which may be either GUI, a batch application or Mathematica). As the simulation

33



runs, the ShopSimulation object advances the simulation time in discrete steps, jumping
from event to event (scheduling epoch to scheduling epoch). As the time progresses, the
ShopState object is updated. At every scheduling epoch the ShopAlgorithm is used to
decide what to schedule on each scheduleable machine. The decision that the shop algo-
rithm makes, is based on the ShopState (the ShopAlgorithm has a reference to it). The
scheduling command is then returned via a ShopCommand to the ShopSimulation. The
ShopSimulation interprets the command, and updates the state. When the ShopState
is updated, it notifies all of its listeners (observers); these may be statistics collectors,
animations or gantt charts. The process continues in this manner until the simulation is
complete.’

The above classes/interfaces are the building block of the simulation environment
and are mandatory for a simulation to occur. In addition the haifa.shopsim package

also defines the following:

e interface ShopChangeListener - This interface is implemented by whatever
class is interested in listening to changes of the shop. It is part of a design that
uses the observer design pattern [19]. The classes that implement this interface
are the statistics collection classes and the graphics visualization classes. Thus as
the simulation runs, every change to the ShopState (taking the role of the subject
as specified by the observer pattern) causes a notification to the listeners. Each

ShopChangeListener is notified via the shopChanged () method.

e class ShopChangeEvent - Fired to all ShopChangeListener objects when the
state of the ShopState changes. This is the parameter of the shopChanged()
method that is specified by interface ShopChangeListner.

e interface PostRunAction - Specifies the doAction() method (uses the command
design pattern). This method is invoked when the simulation is complete. It may

do one of several actions: save data to disk, print results to screen etc. ..

The above is only a shallow summary of the backbone of the JSSP, for more in-depth
information refer to the source and its documentation in Appendix D. It should be noted
that the above specifies a framework for simulation of a manufacturing system that is
not necessarily a job shop. If one was interested to transform the JSSP into simulation
software of an open shop or a DAG shop, the same framework may be used.

5Tt should be noted that this is very similar to the definition of an on-line algorithm as presented in
2.1.

34



3.3 Implementing the Simulation Kernel

We shall now outline the manner in which the JSSP’s simulation kernel operates. The
discussion will focus on the two important classes that are used: EventQ (Section 3.3.1)
and FastShopRun (Section 3.3.2); both are from the haifa.shopsim.fastkernel pack-
age. A review of some of the concepts of discrete event simulation may be found at [8],
[11], [24], [30] and [49].

Before describing the implementation of the haifa.shopsim.fastkernel package,
it should be noted that it is a “second attempt”. It was only created after exten-
sive experimentation with its predecessor, the haifa.shopsim.kernel package. The
haifa.shopsim.kernel package used a set of simulation classes written by Helsgaun
[25] and packaged in a package named javaSimulation. Helsgaun’s package uses mul-
tiple threading to implement co-routines that allow to program using process-based
discrete event simulation techniques in JAVA. Helsgaun based his work on the SIM-
ULA programming language and the discrete event simulation capabilities that it offers
(see [8] for a review of SIMULA). While it was very straight forward to program us-
ing javaSimulation, the simulation ran at an extremely slow speed (compared to the
haifa.shopsim.fastkernel package). The slow speed is clearly attributed to the high
overhead caused by thread synchronization that is handled by the JVM (JAVA Virtual
Machine) when executing multiple threads. In [25], Helsgaun explains how he imple-
ments the co-routine classes that allow the user to use a process-based technique and

why the process based approach is so slow.

3.3.1 The Event Queue

The EventQ class from the haifa.shopsim.fastkernel package implements a simple
queue data structure. The queue is implemented by using a bi-directional linked list
where each node (represented by an Event object) designates a simulation event. The
data that is stored in an Event is a machine number (int) and a time (double). Each
event signifies that something is due to occur at a specific machine at the specified time.
If the Event(Q is empty (has no events), then the simulation is complete. Note that the
EventQ may be inhabited by several events with the same time as well as several events
with the same machine number.

We now briefly discuss the important methods that are supplied by EventQ. These

methods are put to use by the FastShopRun class as specified in the next Section:

e double getNextTime() - Returns the time of the next Event. Returns -1.0 if the
EventQ is empty.

35



e double getMachineTime(int i) - Returns the earliest time that machine i is

scheduled. Returns -1.0 if the machine is not scheduled.

e int [] getNextMachines() - Returns an array of machine indexes representing
the machines that are scheduled at the next earliest time. Often, this array contains
only one machine index. Returns null if the EventQ is empty. In addition to
returning the machine indexes, invocation of this method removes all of the events

with the next time.

e void scheduleMachine(int i, double t) - Schedules a new Event. The Event

is scheduled for machine i at time t.
e void removeMachine(int i) - Removes all of the events for machine i.

e void removeMachine(int i, double ut) - Removes all of the events for machine

i that have a time that is smaller or equal to ut.

3.3.2 Implementing the Heart of the Simulation Kernel

We now discuss the implementation of the FastShopRun class. This class is the “heart”
of the simulation kernel because it contains the logic and data structures that maintain
a correct image of the job shop as the simulation runs. Below is a skeleton of the class’s

source code:

import haifa.shopsim.*;

public class haifa.shopsim.fastkernel.FastShopRun
implements haifa.shopsim.ShopSimulation, haifa.shopsim.ShopState

{

protected ShopData shopData;

protected ShopAlgorithm shopAlgorithm;

protected haifa.shopsim.lab.ProblemSizeChooser problemSizeChooser;
protected haifa.shopsim.lab.RandomTimeMaker randomTimeMaker;

protected EventQ eventQ;
private Machine [] machines;
private Buffer [] firstBuffers;
private int [] finishedJobs;

public void go(O){...}
private void setUp(){...}
private void updateMachines(int [] indexes){...}

private void performSchedulingCommand (ShopCommand sc){...}

private class Machineq{...}
private class Buffer{...}

As may be seen, the FastShopRun class implements both the ShopSimulation in-
terface and the ShopState interface. The go() method is the important method that

36



is specified by the ShopSimulation interface and we discuss its implementation be-
low (it makes use of the three private methods: setUp(), updateMachines() and
performSchedulingCommand()). Each call to go() by the front end, causes another
simulation run to start. While we do not discuss the details of the implementation of
the ShopState interface, it should be noted that there are dozens of data members and
methods involved.

As may be seen, there are references to a ShopData object and to a ShopAlgorithm
object as explained in Section 3.2. There are also references to a ProblemSizeChooser
and RandomTimeMaker objects. These are used to select the initial number of jobs on
each route (at the start of each simulation run) and to generate random processing times
(every time a job is scheduled) respectively. It should be noted that the method specified
by class RandomTimeMaker to get the processing time is getTime (double mean).

There is also a reference to an EventQ class. The EventQ is the “god” that tells
the simulation what should happen next and what is the current time (see the previous
section). There are two types of inner classes defined: Machine and Buffer. For each
machine in the job shop, the FastShopRun keeps a reference to Machine object in the
array machines. For each route, it keeps a reference to the first buffer in the route in
the array firstBuffers (the buffer is represented by a Buffer object). Finally for each
route there is an entry in the array finishedJobs. The values in this array specify how
many jobs have passed through the corresponding routes.

As the FastShopRun object is constructed, > | K, Buffer objects are created and
I Machine objects are created. We do not specify the details of these inner classes here
but we do mention that all of the Buffer objects on each route are linked to each other
in a linked-list fashion. In addition all of the buffers that belong to a certain machine
are referenced by that machine. Let us also mention that each Buffer object has an

int numInQ data member; it counts the number of jobs in the buffer®.

6The FastShopRun class maintains the same information in many places (it is not minimal). This
is to allow for faster execution. For example, it contains a java.util.HashMap object that maps each
buffer to an integer that specifies the number of jobs in this buffer (this information is redundant given
the discussed numInQ data member but is still useful). See the source code and its documentation for
more details.

37



We now discuss the operation of the go() method. A skeleton of its implementation

is given below (many details are omitted):

1 public void go(){

2 setUp();

3 int [] wakingMachines=null;

4 ShopCommand sc=null;

5 double time;

6 while(true){

7 time=event(.getNextTime();

8 if (time==-1.0)

9 break;

10 wakingMachines=event(.getNextMachines();
11 updateMachines(wakingMachines) ;

12 for(int i=0;i<wakingMachines.length;i++){
13 sc = shopAlgorithm.whatNow(wakingMachines[i]);
14 performSchedulingCommand(sc) ;

15 }

16 T

17 postRunAction.doAction();

18 }

It may be seen that the go() method enters a loop at line 6 that is only exited
when the event(Q is empty (see previous section). Each iteration of this loop (lines 6-16)
implies a discrete jump in the simulation time. In line 10 the next machines are received
from the eventQ and in line 11 the corresponding machines are updated by the private
method updataMachines(). The inner for loop in lines 12-15 initiates calls to the
shopAlgorithm’s whatNow() method. The command is executed and the data structures
of the FastShopRun object are updated in the private perfromSchedulingCommand ()
method. See the source code for the implementation of the private methods.

In addition to the main while loop (lines 6-16), we should note the call to the setUp ()
method prior to the loop, and the call to the doAction() method after the loop. The
setUp () method ensures that the data structures of the simulation are set up properly at
simulation time 0.0. This includes communication with the ProblemSizeChooser object
that enables selecting and and setting the number of jobs on each route (XN, ) accordingly.
The call to the doAction() method which is made after there are no more simulation
events, is in accordance with the discussion of the PostRunAction class in Section 3.2.

Note that the FastShopRun class implements the ShopState interface and thus acts
as a subject of the observer pattern. This implies that throughout the go() method and
the private methods that it uses, ShopChangeEvents are fired at all of the listeners. See

the source code for these omitted details.

38



3.4 Collecting and Recording Results in
the Simulation Results Database

As specified by the first use case in Section 3.1, the JSSP is designed to perform large scale
simulation experiments. We now discuss the details. In Section 3.4.1 we describe how the
RichStatisticsCollector class is used to collect statistics while the simulation runs.
In Section 3.4.2 we describe the format in which the RichShopStatistics object that is
generated by the RichStatisticsCollector is written to a database. The information
presented here serves as a preview to Chapter 4 in which the actual simulation runs that
were performed are described.

When one wants to use the JSSP to perform a simulation experiment, a proper front
end is required. For the purpose of this study, we used Mathematica (see [58]) as a front
end. By using J/Link, a Mathematica add-on that allows connectivity to a running
JVM, we were able to instantiate objects from all of the required classes and control the
simulation by means of a Mathematica notebook. We then used Mathematica utility
functions to write the results in a convenient format to the simulation results database
(as specified in Section 3.4.2).

3.4.1 Collecting Statistics

The RichStatisticsCollector is a ShopChangeListener that collects data regarding
the execution of simulation runs. This means that as the shop runs, ShopChangedEvents
are fired by the ShopState and received by the RichStatisticsCollector.

The RichStatisticsCollector monitors the execution of a run from start to finish
and generates an instance of a RichShopStatistics at the end of each run. Both
the RichStatisticsCollector and the RichShopStatistics classes belong to the
haifa.shopsim.lab package®.

We first describe the data that is written in a RichShopStatistics object and
then describe how the RichStatatisticsCollector uses the information gathered from
incoming ShopChangedEvents to monitor the execution of the shop. This is the data
that is stored a RichShopStatistics object’:

e Machine Finish Times - For each machine, this is the time at which it finished all

"We also used an additional/alternative front end, the BatchRunner class from the
haifa.shopsim.lab package (not documented in this Chapter).

8The word Rich prefixes the names of these classes because they derive from more basic classes that
have the same names without the Rich prefix and limited functionality.

9There is also some additional data that is stored in RichShopStatistics objects. It is data that is
mainly used for debugging.

39



of the operations that it had to perform (from this time onward, the machine is

idle). Note that the maximum of these times is equal to Cyyax.
Total Flow time - This is the WIT objective, calculated with a weight of 1.

Machine Work Times - For each machine, this is the time during which it was

actually working.
Machine Rest Times - For each machine, this is the time during which it was idle.

Machine Starve Times - For each machine, this is the starve time (as described in
Section 1.2.1).

Machine Voluntary Rest Times - For each machine, this is the voluntary rest time

time (as described in Section 1.2.1).

Class, Algorithm and Multiplicity - Information that describes how the run was
configured. This includes a name of the . jbs file, the type of algorithm, the type
of R.V. used and the N, values.

The RichStatisticsCollector class updates the values for the above data as the

simulation executes. With every ShopChangedEvent that is received, more “clues” are

revealed and more is known. These classes are all subclasses of the abstract class

ShopChangedEvent. They are fired by the ShopState during the execution of the simu-

lation:

ShopStartedEvent

ShopFinishedEvent

MachineStartedEvent (specifies machine).
MachineFinsihedEvent (specifies machine).
JobFinishedEvent

WillingRestStartedEvent (specifies machine).

The names of the classes are clear enough such that they explain when each of them

is fired!®. The first event that is fired in every run is a ShopStartedEvent and the

10The WillingRestStartedEvent is fired whenever the ShopAlgorithm issues a woluntary rest
command.

40



last event is the ShopFinishedEvent. For each machine, the MachineStartedEvent
and MachineFinishedEvent come in consecutive matching pairs. Thus by listening to
these events, the RichStatisticsCollector class has enough information to generate

a RichShopStatistics object that contains the information that was described above.

3.4.2 The Simulation Results Database

We now describe the simulation results database (SRDB). This is a collection of text
files that spans more than 30 MB and contains results of nearly 50,000 simulation runs'!
that were performed (we enumerate these runs in Chapter 4). After executing each of
the simulation runs, the contents of the RichShopStatistics object that was created
by the RichStatisticsCollector was written to the SRDB.

The SRDB is an amorphous collection of text files that contain run entries. Each run
entry describes the results of a single simulation run. The run entries are not ordered
in any particular fashion, they simply exist in all of the text files: entry after entry.
The format of each entry is identical to the format of a Mathematica list (see [58]):
it begins with the {’ character and ends with the '}’ character and its elements are
comma separated. The text files simply contain a continuous list of entries (not comma
separated): { entry } { entry } ...{ entry } (there is no problem in concatenating all of
the text files into a single large file). Each entry is a list that is composed of four comma
separated components: {“BeginObs” ,TN,PROB,DATA}.

The first component is simply the ”BeginObs” string. The second entry (labeled
TN: test number) contains a number that may help identify the run. This number is
generated by the front end that writes into the simulation database. The third entry
(labeled PROB) is a list that specifies the name of the . jbs file that was used, the name
of the random number generation class that was used, and the name of the algorithm
that was used. The fourth entry (labeled DATA) is a list that specifies the following:
N,., work times, Cp.yx, WIT, bottleneck machines, last working machines, finish times,
rest times, starve times, voluntary rest times and run-out times. Note that some of the
entries within the DATA list are lists themselves.

U The term simulation run refers to an execution of the job shop problem from time 0 to Crax.

41



3.5 The Job Shop Simulation Project’s
Front End GUI: The Job Shop Simulator

The Job Shop Simulator (JSS) is a graphical front end for the JSSP. In this section we
briefly discuss the features of the JSS. We do not discuss its design and implementation.
More information regarding the JSS’s design and implementation may be obtained by
looking at the sources and reading the documentation of the packages haifa.shopsim.UI
and haifa.shopsim.UI.shopanim in Appendix D.}?

The JSS is an application that may run on any machine that supports the JAVA 1.3
Run Time Environment (JRE 1.3). It may also run as an applet. It allows the user to
load a .jbs files and simulate the job shop problem that is specified by the file. (To
create the . jbs file, the user should use any text editor). Several of the on-line algorithms
described in Chapter 2 are supported. These are the Cp.x FIA, RBSR, PRBSR, RJSR,
FBFS and LBFS. In addition to these computer controlled algorithms, a user controlled
algorithm is also available (see Section 3.5.1).

The JSS allows the user to set the number of jobs on each route and select the
processing time distribution interactively. It also allows the user to control the manner
in which the simulation time advances by setting the simulation speed or using the Step
Button to advance from event to event. When each simulation run is complete, the
collected statistics (see Section 3.4.1) may be viewed in an auxiliary window: the Kernel
Log Window.

As the JSS interacts with the simulation kernel that performs the simulation, the
state of the job shop is displayed on screen: A textual table shows the sizes of the queues
of each of the buffers, a graphical image represents a schematic of the job shop and a
gantt chart is continuously updated. See the screen shot in Figure 3.1.

Instructions for using the JSS and interpreting the on-screen schematic animation

are posted in Appendix C.

12The haifa.shopsim.UI and haifa.shopsim.UI.shopanim packages were implemented using
Swing (A GUI toolkit supplied by JAVA). For a complete reference guide regarding graphical program-
ming using Swing see [21].

42



File oot Simul

Use the step, go and pause buttons below

TIME: 4147.0
BM: (1,2,3,4,5.9,10)
(r,o) on oir,o)| Queue Size

] [_] Machine 1

[_J Route 2 [ | Machine 2

=)

[_] Route 3 || Machine 3

[_] Route 4 || Machine 4

Saasl

[_] Rowte 5 || Machine 5

oF

"

T
N
N

[[JRoute 6 [ ] Machine 6

3

[[J Route 7 [ ] Machine 7

e
IS

[JRoute 8 [ ] Machine 8

[_] Route 9 || Machine 9

2
F)
7
1

5
1

I
0
1

1

B
i
F)
3
3
0
0
2
0
0
0
0
1

1

1

0
0
3
0
1
0
0
0
1
0
0
0
0

I L] Route 10 [ Machine 10

---Topology and job info of shop---
Number of machines:10

Number of routes:10

Machine lower bound:631.0
Route lower bound:655.0

Route #1:1,2,3,4,6,6,7,8,9,10

Unzaoom

Figure 3.1: The GUI of the JSS

43



I Job Shop Simulator, Haifa University, Israel, version 1.2 [3machine2way.jbs]
File Algorihim  Simulation  Help

I Please schedule machine #3

| A,Donl H LDon || 1,003 ‘

Ask Again Rest

| @Dyon3 H @.2yon? || @3onl ‘

| e 520 = e

EM: (1,2) .. |:
(r,o) ono(r,0) | Queue Size . " -

1,1 on1 73
(2,3 001 0
1,2yon 2 K]
(2,2)on 2 ]
(2,100 3 25
(1,2 on 2 2

(v Machine 1

| ¥ Route 1

[v| Machine 2

v Route 2

[v| Machine 3

Finished Jobs: 8 e :—“— All ‘ None ‘
---Topology and job info of shop---
Number of machines:3
Number of routes:2
Machine lower bound:12.0
Route lower bound:20.0
Route #1:1,2,3

Means: 4.0,6.0, 10.0
Route #2:3,2,1

Means: 2.0,3.0,4.0
Classes in machine #1: [(1,1), (2,3)]
Classes in machine #2: [(1,2), (2,2)]
Classes in machine #3: [(1,3), (2,1)]

Durations of routes on machines:
Machine #1:4.0,4.0

Machine #2:6.0,3.0

Machine #3:10.0,2.0

Zaom | ‘ Unzoom |

Figure 3.2: The user controlled algorithm

3.5.1 The User Controlled Algorithm

The user controlled algorithm allows the user of the JSS to determine the schedule of a
job shop problem in an on-line manner. As may be seen in Figure 3.2, the algorithm
area (near the top of the window) contains several buttons that allow the user to control
the scheduling. These are the Ask Again Button, the Rest Button and six additional
buttons (one button for every operation (r,0) in the job shop).

As the simulation kernel advances from event to event, the user controlled algorithm
continuously asks the user to make on-line scheduling decisions. In the figure, the user
is currently being asked to schedule machine 3 at the simulation time 54.0. Since the
available operations on machine 3 are (2,1) and (1,3) ,only the corresponding buttons
are active and may be clicked by the user. The user can also decide to click the Rest
Button and thus not schedule any job on machine 3 at the current scheduling epoch.

The Ask Again Button does not have a functional purpose and was only used for
debugging the simulation kernel. In fact, one of the main purposes of the user controlled

algorithm was to allow easy debugging and verification of the simulation kernel.

44



Chapter 4

The Simulation Experiments

In this chapter we describe the simulation experiments that were performed and sum-
marize the raw results that were obtained. In Section 4.1 we discuss the conceptual view
of the job shop simulation, defining the theoretical framework on which the experiments
are based. In Section 4.2 we enumerate all of the classes of simulation runs that were
performed, specifying specific details such as random variable generation and meaned
topology selection. In Section 4.3 we chart the details regarding the number of replicates
and multiplicities that were used for the experiments. Finally in Section 4.4 we summa-
rize the results of all of the runs into a short and informative format to be analyzed in
Chapters 5 and 6.

4.1 Conceptual View of the Job Shop Simulation

We shall use p to denote an instance of a job shop problem. g fully specifies the machines,
routes, jobs and processing times of the instance. We shall use P to denote the population
of all job shop problem instances. In the simulation study, we categorize P into several
classes of problems, each specified by different attributes. We then investigate the results
of applying scheduling rules to problem instances from these classes. We shall denote
each such class as P;. The attributes that specify each P; may be either probabilistic
(distribution of routes and/or processing times) or deterministic (e.g. identical versus
proportional problems). Note that P; is not necessarily a partition of P because some
of the attributes of P are probabilistic.

Since we are interested in high volume job shop problems, we partition each P; into
groups of job shop problems with varying multiplicities. We label each such group as
Pi.n. This implies that all of the job instances p that belong to P; y share common
characteristics that are categorized by the class ¢ and have a multiplicity of N.

The simulation procedure involves repeated sampling of ©’s from P; 5 and scheduling



them using a scheduling rule. This is done for various classes ¢ and increasing multi-
plicities N. We are equipped with several scheduling rules as described in Chapter 2.
Denoting a scheduling rule by T and a schedule by S, we shall now denote by Sy(p) a
schedule generated by applying a scheduling rule on .

Note that by taking a probabilistic approach (see 1.3.1), we may treat P; y as a
population of random job shops g, each p being a R.V. In this case, the simulation
procedure is a statistical experiment and we treat each p as a sample from P; . It
follows that we also treat Sy(p) as a R.V. It should be noted that the randomness of
Sy(p) is due to two reasons. First it is random because p is random. Secondly, it may
also be random because of random behavior present in Y (such as in the RBSR rule).

For each p there exits an optimal schedule Syopt () (this schedule uses the optimal
scheduling rule T°P*  that always exists but is usually very hard to find). We label the
Chax of the optimal schedule by T ().

For each sampled p there exists several lower bounds B (p), B2(g),.... These are
deterministic functions of the R.V. p and are thus R.V.’s themselves. These are the ma-
chine lower bound, job lower bound (as described in Chapter 1) or any other lower bound.
It is important to note that the lower bounds are with respect to an objective function
(in our case Cpax). We will denote the tightest lower bound as B(p) = max; B;(p). Note
that we know that B(p) < T (p).

Defining T () as the makespan of each Sy (gp) run, we label the gap by

G(p) =T"(p) — B(p)

For each sampled Sy (p) we also measure the rest time decomposition for the bot-
tleneck machine (or machines) as specified in Section 1.2.1. These are the starve time,
run-out time and voluntary rest time; labeled I(p) , R(p) and U(p) respectively.

We denote the process of generating a random gp from P; y, simulating a schedule
St(p) and calculating (measuring) the array {G(p), S(p), R(p), O(p)} as performing a
run from the class P; y with a log-multiplicity of log N. For each P; x5 we perform several
replicates (see Section 4.3.1). We refer to the term simulation experiment as a collection
of runs performed for various increasing log-multiplicities with several replicates for each
log-multiplicity on a given P; with a given Y.

Note that in practice, some more information is recorded during each run, but it is
currently not used for analysis (see Section 3.4). Also note that in practice, we only use
the machine lower bound as a lower bound (without using the job lower bound), this is
because it was the dominating bound for all problems that we tested for a log NV as low
as 2.

46



4.2 The Classes of Experiments

We shall now specify all of the classes P; (all of the simulation experiments performed).
Each class is categorized by the parameters of the job shop simulation: The meaned
topology (to be defined below), the number of jobs on each route, the scheduling algo-
rithm and the R.V. used to generate the processing times.

In Chapter 1 we described a coarse division of P: the R <« J case and the R~ J
case. The R < J case is further divided to the proportional case and the identical case.
A run of the type R < J requires a meaned shop topology, this is a description of the
routes, and the processing means of each operation. Runs of the R ~ J class do not have
a meaned topology, random routes are selected instead. We now describe the attributes
used to categorize the classes. See Appendix B for specific technical details regarding

the generation and simulation classes of experiments.

4.2.1 The Meaned Topologies

For the case R < J we based our study on three well known bench mark job shop

problems:

MT10 : The well known 10 machine and 10 routes problem; introduced by
Muth and Thompson, see [42].

ABZ9 : A 20 machines and 15 routes problem used by by Adams, Balas and
Zawak in [1].

SWV18 : A 10 machine and 50 routes problem used by Storer, Wu and

Vaccari in [52].

Each of these problems was originally formulated as a challenge to be solved by
combinatorial optimization methods (or search methods in the case of SWV13). There
is no true justification for choosing the above as shop topologies except for the fact that
they are well known problems. Our choices for these problems is inspired by Lorenco
[37]. Lorenco conducted a computational study of several search techniques and classical
methods and used the above problems (among others). A data bank consisting of more
than a 100 benchmark problems may be found at the Internet site [40].

Note that while we allow re-entry in the general job shop model and do not require
all routes to be of the same length as the number of machines, the above problems all
contain routes whose operations are performed on a permutation of the machines (do
not feature re-entry).

In addition to the above, we created three additional meaned topologies:

47



MT10-bal : This is a balanced, MT10 problem. This problem has the same
operations as M'T10 but different processing times. The processing times were
modified so that the workload of each machine is equal. This problem was
created by multiplying all of the processing means of operations on machine %,
by a factor that normalized the machine workload to 631 (this is the machine

lower bound value of the original MT10 problem).

MT10-rline : This is the MT10 problem with kitted routes. In this problem
there is only one route consisting of 100 operations. This route is a concate-
nation of the 10 routes. (See [14] for details regarding kitting of routes).

MT10-round-bal : This is a modified MT10 problem such that each route
starts on a different machine (o(r,1) = r). It is also balanced so that the
workload of all of the machines is 631. It was created by first modifying
the routes of the original problem such o(r,1) = r and each route traverses

through all 10 machines. Then the problem was balanced as was done for
the MT10-bal problem.

4.2.2 The R ~ J Topologies

In addition to using the meaned topologies mentioned above, we tested problems of the
type R~ J. For these problems we generated random topologies using the following

parameters.
I : The number of machines.

a : This parameter specifies how many steps are in each of the many routes.
The number of steps is drawn from a discrete uniform distribution taking

values in the range of [ —a, I + a].

EM,, ..., EM; : These I parameters are the means of the operations on each

of the machines.

4.2.3 The Processing Time Distributions

We have used several types of distributions for the processing times:

C.V. =0 : This means that random processing time generation does not
occur (no variability), the mean processing time is used instead; hence all the

jobs on the same route are identical.

48



C.V.= 0.25 : These are normal random variables with a coefficient of varia-

tion of (standard deviation divided by mean) of 0.25 truncated at 0.

C.V.= 1.0 : These are exponential random variables (the exponential distri-

bution’s standard deviation equals its mean thus its C.V. equals 1.0).

Weibull 1/2 : This is a Weibull random variable with hazard rate of Ct~'/2.
Its tail is heavy enough to not posses a MGF |, yet it posses moments of all

orders.

Pareto 3: This is a Pareto distribution with the only existing moments: first,

second and third.

Pareto 2: This is a Pareto distribution with the only existing moments: first

and second.

See Appendix Section B.1 for a discussion regarding the methods used for random

variable generation.

4.2.4 The Multiplicity

The multiplicities N that were used were powers of 2: {1,2,4,8,...,2" = 262,144}
(denoted log multiplicities). Problems as large as N = 2'8 were only used in two sim-
ulation experiments (such runs require several hours of processing time). Most of the
classes used a maximal log N of 15 (N = 32,768). Classes from the R ~ J case, used a
maximal log N of 12 (N = 4,096).

4.3 Enumeration of the Experiments Performed

We now summarize all of the classes of runs that were simulated. For each class, we
specify all of the attributes that distinguish the class, the scheduling heuristic used and
the maximal log-multiplicity. Note that for a class with a given maximal log-multiplicity,
runs were performed using all of the smaller log-multiplicities.

Tables 4.1, 4.2 and 4.3 present a summary of the simulation experiments performed?.
The columns represent, the scheduling rules that were tested and the rows represent the
random variables that were used to generate processing times and the meaned topologies.
All of the results were recorded to the SRDB as specified in Section 3.4.

L Table 4.3 refers to (I,a) as specified in Section 4.2.2

49



H R < J, Identical case H

| R.V. | Meaned Topology | Crax FIA | RBSR | RJSR | FBFS | LBES |

CV.=0 MT10 18 18 14 15 15
AB79 16 15
SWV13 14 12
MT10-bal 14 15
MT10-rline 14 14 14 14
MT10-round-bal 15 15

C.V.=0.25 | MT10 16 15 16

AB7Z9 15 15
SWV13 13 12
MT10-bal 14 15
MT10-rline
MT10-round-bal

C.V.=1.0 | MT10 15 16
ABZ9 14
SWV13 14 12
MT10-bal 14
MT10-rline 14
MT10-round-bal 15 15

Weibull 1/2 | MT10 13 14

ABZ9
SWV13
MT10-bal
MT10-rline
MT10-round-bal

Pareto 3 | MT10 11 13
ABZ9
SWV13
MT10-bal
MT10-rline
MT10-round-bal

Pareto 2 MT10 16 15 16 16
ABZ9 14
SWV13 14
MT10-bal 14 15 15
MT10-rline
MT10-round-bal 15 15

Table 4.1: The maximum log-multiplicities of the R < J identical simulation experi-
ments

a0



H R < J, Proportional Case H

H R.V. ‘ Meaned Topology H Chax FTA ‘ RBSR ‘ PRBSR ‘ FBFS ‘ LBFS H

CV.=0 MT10 14 16 15 14
ABZ9 13 13 15
SWV13 13 14
MT10-bal 14

C.V.=0.25 | MT10 14
ABZ9 13
SWV13 14 14
MT10-bal 13

C.V.=1.0 | MT10 14 14 13 13 13
ABZ9 13 14
SWV13 13 14
MT10-bal

Weibull 1/2 | MT10 14
ABZ9 13
SWV13 13
MT10-bal

Pareto 3 MT10 14
ABZ9 13
SWV13 13
MT10-bal

Pareto 2 | MT10 14 14 15 13 13
ABZ9 13 14
SWV13 13 13
MT10-bal 13 13

Table 4.2: The maximum log-multiplicities of the R < J proportional simulation exper-
iments

R =~ J specified by (I,a)
using RJSR
C.V.=0.25 ] (10,0) 12
CV.=1.0] (10,0) 12

Pareto 2 | (10,0) 12

Table 4.3: The maximum log-multiplicities of the R ~ J simulation experiments

ol



4.3.1 The Number of Replicates

We refer to the number of replicates of runs in a particular simulation experiment and
using a particular multiplicity as the sample size. We use n to denote the sample size.
As we conducted the experiments we used sample sizes ranging from 15 to 50. Note that
the experiments were conducted during a period of about 3 month, and each simulation
run that we conducted was recorded in the SRDB. Thus, there are certain simulation
experiments and certain log-multiplicities for which the sample sizes are higher than
others. This is because we felt that it was bad habit to discard observations only to

achieve uniform sample sizes.

4.4 The Experimental Results

After performing the simulation experiments, we plotted the results in graphs; there is
one graph for each simulation experiment. All of the graphs for all of the simulation
experiments may be seen at Appendix A; an example graph appears in Figure 4.1. We
now describe the format and content of the graphs.

The y-axis is measured in time units of the given problem instance?. The x-axis is the
log-multiplicity. The x-axis also displays the sample size used for each log multiplicity.

The interior of the graphs present the following information:

e observations - The gap, G(p) of each run, p, is plotted as a single tiny dark point.

e gap line (heavy green line)- The heavy green line represents the average gap:
>, G(p)/n. Where the sum is over all of the observations (p) that were sampled

from a given P; y and n is the number of such observations.

e gap bounds (light green lines) - The light green lines that bound the average gap
are the 5% gap distribution tails. This means that 5% of the runs are above the

top light green line and 5% of the runs are below the bottom green line.

e voluntary rest time line (purple) -The distance between the x-axis and the purple
line is the average voluntary rest time: Y-, U(gp)/n. This distance is 0 in all of the

simulation experiments because we did not use algorithms that voluntarily rest.

e starve time line (blue) - The distance between the voluntary rest time line (purple)

and the blue line is the average starve time: 3°_ 3(p)/n.

2Since we did not “normalize” the units of all of the meaned topologies, these units are not comparable
between simulation experiments that are based on different meaned topologies.

92



e The distance between the starve time line (blue) and the gap line (heavy green) is

the average run-out time: Y-, R(p)/n.

Note that for problems that have more than a single bottleneck machine (the MT10-
bal problem) the idle time decomposition (purple and blue lines) is performed for an
arbitrary machine.

Thus the graphs primary use is to allow examination of the behavior of G as the
multiplicity increases. This is achieved by looking at the growth of the gap line. An
additional use is the investigation of the idle time decomposition (as described in Section
1.2.1). Finally, the spread between the gap bounds may be observed, this is a measure

of the variability between replicates of the gap.

Ti me
Units

Cmax Fl A
identical - c.v. = 0.25 - nt10

800

600

400 g

200

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n=50 N=50 Nn=50 n=50 n=50 Nn=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50

Figure 4.1: An example of a simulation experiment result

4.4.1 Summary of the Results

We now present a summary of all the results that appear in the graphs for the R < J
identical and proportional cases (we describe the results for the R ~ J when we discuss
them in the next chapter). We present the results of the summary in Tables 4.4 and 4.5.
Each entry in the table summarizes the behavior of the gap and idle time decomposition
that is observed. An entry is of the form A/B/C. The A category describes the order of
the increase of the gap. We describe the various values that it may take below. The B

and C categories are optional; we describe their meaning now. The B category may be

23



set to the values & or ! meaning that the either the starve time or the run-out time are
the sole reason for an increase in the gap. Thus if B is set to &, we know that the starve
time increases with N while the run-out time does not. The opposite occurs if B is set
to R. For many results, the B category is omitted because both of these times increase
with IV or because the gap is O(1). The C category is set to I N\, when the starve time is
actually decreasing as the multiplicity increased; we attempt to explain this phenomena
in the next chapter

We have used a simple visual inspection® to see how the gap varies as the multiplicity
increases (category A). Since the graphs’ x-axis is presented on a logarithmic scale in
terms of the multiplicity, an exponential increase of the gap in the graph implies a linear
increase with respect to N and a linear increase in the graph implies a logarithmic
increase with respect to N. An increase of the gap in the graph that is faster than linear
but not exponential is an increase that is slower than linear with respect to N, thus it is
also an asymptotically optimal schedule.

We categorize the increase of the gap in the simulation experiments to one of the four
categories: O(1), O(log N), O(log N)+ and O(N) meaning a constant gap, a logarithmi-
cally increasing gap, a faster than logarithmic but still asymptotically optimal increasing
gap and a linearly increasing gap respectively*. Note that any gap that is increasing less
than linearly is called asymptotically optimal (as defined in Section 1.3.2). Note that in
graphs where the gap is increasing faster than linearly it may be hard to make a judg-
ment between O(log N)+ and O(N). For such graphs we examined the ratio G(N)/N°®.
When the ratio approaches 0 we know that the category is asymptotically optimal and
therefore O(log N)+. Otherwise, the gap is O(N).

3We did not find it appropriate to perform any more advanced statistical analysis (e.g. regression)
because of the nature of the simulation experiments.

“These categories may be inaccurate, nevertheless they are the best that we could find by looking at
the results

5An example of a graph of this ratio may be seen in some of the figures in the next chapter. See for
example Figure 5.5.

o4



R < J, Identical case [

| | Crnax FIA | RBSR | RJISR | FBFS | LBFS |

CV.=0 |MT10 o(1) O(log N)/® O(N)/S | O(N) | O(N)
ABZ9 O1)//S\( | O(logN)/R/S
SWV13 0(1) 0(1)
MT10-bal 0(1) O(log N)+
MT10-rline o(1) O(log N) O(N) | 0O(1)
MT10-round-bal | O(1)//S \, O(log N)

C.V.=0.25 | MT10 o(1) O(log N)/® O(N)
ABZ9 O(log N)/R/S (| O(N)
SWV13 0(1) 0(1)
MT10-bal O(log N)+ O(log N)+
MT10-rline
MT10-round-bal

C.V.=1.0 | MT10 O(1) O(log N)/®
ABZ9 O1)//3\y
SWV13 0(1) O(log N)
MT10-bal O(log N)+
MT10-rline 0 (log N)/%
MT10-round-bal o(1) O(log N)

Weibull 1/2 | MT10 0(1) O(log N)
AB7Z9
SWV13
MT10-bal
MT10-rline
MT10-round-bal

Pareto 3 | MT10 o(1) O(log N)
ABZ9
SWV13
MT10-bal
MT10-rline
MT10-round-bal
Pareto 2 | MT10 0(1) O(log N) O(N) | O(N)

ABZ9 O01)//S\y
SWV13 0(1)
MT10-bal O(log N)+ O(log N)+ O(N)
MT10-rline
MT10-round-bal o(1) O(log N)/®

Table 4.4: Result summary of the R < J identical simulation experiments

95



R < J, Proportional Case

| | Cumax FIA | RBSR | PRBSR |FBFS|LBFS |
C.V.=0 | MT10 0(1) O(N)/®R O(log N)+/® O(N)
ABZ9 O01)//3\¢ O(logN)/ /S
SWV13 o(1) 0(1)
MT10-bal O01)//3\¢ O(N)
C.V.=0.25 | MT10 O(1)
ABZ9 O)//S\¢
SWV13 0(1) 0(1)
MT10-bal 01)//3\
C.V.=1.0 | MT10 0O(1) O(N) O(log N) O(N) | O(N)
ABZ9 oM)//S\y O(N)//R
SWV13 oOM)//SN\y |00/
MT10-bal
Weibull 1/2 | MT10 O(log N)
ABZ9 O(log N)
SWV13 O(logN)/ /S \y
MT10-bal
Pareto 3 | MT10 0(1)
ABZ9 0(1)
SWV13 01)//3\
MT10-bal
Pareto 2 | MT10 0(1) O(N) O(log N)+ O(N) | O(N)
ABZ9 0(1) O(N)
SWV13 OM)//SN\y |03\
MT10-bal O(log N) O(log N)+

Table 4.5: Result summary of the R < J proportional simulation experiments

26




Chapter 5

Interpretation of the Simulation
Results

In this chapter we analyze and interpret some of the simulation results. We begin in
Section 5.1 where we discuss the results that were established prior to this study. These
include the Dai-Weiss fluid heuristic results (see Section 2.4.2) and the simulation results
by Boudoukh et. al. (see [7]). Continuing on to Section 5.2, we discuss a stochastic model
for 0 < t < oo which is the framework used to explain the performance of the C\,,, FIA
for re-entrant line problems. In Section 5.3, we discuss the C\,,x FIA, describing the
results that it achieved and the empirical conjectures that may be drawn. The Cihax
FIA achieved a gap of O(1) in a wide variety of simulation experiments. In Section 5.4
we discuss the RBSR and PRBSR rules. The simulation results have shown that these
two random scheduling rules are asymptotically optimal for a variety of problems. In
Section 5.5, we briefly discuss the phenomena of decreasing starve times with respect to
N. In Section 5.6 we discuss the scheduling rules that are not asymptotically optimal.
These are the FBFS, LBFS and RJSR rules. Finally, in Section 5.7 we discuss the results
obtained by the R = J simulation experiments.

This chapter touches a variety of subjects in a rather informal manner. The simula-
tion results that were presented in Tables 4.4 and 4.5 in the previous chapter contain a
sea of information, some of which we interpret here. We are not yet able to prove any of
these results, we rather informally discuss their meaning and attempt to give intuitive
explanations. Throughout this chapter, when we say that a heuristic is asymptotically
optimal it is meant that the gap is o(/N). We sometimes informally say that a heuristic
is O(1) or O(log N) etc... In this case it is meant that the simulation experiments have

shown that the average gap increases at such a rate with respect to V.



5.1 Previous Results Regarding the R < J Case

It has been shown by Boudoukh, Penn and Weiss [7], that a gap of O(1) is possible
to achieve for the deterministic (C.V.=0) case. In [14], Dai and Weiss generalized the
problem to the stochastic case and showed that a gap of O(log N) is achievable with a
high probability (increasing in V). The result by Dai and Weiss is based on an analysis
of the growth of a maximum of a GI/G/1 queue. By showing that the maximum of the
queue grows at a rate that is O(log N), the authors show that the gap of the heuristic
is O(log N). The Dai and Weiss result is based on two assumptions: (1) The processing
times come from distributions that posses exponential moments (the MGF exists at an
interval around 0). (2) There is only a single bottleneck in the job shop.

While the results by Dai and Weiss supported the notion that the best gap that may
be achieved for a stochastic case is O(log N), preliminary simulation results that were
conducted by Boudoukh, Penn and Weiss in [7], generated a surprise. The gap that
was observed for the FTA was O(1) for both C.V.=0.25 and C.V.=1.0 problems. While
the maximum log-multiplicity that was used was only 10 and the number of replicates
was small, these simulation results hinted that asymptotically optimal scheduling with
an O(1) gap are obtainable. This implies that the Cj,a.x FIA operates with a bounded

starve time and a bounded run-out time.

5.2 A Stochastic Model and a Fluid Solution for Re-
entrant Lines

We now present a stochastic model and a fluid solution of re-entrant line problems that
are driven by the LBFS non-idling scheduling rule. Remember that a re-entrant line is

a job shop problem in which there is only one route with K operations and I < K.

The Fluid Model

In the fluid model, the policy is simple: when machine 7 has to decide between working
on buffers k; and k, then it will devote all that it can towards buffer k, if k; < ko. The
remainder of its effort is devoted towards buffer k; (or to other buffers with an index less
than k,).

We now present an iterative algorithm for calculating constant pumping rates uy for
all of the buffers £ = 1, ..., K such that the re-entrant line empties at time 7™ and the
LBFS scheduling rule is used. The algorithm performs the calculation in L iterations; it
determines the initial bottleneck buffers a < ... < aV. a® is the buffer index of the

28



first buffer in the bottleneck machine (i*). a® is the first index of the first buffer of a
machine which acts as a bottleneck upstream to a(!), and so on until ¢/®) = 1. The fluid
solution is built such that all of the buffers that are down stream to buffer a") keep pace
with the bottleneck machine so that it is fully utilized and the system empties at time

T™. We present the algorithm below:

Initialization:
BY .=

MO = Sy my
a® = K+1

Working Step n:
KM = qn=1) -1
If K™ =0 then set L :=n — 1 and stop.

(n—1)
M.
7

(n) ._
M = Ekeci k<a(m—1) Mg
7 . M'(n)

2

#™ = argmin p{™

a™ :=min{k: k € Cp.n }
Set flows wy, for buffers k = a™, ..., K™ to be ,uz(”()n)

The algorithm categorizes the buffers k =1,..., K as k =aD), ... K@) L1
K@D . ,aM . KM Inspection of the algorithm reveals that it sets (%) =1,

oV =min{k : k € Ci}, K = K and L to be the number of complete iterations that
were performed. Within each consecutive set of buffers, a®, ..., KO, the algorithm sets

constant flow rates for these buffers such that with each iteration, the flow rates are
increasing. This implies that ¢ (t) = 0 for k = a® +1,..., K® and that g4(t) > 0 for
k=a®), o= . a0,

It is evident that the fluid solution that is calculated by the algorithm maintains the
constraints of the fluid model (as presented in Section 2.2). It is also evident that the
fluid solution generated by the algorithm empties all of the fluid in the system by 7.

A schematic of the fluid solution is presented in Figure 5.1. The figure presents the
evolution of the amount of upstream fluid ¢; (#) from time 0 to time 7* . The thick
lines above (and to the right of) each label: a' (I = L,L —1,...,1) corresponds to the

!When the problem is taken to be of an infinite multiplicity then the g; (t) values are not defined.
Nevertheless, for such problems, the figure shows the evolution of the g (t) values.

29



gy (t) values for buffers ;... K®. From these buffers only buffer ¢ has any fluid in
it, the rest are empty (and thus their g;f (¢) are identical).

A cross section of the graph along the vertical red line shows the amount of fluid
in each of the buffers at time ¢. It is seen that only some of the buffers (a'™), ... a)
contain a positive amount of fluid. A cross section of the graph along the horizontal
green line shows the path of a “single molecule of fluid” or a single job. It is seen that

L), ..., a" while it spends no

the job waits a positive amount of time in the buffers al
time in the other buffers. Specifically, it is seen that each job waits a positive amount

of time in buffer a(!). For all buffers & > a(¥), the job does not wait.>

Anmount
of fluid

Figure 5.1: The fluid solution of the LBFS algorithm

The Stochastic Model

We assume that the jobs in the re-entrant line have i.i.d. processing times for each
operation k£ with some mean my, and a finite variance. We define Sk () to be the number
of jobs that are finished given that machine o(k) works on buffer k£ for ¢ time units.
Thus, Sk(t) is a renewal process (see for example [48]). We define Ty(t) to be the
amount of time that machine o(k) works on buffer £ during the interval [0,%). As in
the job shop model Q(t) is the queue for buffer k£ for k£ = 2,..., K. It is thus evident
that Qx(t) = Sk—1(Tr_1(t)) — Sk(Tk(t)). We assume @ (t) is infinite. Note that while

2See Weiss [54] for a description of this type of fluid diagram.

60



being similar to stochastic re-entrant line models discussed in [33], [12] and [13], this
model differs in that the initial queue has an infinite amount of input rather than an
input according to some arrival process (see Figure 5.2). It is immediately evident that
policies such as FBFS may be unstable for some re-entrant lines while policies such as
LBFS may be stable (see Section 5.6). Assume now that we process the jobs in the
system using a LBFS non-idling policy. Then: Ty(t) = 1 if and only if Qx(t) > 0,
Qu(t)=0for k' >kand k' € Cok)-

Size of Q
at time t

Figure 5.2: The infinite horizon fluid solution

Define ATy (t) = Ty (t+1) =Ty (t) and AQk(t) = Qr(t+1)—Qx(t). We conjecture that
as t — oo, we shall have ATy (t) converge to some steady state distribution with a mean
of myuy. As a result, E(Sg(Ty(t + 1)) — Sg(Tk(t))) = ug. Hence for k = a*=Y ... o)
AQy(t) approaches some steady state distribution with a mean of ug_; — ug. While
for k # a*=V ...,aM, EQi(t + 1) = EQ(t) and Qx(t) approaches a steady state

distribution (it is a stable queue). This leads to the following two conjectures:

Conjecture 1 {Qi(t), 2 < k < K,k # aF™V, ... a', AQx(t),k = a™',...,aM} con-
verges to a steady state distribution: {Qr(c0), 2 <k < K,k # al=V, ... a', AQk(c0), k =
al=t ..., aMY where Qi(t), Qr(cc) > 0 and E(AQ(c0)) = ug—1 — ug > 0

Conjecture 2 There exists an R.V., T such that Qi(t) >0, k =a*™ Y ... a®
forallt >T.

61



5.3 The Fluid Imitation Algorithm for Makespan

The fluid imitation algorithm for makespan (Cpax FIA) yielded the best results. It
showed a O(1) gap for almost all of the problems that we tested. Only for the MT10-
bal problem did it feature a gap greater than O(log N) (but still less than O(N), thus
asymptotically optimal)®. It was a surprise to find out that the O(1) gap is independent
of the processing time distribution. The use of heavy tailed distributions did not cause
an increase in the order of the gap. This contradicted our previous belief that was based
on the reasoning behind the Dai and Weiss results (their proof relied on the existence of
exponential moments). We now detail some of the facts regarding the operation of the
algorithm along side an explanation of the empirical results.
Notice that maximization of the lag function presented in Equation 2.10 is exactly
like the maximization of this ratio:
%[0 o
g (1) '
Substituting the fluid solution from Equation 2.8 and noticing that the (1 — %)
term is identical for all buffers at a given time ¢, we see that maximization of the lag is

equivalent to maximization of the following®*:

Qi (1)
N,
Thus the Cpax FIA selects the buffer (r, 0) that maximizes 5.2. We shall now discuss

how this simple rule applies to various problem types. We start off with re-entrant

(5.2)

line problems then continue on to R < J identical problems and finally discuss R < J
proportional problems.

In a re-entrant line problem, R = 1 and N; = N. For such problems the Cpa.x FIA
acts exactly like a “schedule buffer with most upstream jobs” rule. At every scheduling
epoch, the amount of upstream jobs for each of the non-empty buffers is examined and
the next job from the buffer with the most upstream jobs is selected. It is evident
that Qa,m) < Qam) for 0, < 0y. At scheduling epochs where both (1,0;) and (1,02)
are considered, the inequality is always strong because in order for buffer (1,02) to be
considered, Q(,0,)(t) must be positive. Thus for the re-entrant problem, Cpax FIA is the
LBFS non-idling rule. Indeed it is seen that the gap for the LBFS simulation run that

was performed on an MT10-rline problem was O(1) (as were the results for Cyax FIA)S.

3We discuss the MT10-bal problem in the next Chapter.
“Notice that we are alternating between the k convention for buffers and the (r,0) convention.
5Comparison of the graphs in Appendix Section A.1.1 for the MT10-rline problem using both Cyay

62



Conjectures 1 and 2 explain the O(1) behavior of Cy,ax FIA for re-entrant lines as
follows: during the execution of the job shop, machines o(al™), ..., o(a?)) starve only
during the initial phase of the job shop (remember that o (a(!) is the bottleneck machine).
By Conjecture 1 it is evident that the run-out of the job shop is bounded. This explains
the O(1) results for the MT10-rline problems.

For the R < J identical case all N, values are equal. Thus the C\,,x FIA again acts
like a “schedule buffer with most upstream jobs” rule, just like it did for the simpler re-
entrant line case. The difference here is that the rule is no longer a LBFS buffer priority
dispatching rule. Denote the set of all non empty buffers of scheduleable machine 7 and
time ¢ by C;(t). Now partition C;(t) to C}(t),...,CE(t) where C7(t) are the non empty
buffers that belong to route r. When comparing the lag of all of the buffers within each
CI(t), the Cmax FIA uses LBFS. But when comparing the lag of buffers that belong to
different C7(t) groups, the rule looks at the amount of upstream jobs, a time dependent
state. This is different from the LBFS buffer priority dispatching rule where two buffers
that have an equal o are assigned an arbitrary priority based on their route number (r)
and this priority is fixed throughout the evolution of the job shop run.

For the proportional case, the rule is “normalized” to the number of jobs in each
route in the same manner that the PRBSR normalizes the RBSR (see Section 5.4).

It is thus evident that while the Cp., FIA is based on non-trivial concept, a fluid
approximation, the scheduling rule is actually quite simple. It should be noted that
many of the dispatching rules that have been studied in the literature are rules that
are based on the local condition at the machine at question. The Cy,,, FIA is different.
While simple to implement, it is an on-line rule that is based on a global condition (it
looks at @} (t) and not Q(t)).

5.4 Random Buffer Scheduling

We found the RBSR to be asymptotically optimal for the R < J identical case! It fea-
tured a gap of O(log N). For the R < J proportional case we found it to be non-optimal.
For this case, proportional selection of the buffers (PRBSR) achieved asymptotically op-
timal schedules. An exception is the SWV13 meaned topology; for problems that use
this topology the RBSR rule is O(1) for both the identical and proportional cases®.

FTA and LBFS shows that while both are O(1), the behavior is slightly different. This is due to the
behavior of the Crax FIA during time epochs that are greater than 7™ (see Section 2.3). We regard
this as an implementation detail.

6We have not been able to find a good explanation for the fact that the RBSR is O(1) for the SWV13
meaned topology. This result along with the other experiments that use the RBSR and PRBSR rules
shows that the behavior of RBSR and PRBSR is topology related.

63



These results regarding random buffer scheduling are very important because they
imply that there is “no pressing need” for complicated scheduling heuristics. In practice,
if a semi-conductor manufacturer wanted to achieve asymptotically optimal scheduling
in terms of Cp,,x while minimizing the expenses of machine synchronization and control

(staff, communications and computing expenses), she could use the RBSR or PRBSR.

Proportional Buffer Scheduling: PRBSR

The RBSR is not optimal for the R < J proportional case (see Figure 5.3 in which the
relative gap appears to converge to 0.05 and not to 0 as is expected of an asymptotically
optimal scheduling rule). We thus devised the PRBSR. The reasoning is as follows: The
R < J proportional case features a distinct number of jobs (V) on each route r. We
may also treat the problem as having N, identical routes with a single job each. In this
case, the problem is identical and not proportional. Assuming that the RBSR rule works
for this identical problem, it is immediately seen that it acts like applying the PRBSR
to the original problem. While the rate of growth of the gap for the PRBSR problems
usually appeared to be higher than O(log N), it was still asymptotically optimal for all

of the experiments (see Figure 5.4).

5.5 Decreasing Starve Times

Several of the results have shown that the mean starve-time decreases as N is increased.
How is this possible? We believe that it is due to the fact that for low multiplicities the
bottleneck occasionally starves because there are not many jobs traveling in the system.
For high multiplicities, there is an abundance of jobs in the system from the start. This

sometimes ensures that the bottleneck is almost constantly busy.

5.6 Non-optimal Scheduling Rules:
FBFS, LBFS and RJSR

The first buffer first serve (FBFS), last buffer first serve (LBFS) and random job schedul-
ing rules (RJSR) are all non-optimal. The graphs of the simulation experiments for these
rules show that the gap grows at an exponential rate when plotted against a multiplicity
on a logarithmic scale. This implies that the gap grows linearly in N: O(N). Figure 5.5
shows a graph of the ratio G(N)/N for one of the FBFS simulation experiments. In the
figure, it appears that the ratio converges to about 0.34; it does not converge to 0 as one

would expect from an asymptotically optimal rule.

64



Log N

Figure 5.3: The relative gap of C.V. = 0, MT10 using RBSR

AN/ N
0.2

Log N

Figure 5.4: The relative gap of C.V. = 0, MT10 using PRBSR

65



FBFS

We explain why FBFS is non-optimal for the MT10 problem. In this problem the
bottleneck machine is machine 4. The first and second operations on all of the routes
occurs on machines 1, 2 and 3; remember that we denote these as initial machines. Thus
the bottleneck does not perform the first or second operation of any of the routes. Now as
long as there are jobs that have still not started their first operation, the initial machines
prefer to schedule these un-started jobs (as specified by FBFS). As each operation (7, 0),
r = 1,..., R is completed on an initial machine, it traverses to a neighboring initial
machine, and never to the bottleneck machine. Thus the bottleneck machine is starving
for a time that is bounded from below by the time it takes to empty all of the operations
from one of the buffers (r,1), r = 1,...,10. Note that this time is O(/N). This analysis
is specific to the MT10 meaned topology.

RJSR

The RJSR acts like a randomized version of a “schedule buffer with most jobs” rule. Such
a rule acts like a mechanism in which each machine tries to ensure that it has an equal
amount of jobs in each of the buffers that surround it. If the controller of each machine
assumes that there are arrival processes that behave according to the same probability
law for all of the buffers then the “schedule buffer with most jobs” rule seems like a
reasonable rule for keeping the machine at stake busy for as long as possible. Since in
general, this is not the case for R < J problems and since keeping the bottleneck busy
is more important than keeping all of the machines busy, the RJSR does not perform
well: it does not feed the bottleneck machine so as to keep it constantly busy (as the
fluid solution does).

Note that we may use the a similar reasoning to the reasoning that we used above
for the FBFS and MT10 to explain why the run we made using RJSR on MT10 exhibits
a dominant increasing starve-time and is O(NV). Since RJSR acts like a “schedule buffer
with most jobs” rule, the initial machines will not schedule (with a high probability) any
jobs from non-initial buffers until these buffers have more jobs than the initial buffers.
The time that it takes an initial machine to reach such a state is bounded from below
by the processing time of 1/10’th of the jobs in the initial buffer. This time is O(N).
Thus with a high probability, the bottleneck machine starves for a period of O(N).

66



LBFS

The LBFS rule was also O(N) for most of the simulation experiments. An exception was
the MT10-rline meaned topology for which it was O(1). This was explained in Section
5.3.

5.7 R~ J Problems

We did not perform an all around investigation of R = J problems. We simply lay
out the framework for such a simulation investigation. For the sake of preliminary
experimentation we tested the RJSR on three classes of problems. All three problems
were of the type (I = 10, a = 0). The processing means of all 10 machines were set
to 100 time units. We tested these problems for the C.V.=0.25, C.V.=1.0 and Pareto 2
cases. The resulting graphs are displayed in Appendix Section A.3.

By looking at the results, we make the following conjecture: The starve time decreases
with N while the run-out time is constant with respect to N. Thus the gap decreases as
N grows.

Our conjecture seems plausible because of the random nature in which the R ~ J job
shops are generated and the randomness of the RJSR. The decrease in the starve time
follows the same argument as in Section 5.5. The constant run-out time implies that
there is a bounded amount of jobs in the system after the bottleneck has finished. This
is a plausible result if we assume that the stochastic system that operates is stable in a
manner similar to the description in Section 5.2.

For the problems that we generated, there is an equal probability for each of the
10 machines to become the bottleneck machine. This is because the processing means
of all of the machines are equal and the routing is completely random. This makes it
reasonable to assume that the arrival and service process that each machine encounters
has the same probability law. Recall that the RJSR acts like a “noisy” version of the
“schedule buffer with most jobs” and that such a rule aims at keeping each machine busy
for as long as possible. These facts make it reasonable that RJSR does not allow the

machines to starve and keeps the run-out constant.

67



Log N

Figure 5.5: The relative gap of Pareto 2, MT10 identical using FBFS

68



Chapter 6

Multiple Bottleneck Machines

In this chapter we discuss the results that were obtained in the simulation experiments
of balanced job shop problems (MT10-bal and MT10-round-bal). We also discuss some
steady state models of a 2 machine job shop with 2 opposite routes. In Section 6.1 we
discuss the motivation behind job shop problems with multiple bottleneck machines. In
Section 6.2 we describe the results that were obtained by the experiments. In Section
6.3 we discuss the 2 machine 2 opposite route problem: 2M20OR. We believe that an
understanding of this simple topology is required for understanding of the more general
job shop problem. In Section 6.4 we describe the push-pull model by Kopzon and Weiss
[32]. This is a steady state Markovian model of the 2M20R problem using a specific
scheduling policy for which the steady state distribution has been derived. In Section 6.5
we describe an infinite horizon model for the 2M20OR problem that is based on the Ch,ax
FTA scheduling rule. Finally, in Section 6.6 we discuss the applications and functionality

of queueing system models that use infinite virtual queues.

6.1 The Motivation and the Questions

In a production process, one may often wish to utilize all of the machines to their full
potential. An un-utilized machine is often conceived as wasted capital. In the job shop
formulation, the bottleneck machine is utilized nearly all of the time when scheduling
under an asymptotically optimal policy. Non-bottleneck machines are not. We thus wish
to set up the job shop such that the meaned topology defines more than one bottleneck
machine while still achieving asymptotically optimal scheduling. Preferably, we would
like to have all of the machines set up as bottleneck machines.

Unfortunately, previous results regarding asymptotically optimal job shop scheduling
have hinted that it is difficult to achieve asymptotically optimal scheduling when there

is more than a single bottleneck. The results regarding the Dai-Weiss fluid heuristic



(covered in Section 2.4.2) are based on the assumption of a single bottleneck machine.
We are thus interested in investigating how job shop problems with multiple bottleneck
machines are scheduled by the C., FIA.

It is important to make the following distinction: For C.V.=0 problems, the process-
ing times of all of the bottleneck machines are equal; while for stochastic problems, only
the mean processing times are equal. For such problems, the total processing times of
each of the machines are approximately normal random variables with an expectation
that equals N X2, 5)ec; Mir0) and a standard deviation that is O(V'N) (because of the
CLT). The machine lower bound is the maximum of these I R.V.’s and its expectation
is N X(r.0)ec: Miro) + O(V/N) (see for example David [15]).

6.2 Simulation Experiment Results

As reported in Chapter 4, we conducted experiments for two balanced topologies: MT10-
bal and MT10-round-bal. Our results hint that Ch,.« FIA is asymptotically optimal for
both of these cases regardless of the processing time distribution that is used. These
results were surprising with regard to the assumptions that were made by Dai and Weiss
in-order to obtain the result that the gap is O(log N) (see Section 5.1).

While the simulation experiments of both the MT10-bal and MT10-round-bal prob-
lems generated asymptotically optimal schedules, there is a big difference between the
two. For the MT10-bal problem, the gap appears to be increasing at a rate that is faster
than logarithmic and for the MT10-round-bal problems the gap is observed to be O(1).

In-order to verify that the MT10-bal simulation experiments are asymptotically op-
timal (o(N)) (even though they showed an increasing gap), we examine graphs of their

relative gap in Figures 6.1, 6.2 and 6.3 and observe that it approaches 0 as /V increases.

70



ANIN
0.5

0.3

0.2

0.1

Figure 6.1: The relative gap of C.V.=0.25, MT10-bal, identical using Cp,,x FIA

AN/N
0.5

0.4
0.3
0.2

0.1

Figure 6.2: The relative gap of C.V.=1.0, MT10-bal, identical using Cax FIA

AN /N
0.5

Log N
14 ¢

Figure 6.3: The relative gap of Pareto 2, MT10-bal, identical using Cy,.x FIA

71



6.3 The 2 Machine 2 Opposite Routes Problem

We shall now discuss high volume R < J job shop problems with 2 machines and 2
opposite routes using various mean processing time configurations. We call this problem
2M20R (see Figure 6.4)'. We believe that an understanding of this simple job shop
problem, may yield a better understanding of the dynamics of complex job shop problems
such as MT10-bal and MT10-round-bal.

Job shop topology 2M20R : I =2, R=2, K1 = Ky = 2,
o(1,1)=1,0(1,2) =2, 0(2,1) = 2, 0(2,2) = 1. We enumerate the buffers
by k = 1,2,3,4: 1=(1,1), 2 = (1,2), 3=(2,1) and 4=(2,2).

Figure 6.4: The 2M20R topology as seen in the JSS

We say that machine i is producing if it is working on operation (i,1) . We say that it
is serving if it is working on operation (3 —4,2). We also say that the queue of machine
i is the queue at operation (3 — ,2), this is the queue of jobs that are waiting to be
“served” at machine ¢. This terminology is adopted from Kopzon and Weiss [32].

The processing times for the 2M20OR problem may be defined in several ways. We
say that the problem is inherently-unstable if for each route the mean processing time
of the the first operation is less than that of the second operation. We say that it is
inherently-stable if the opposite occurs. We say that a problem is mized if on one route
the first operation is fast (inherently-unstable) and on the other route the first operation

is slow (inherently-stable). Note that for a mixed problem the operations of one machine

1See Appendix Section C.1 for an explanation of the graphics in the figure.

72



are slower on both routes, so there can be only one bottleneck, as in Chapter 5, so we
do not discuss it here.

We now ask whether it is possible for both machines to be busy all the time while
keeping the size of the queues stable. For this to be true the rate of jobs produced on
each route must equal the rate of jobs that are served on each route. We denote the
rate of jobs produced and served on route 7 by v;, the fraction of time that machine 7 is
serving by «; and the rate of production of operation ¢ by \; = m% Thus for a stable

operation of the system, the following must hold:

vV = (1 — al)/\l = 012)\2

Vo = (1 - 042)/\3 = 0[1)\4

Solving for ar; and a, and substitution in the expressions for 14 and v, we have:

(A — A

P o = M
(A2 = A)

Vg = —————=
Ao — Mg

It turns out that for the inherently-stable case there is a stable policy (when the
processing times of operations 1 and 3 are exponential). We discuss this case in Section
6.4. We believe that Cp,,x FIA is also a stable policy. We believe that it is stable both for
the inherently-stable case and the inherently-unstable case. We discuss this in Section
6.5.

Our belief is supported by simulation experiments that we ran for the 2M20OR with
various mean configurations using the Cp,x FIA (these experiments are not discussed
in Chapter 4). The experiments were performed with a maximum log multiplicity of
13 and with sample sizes of 30. C.V.=0, C.V.=1 and Pareto 2 processing times were
used. The results of all of the experiments showed a gap of O(1). We thus have reason
to believe that a steady-state model that explains how the Ch.. FIA operates on the
2M20R exists.

Assuming that our conjecture regarding stability of Cha.x FIA on the 2M20R, problem
is true, we believe that the problem may also perform well in the proportional case (when
there are N; jobs on route 1 and N, jobs on route 2). Note that both machines will
not starve until Ty = sup{t : Q(;1)(t) > 0 for both r = 1 and r = 2}. If % = 2L, then
ET, = ET,; where T; = Y, 5yec; 2j:p(j)=r X(r0)(J), 50 both machines are bottlenecks. In

this case we believe that 7§ is close to both 7} and 7, and thus expect to achieve job

73



shop scheduling with a gap that is O(1). If % # L, then only one of the machines is a
bottleneck so we should have a gap of O(1) is in Chapter 5.

6.4 The Push-Pull Model

In [32], Kopzon and Weiss introduce a scheduling policy for the 2M20OR, problem when
there is an infinite supply of work at both routes. They show that under a certain policy
a steady state equilibrium exists under the assumption of exponential processing times
and inherent-stability of the problem. (We say that the 2M20R problems is inherently-
stable if for each route the mean processing time of the the first operation is greater than
that of the second operation). Their policy is called the push-pull policy.

The push-pull model uses the concept of a “stored job”. This means that a buffer
may perform an operation, complete it and store the job before sending it to the next

operation on the route. The policy works in the following manner:

At every scheduling epoch and for every scheduleable machine i: If the
queue of machine i is empty (there are no jobs for “serving”) then send the “stored job”

to the other machine. If the queue is not empty, service the next job from this queue.

It is shown that using this policy, after an initial period, at any time exactly one of
the two queues is not empty. The state space is described using the following states:
(a,i), (A,1), (b,i) and (B,1). In states of the type a or b, both machines are producing
and there are i jobs in the queue of machine 1 or machine 2 respectively. In states A
and B, there is one machine serving and one producing, with 7 jobs in the queue of the
serving machine (1 and 2 respectively)?.

In [32], the authors obtain the steady state probability distribution of the push-pull
model. The authors first use Markov balance equations to obtain the steady state for the
exponential case. The authors then continue and use the theory of M/G/1 queue with
vacations to solve for the case where the “production” is exponential while the “service”
is distributed according to some general distribution. The authors also generalize the
system to an [ > 2 machine system with random routes of length 2.

The results by Kopzon and Weiss are important because they show that a system
that is operating with a machine utilization of 100% is stable. See Section 6.6 for a

discussion.

2The push-pull model may also be described such that the “stored job” feature is removed. This can
be achieved by slightly modifying the state-space and the scheduling rule.

74



6.5 An Infinite Horizon Model of 2M20R
Using Ch.x FIA

Inspired by the empirical results that imply that C,., FIA is stable and by the push-pull
model, we are interested in formulating a queueing model (for 0 < ¢ < 00) of Cpax FTA
for the 2M20R.

We create the model in the following manner: Take the 2M20OR, problem and add
two counters, ¢;(t) and co(t) to buffers (1,1) and (2,1) respectively. Each counter is
initialized at time 0 to a value of 0. It is then incremented by 1 whenever a job leaves

its buffer (whenever an operation is complete). Thus for any N and t¢:

N — C1 (t) = Q(l,l) (t)

N — Cg(t) = Q(Q’l)(t)

Cmax FIA operates by scheduling the buffer with most upstream jobs. A Cp.x FIA

implementation on 2M20R would act in the following manner at every scheduling epoch:

For machine 1:

If Q2,2)(t) =001 ( Q2,2 (t) >0and N —c; > Q2) + (N —¢2) ) then schedule (1,1).
If Quo2)(t) >0and N —¢; < Q22) + (N — cz) then schedule (2,2).

For machine 2 :

If Quz)(t) =0o0r (Quz(t) >0and N —cy > Qa2 + (N —c1) ) then schedule (2,1).
If Quz)(t) >0and N — ¢y < Q1,2 + (N — c1) then schedule (1,2).

Assume that all processing times are exponentially distributed. In this case we have
a Markov jump process. We believe that a solution to this system may be found by
defining the state of the system as the vector (X, Y, D)(?):

(X, Y, D)) = (Ru)(t), =Qea(?), ei(t) = ea(t))

Using this definition, the C\,,x FIA rule may be phrased as follows:

For machine 1:

If Y =0o0r D <Y <0 then schedule (1,1).
If Y <0and Y < D then schedule (2,2).
For machine 2 :

If X =0o0r0< X <D then schedule (2,1).

75



If 0 < X and X > D then schedule (1,2).

(X, Y, D)(t) defines a dynamic system where X may take on the values 0,1,2,...Y
may take on the values 0, —1,—2,... and D may be any integer. It is evident that the
system changes at every time instance in which an operation is complete. In each such
time instance, the following vector is added to the system (depending on which operation

has just completed):

When (1,1) is finished add (1, 0, —1).
When (1,2) is finished add (-1, 0, 0).
When (2,1) is finished add (0, —1, 1).
When (2,2) is finished add (0, 1, 0).

Based on the simulation results, we believe that this process is stable even when the

system is inherently-unstable.

6.6 Discussion of Queueing Models having Infinite
Virtual Queues

We believe that the above queueing models are important because they incorporate
infinite virtual queues (IVQ). We define an IVQ as a queue with an infinite amount of
jobs. In a manufacturing process one may think of an IVQ as a pile of raw materials
that is lying besides a machine waiting to be processed. We have seen that IVQ’s allow
to create a connection between high volume job shops and queueing systems.

Open queueing networks may be viewed as high volume job shop problems where the
random input rates are actually machines that are processing jobs that are fed into the
machines using an IVQ. Take for example an M/M/1 single server queue. We may think
of the server as machine 2, performing operation (1,2) at rate u = 1/m 2. We think
of the input rate as machine 1 that is being fed by an IVQ and processes the operations
at rate A = 1/m,1y. If we increase the multiplicity N to infinity or to a large value we
obtain the M/M/1 model throughout the [0, T}) period.

Thus, open queuing networks may be viewed as high volume job shop problems where
each input rate is substituted by a machine with an IVQ. The reverse, is not as simple,
we may not always view a high volume R < J job shop problem as an open queuing
network. Note that this duality is only possible when the first machine of each route has

only one operation (|Cyi1)| =17=1,...,R).

76



We believe that the solution of queueing networks that feature IVQ’s may be an
important advance. This is because such problems may incorporate the best of both
worlds from the scheduling community and the stochastic processes community. Up to
now, models of manufacturing systems were either finite source/finite horizon scheduling
problems (such as the job shop problem discussed in this study), or they were stochastic
networks in which the source is an arrival rate of requests for job processing (such as
discussed by Kumar [33]). We believe that neither of these models is realistic when
viewing a manufacturing process from a supply side point of view. The finite horizon
problem is not realistic simply because the horizon of most factories is not finite. The
stochastic arrival rate problems are also not applicable because in many manufacturing
situations the goal is to maximize the utility of the capital (have all machines working)
and thus production is always at the best achievable maximum.

The above arguments demonstrate why queuing models with IVQ’s may be impor-
tant. An IVQ may be viewed as an infinite pile of raw materials waiting to be produced
or a contract that places raw materials at the entry to the system on demand. The goal
of the scheduling rules should be: (1) Utilize all of the machines all of the time by en-
suring that enough material is drawn in from the IVQ’s such that there is no starvation.
(2) Ensure that the amount of materials is kept low (is stable). These are not alternative
objectives but rather complementary objectives. A scheduling rule that can maintain
both of these objectives is desirable. We believe that the Cp,,, FIA or variants of it such

as the model presented in Section 6.5 does the job.

7



Chapter 7

Summary and Future Directions

In this report we summarized a simulation study of on-line scheduling heuristics for
R < J high volume job shop problems with respect to the makespan objective function.
The report described both the software that was created during the course of the study
(the JSSP) and the conjectures that were made while analyzing the simulation results.

We shall now briefly state what can be further achieved on both of these frontiers.

The Job Shop Simulation Project

The JSSP is now in a stable and robust state (currently version 1.2). Nevertheless, there
are many more features and modifications that could be made.

If one was interested in extending the scope of the investigation to a richer problem,
the required modifications could easily be made to the software. This includes the
transformation of the software to accommodate for DAG shop or open shop problems
as well as addition of set-up times, due dates and other features to the basic job shop
model. The summary of the design and implementation presented in Chapter 3, along
side the software documentation that is supplied with the source code, should be helpful
when performing modifications.

There are several features that one may want to add to the Job Shop Simulator
(JSS). This front end GUI could be enhanced so that it is more informative to the user
regarding the state of the shop. It might also be helpful to enhance the user controlled
algorithm so that the JSS becomes a true job shop and/or MCQN exploration tool. Such
an enhancement might involve an “undo” operation and the ability to switch between the
user controlled algorithm and other on-line algorithms during the execution of a single
simulation run. User defined buffer priority algorithms might also be a helpful feature.

In addition, if the JSSP is to be used for an additional simulation study, one might
want to enhance the JSS so that it allows for planning and execution of a mass of simula-

tion runs, including recording the runs in the simulation results database (SRDB). Such



a feature may greatly improve research times (when compared to using Mathematica as

a front end) if it to be implemented in a user friendly manner.

Empirical Results

The results that were recorded in the SRDB, summarized in Chapter 4 and analyzed
in Chapter 5 and Chapter 6 have shed a light on high volume job shop scheduling with

respect to makespan. We now summarize our findings:

e The Cihax FIA schedules job shop problems such that the makespan is equal to the
machine lower bound plus a constant that is independent of the number of jobs.
This occurs with a high probability and even when the processing times are drawn

from heavy tailed distributions.

e The Cp., FIA performs as well for the R < J proportional case as it does for the
R < J identical case.

e When there are multiple bottleneck machines, the Cp.x FIA does not perform as
well. In this case the gap is increasing. Yet it is still asymptotically optimal with
a high probability. When the problem is set up such that routes start “all around”
the problem as opposed to at several specific machines, the balanced job shop

problem performs well (a constant gap).

e When applying the LBFS rule on re-entrant line problems, it acts the same as
the Chax FIA heuristic. This is due to the fact that both Cp.x FIA and LBFS

essentially act like the “schedule buffer with most upstream jobs” rule.

e Random buffer scheduling rules work extremely well on R < J identical problems.
While the gap is increasing (and not constant) with the number of jobs, the sim-
ulation results have shown that it is only increasing logarithmically with a high

probability.

e Unlike the random buffer scheduling rules, the random job scheduling rule is not
asymptotically optimal (selecting a buffer at random yields good results while

selecting a job at random yields unsatisfactory results).

e 2 machine job shops with 2 opposite routes are asymptotically optimal when sched-
uled using the Cp, FIA. This is independent of the processing means of each of
the operations. A steady state model for this problem was formulated in Chapter
6. We believe that it has a stable solution because the simulation results have

shown a gap that is constant with respect to the number of jobs.

79



The above empirical results are yet to be proven. We believe that the key to proving
some of these results lies in the relationship between stable MCQN’s and asymptotically
optimal job shop problems. This is due to the fact that a high volume job shop problem
with a constant run-out time implies that the underlying queueing network that is in
operation from time 0 to the time at which the bottleneck machine finishes all of it’s

jobs is stable.

80



Bibliography

1]

2]

3]

[4]

[5]

[6]

7]

8]

[9]

[10]

Adams, J. & Balas, E. & Zawack, D. (1988) The Shifting Bottleneck Procedure for
Job Shop Scheduling. Management Science 34, p. 391-401.

Balas, E. (1968) Machine Sequencing via Disjunctive Graphs: an Implicit Enumer-
ation Algorithm. Operations Research 17, p. 941-957.

Banks, J. & Dai, J. G. (1997) Simulation Studies of Multi-class Queueing Networks.
IIE Transactions 29, p. 213 -219.

Bertsimas, D. & Gamarnik D. (1999), Asymptotically Optimal Algorithms for Job
Shop Scheduling and Packet Routing. Journal of Algorithms 33, p. 296 - 318.

Bertsimas, D. & Gamarnik D. & Sethuraman, J. (1999), From Fluid Relaxations to
Practical Algorithms for Job Shop Scheduling: the Holding Cost Objective. (Sub-
mitted for publication).

Boudoukh, T. (1999) Algorithms for solving job shop problems with identical and
similar jobs, based on fluid approximation (Hebrew with English synopsis). M.Sc.

Thesis, Technion, Haifa, Israel.

Boudoukh, T. & Penn, M. & Weiss, G. (2001) Scheduling Job Shops with Some
Identical or Similar Jobs. Journal of Scheduling 4, p. 177-199.

Bratley, P. & Fox, B.L. & Schrage, L.E (1983) A Guide to Simulation, Second
Edition. New York: Springer-Verlag.

Brinkkotter, W. & Brucker, P. (1999) Solving Open Benchmark Problems for the
Job Shop Problem. (to appear).

Carlier J. & Pinson, E. (1989) An Algorithm for Solving the Job-shop Problem.
Management Science 35(2), p. 164-176.



[11] Coe, P.S. & Howell, F.W. & Ibbett, R.N. & Williams, L.M. (1998) A Hierarchical
Computer Architecture Design and Simulation Environment. ACM Transactions on

Modeling and Computer Simulation 8(4).

[12] Dai, J.G. (1995) On Positive Harris Recurrence of Multi-class Queueing Networks:
A Unified approach via Fluid Limit Models. Annals of Applied Probability 5, p.
49-77.

[13] Dai, J.G. & Weiss, G. (1996) Stability and Instability of Fluid Models for Re-Entrant
Lines. Mathematics of Operations Research 21, p. 115-134.

[14] Dai, J.G. & Weiss, G. (2000) A Fluid Heuristic for Minimizing Makespan in Job-
Shops. Operations Research, to appear.

[15] David, H. (1981) Order Statistics. New York: Wiley.

[16] Dell’Amico, M. & Trubian, M. (1993) Applying tabu search to the job shop schedul-
ing problem. Annals of Operations Research 41, p. 231-252.

[17] Eckel, B. (2000) Thinking In JAVA, Second Edition. Upper Saddle River: Prentice-
Hall.

[18] Fowler, M. & Scott, K. (2000) UML Distilled, Second Edition. New York: Addison-
Wesley.

[19] Gamma, E. & Helm, R. & Johnson, R. & Vlissides, J. (1995) Design Patterns:
Elements of Reusable Object-Oriented Software. Reading: Addison Wesley.

[20] Garey, M.R & Johnson, D.S. (1979) Computers and Intractability: A Guide to the

Theory of NP-Completeness. San Francisco: Freeman.

[21] Geary, D.M. (1999) Graphic Java, Volume II: SWING. Palo Alto: Sun Microsys-

tems.

[22] Glover, F. & Taillard, E. & Werra, D. (1993) A user’s guide to tabu search. Annals
of Operations Research 41, p. 3-28.

[23] Gosling J. & Joy, B. & Steele, G. & Bracha, G (2000) The Java Language Specifi-

cation, Second Edition. Mountain View: Sun Microsystems.

[24] Hartmann, A. & Schwetman, H. (1988) Discrete-Event Simulation of Computer
and Communication Systems, In Handbook of Simulation, FEdited by J. Banks. New
York: John Wiley & Sons.

82



[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

37]

Helsgaun, K. (2000) Discrete Event Simulation in Java. DATALOGISKE
SKRIFTER (Writings on Computer Science). Roskilde University.

Hennesy, J.L. & Patterson, D.A (1996) Computer Architecture, A Quantitative Ap-

proach, Second Edition. San Francisco: Morgan Kaufmann.

Hilton, C. (1998) Manufacturing Operations System Design and Analysis. Intel
Technology Journal.

Jain, A.S. & Meeran, S. (1998) A State-of-the-art review of Job-shop Scheduling
techniques. Technical report, Department of Applied Physics, Electronic and Me-

chanical Engineering, University of Dundee, Dundee, Scotland.

Jansen, K. & Solis-Oba, R. & Sviridenko, M. (2000) Makespan Minimization in Job

Shops: a Linear Time Approximation Scheme. Preprint.

Joins, J.A. & Roberts, S.D. (1988) Object-Oriented Simulation, In Handbook of
Simulation, Edited by Banks, J.. New York: John Wiley & Sons.

Kelton, W.D. & Sadowski, R.P. & Sadowski, D.A. (1998) Simulation with Arena.
McGraw-Hill: Boston.

Kopzon, A. & Weiss, G. (2001) A Push Pull Queueing System. Preprint.

Kumar P.R. (1995) Scheduling Queueing Networks: Stability, Performance, Anal-
ysis and Design. In Stochastic Networks — IMA Volumes in Mathematics and its
Applications, Vol 71, ed: Kelly F. P. & Williams R.J., Springer-Verlag, New York,
p- 21-70.

Kogge, P.M. (1981) The Architecture of Pipelined Computers. New York: McGraw-
Hill.

Lawler, E.L. & Lenstra, J.K & Rinnoy Kan, A.H.G & Shmoys, D.B. (1993) Se-
quencing and Scheduling: Algorithms and Complexity, In Logistics of Production
and Inventory, Edited by Graves, S.C. & Rinnoy Kan, A.H.G. & Zipkin, P.H.,

Elsevier Science Publishers: New York.

Lea, D. (1999) Concurrent Programming in Java, Second Edition. Mountain View:

Sun Microsystems.

Lourenco, H.R.D. (1995) Job-Shop Scheduling: Computational Study of Local
Search and Large-Step Optimization Methods. Furopean Journal of Operational
Research, 83, p. 347-364.

83



[38] Manne, A.S. (1960) On the job shop scheduling problem. Operations Research 8, p.
219-223.

[39] Martin, P. & Shmoys, D.B. (1996) A new approach to computing optimal schedules
for the job-shop scheduling problem. International IPCO Conference. p. 389-403.

[40] Mattfeld, D.C. & Vaessens, R.J.M. (2001) Job Shop Problems in the OR library:
http://mscmga.ms.ic.ac.uk/info.html

[41] McNab, R. & Howell, F.W. (1996) Using Java for Discrete Event Simulation.
Twelfth UK Computer and Telecommunications Performance Engineering Work-
shop (UKPEW). University of Edinburgh. p. 219-228.

[42] Muth, J.F. & Thompson, G.L. (1954) Industrial Scheduling. New Jersey: Prentice
Hall.

[43] Nowicki, E & Smutnicki, C. (1996) A fast tabu search algorithm for the job shop
problem, Management Science 42, p. 797-813.

[44] Pinedo, M. (1995) Scheduling, Theory, Algorithms and Systems. New Jersey: Pren-
tice Hall.

[45] Pinedo, M. & Chao, X. (1999) Operations Scheduling with Applications in Manu-

facturing and Services. Boston: Irwin/McGraw-Hill.

[46] Pullan, M.C. (1995) Forms of optimal solutions for separated continuous linear
programs. SIAM J. Control and Optimization 33, p. 1952-1977.

[47] Pullan, M.C. (1996) A duality theory for separated continuous linear programs.
SIAM J. Control and Optimization 34, p. 931-965.

[48] Ross, S.M. (1983) Stochastic Processes. New York: John Wiley & Sons.

[49] Schriber, T.J. & Brunner, D.T. (1988) How Discrete-Event Simulation Software
Works, In Handbook of Simulation, Edited by J. Banks. New York: John Wiley &

Sons.

[50] Sevast’yanov, S.V. (1986) Bounding Algorithm for the Routing Problem with Ar-
bitrary Paths and Alternative Servers. Kibernetika 6, p. 74-79.

[61] Sevast’yanov, S.V. (1994) On some geometric methods in scheduling theory, a sur-
vey. Discrete Applied Mathematics 55, p. 59-82.

84



[52] Storer, R.H & Wu, S.D. & Vaccari R. (1992) New Search Spaces for Sequencing
Problems with Application to Job Shop Scheduling. Management Science 38(10),
p. 1495-1509.

[53] Van Laarhoven, P.J.M. & Arts, E.-H.L. & Lenstra, J.K. (1992) Job shop scheduling
by simulated annealing. Operations Research 40, p. 59-82.

[54] Weiss, G. (1995) On Optimal Draining of Fluid Re-Entrant Lines. In Stochastic
Networks — IMA Volumes in Mathematics and its Applications, Vol 71, ed: Kelly
F. P. & Williams R.J., Springer-Verlag, New York, p. 93-105.

[55] Weiss, G. (1999) Scheduling and Control of Manufacturing Systems - a Fluid Ap-
proach. Proceedings of the 37 Allerton Conference, 21-24 September, 1999, Monti-
cello, Illinois. p. 557-586.

[56] Weiss, G. (2001) A Simplex Based Algorithm to Solve Separated Continuous Linear
Programs. Preprint.

[67] Williamson, D.P. & Hall, L.A. & Hoogeveen, J.A., & Hurkens, C.A.J, & Lenstra,
J.K. & Sevast’ynaov, S.V. & Shmoys, D.B. (1997) Short Shop Schedules. Operations
Research 45, p. 288-294.

[58] Wolfram, S. (1999) The Mathematica Book, Fourth Edition. Wolfram Research:
Champaign.

85



Appendix A

Full Simulation Results

The graphs of the results that were collected are presented below. The contents of the
graphs is described in Section 4.4. All of the runs plotted on a single graph belong to
the same class of job shop problems and were scheduled using the same algorithm (this

is a single simulation experiment as defined in Chapter 4).

A.1 The R <« J Identical Case

A1l CV.=0
Cmax FIA

Ti me

Units Cr_rax FI A

identical - c.v. =0 - ntl0

600
500

400 +

300

200

100

Log N
10 11 12 13 14 15 16 17 18
n=2 n=2 n=2 n=4n=24n=4 n=2 n=2n=63



Ti ne

Units OIBX FIA

identical - c.v. = - abz9

300

250

200

150

100 B

50 -

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n=15n=15n=15 n=5 n=5 n=5 n=5 n=5 n=5 n=5 n=5 n=5 n=5 n=5 n=5 n=5

Ti e .
Units Ctlax Fl A

identical - c.v. =0 - swil3

e, e e———8——6— 06— 90— 0—0—0—0—0—0—»

1500
1250
1000
750
500

250

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14
n=6 n=16 n=16 n=16 n=16 n=16 n=16 n=16 n=16 n=16 n=16 n=16 n=6 n=6

Ti ne i
Units Crlax Fl A:

0 - nt10-bal

identical - c.v.

1500

1250

1000

750

500

250

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14
n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25

87



Ti me

Units CEPX Fl A

identical - c.v. O - nt1O0-rline

4000 -

3000

2000

1000

Ti me
Units

Cmax FlI A
identical - c.v. = 0 - nt10-round-bal

500

400

300

200

100

Log N
10 11 12 13 14 15
=2 n=2 n=2 n=2 n=2 n=2

38



RBSR

Ti ne
Units

RBSR:
identical - c.v. =0 - nti10

40000

30000

20000

10000

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
n=84n=84n=84n=841=141=123=91n=90n=55n=55n=55n=85n=801=140=117=10T"=90n=23

Ti ne

Units RBSR

identical - c.v. = 0 - abz9

7000

6000

5000

4000

3000

2000

1000

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=70 n=70 n=70 n=70 n=70 n=70 n=70 n=70 n=70 n=70 n=30 n=30 n=35 n=42 n=22

Ti me

Units R§SR

identical - c.v. =0 - swl3
14000
12000
10000
8000
6000

4000

2000

Log N
1 2 3 4 5 6 7 8 9 10 11 12
n=160 n=174 n=124 n=114 n=112 n=82 n=62 n=62 n=62 n=62 n=62 n=10

89



Ti me
Units

identical - c.v. = 0 - ntl1l0-ba

175000

150000

125000

100000

75000

50000

25000

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15

Ti ne

Units RBSR

identical - c.v. = - m10-rline

8000

6000

4000

2000

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14
n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25

Ti me
Units identical - c.v. = 0 - nt10-round-ba

50000

40000

30000

20000

10000

Log N
2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=32 n=32 n=32 n=32 n=32 n=32 n=32 n=32 n=32 n=32 n=32 n=32 n=32 n=32 n=32

90



RJSR

1.

FBFS

Ti me

Units

2.10% +

1-108

800000

600000

400000

200000

identica

Ti ne

Units

- 107

- 10%

- 10°

. 108 L

. 106 L

identica

[
w
Il =

91

Log N



Ti me
Units

3.5-10°

identical - c.v. = 0 - mt10-rline

3-10°
2.5.10°%
2.10%
1.5-10°
1-108

500000

LBFS

Ti me .
Units identical - c.v. =0 - ntl10

4.10°

3.10%

2.10%

1-10° ¢

- - - - Log N
12 13 14 15
n=2 n=2 n=2 n=2

92



Ti me

Units LBFS:

identical - c.v. O - nt1O0-rline

5000

4000 -

3000

2000 -

1000

A.1.2 C.V.=0.25
Cmax FIA

Ti me
Units

Cmax Fl A
identical - c.v. = 0.25 - nt10

800

600

400

200

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n=50 Nn=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50

93



identical - c.v. = 0.25 - sw13

2000

1500

1000 -

500

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13
n=20 n=30 n=30 n=30 n=30 n=30 n=30 n=30 n=30 n=30 n=30 n=30 n=20

Ti e
H Cmax FI A
Units identical - c.v. = 0.25 - nt10-ba

30000
25000
20000
15000
10000

5000

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14
n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50

94



RBSR

Ti e
Units

identical - c.v. = 0.25 - nt10

25000 |

20000 F

15000 -

10000 |

5000 |

- — -— . Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Nn=40 n=40 Nn=40 n=40 Nn=40 n=40 Nn=40 n=40 Nn=40 n=40 Nn=40 n=40 n=40 n=40 n=20

Ti ne
Units

RBSR
identical - c.v. = 0.25 - abz9

7000

6000

5000

4000

3000

2000

1000

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=29 Nn=29 n=29 n=29 n=29 n=29 n=29 n=29 n=29 n=29 n=29 n=29 n=29 n=37 n=29

RBSR:

Ti me
its identical - c.v. = 0.25 - swil3

Un
15000 F

12500

10000

7500

5000

2500

Log N
1 2 3 4 5 6 7 8 9 10 11 12
n=50 n=60 n=60 n=40 n=40 n=20 n=10 n=10 n=10 n=10 n=10 n=10

95



Ti ne
Units

RBSR:
identical - c.v. = 0.25 - nt10-bal

175000

150000

125000

100000

75000

50000

25000

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=20 n=20 n=20 n=20 n=20 n=20 n=20 n=20 n=20 n=20 n=20 n=20 n=20 n=20 n=20

RJSR

Ti ne

Units RISR

identical - c.v. = 0.25 - nt10

4. 10%

3.10°%

2.10%

1-108

- - - - - Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Nn=20 n=20n=20 n=20 n=20 n=20 n=20 n=20 n=20 n=20 n=20 n=20 n=20 n=20 n=20 n=20

96



Ti ne
" RISR
Units identical - c.v. = 0.25 - abz9

1.4-10%
1.2-108 |
1-108
800000 |
600000 |
400000 |

200000

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15

A13 CV.=1.0
Cmax FIA

Ti me
Units

Cmax FI A
identical - c.v. = 1.0 - nt10

4000

3000

2000

1000

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25

97



Ti me
Units

Cmax Fl A:
identical - c.v. = 1.0 - abz9

800

600

400

200

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14
n=20 n=20 n=20 n=20 n=20 n=20 n=20 n=20 n=20 n=20 n=20 n=20 n=20 n=20

Ti me

Units Cmax Fl A

identical - c.v. = 1.0 - swi13

20000

15000

10000

5000

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14
n=15 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=15 n=14

Ti me
. Cmax FlI A
Uni ts identical - c.v. = 1.0 - nt10-ba

100000
80000
60000
40000

20000

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14
n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50

98



Ti me
Units

Cmax FlI A
identical - c.v. = 1.0 - ntl10-rline

20000

15000

10000

5000

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14
n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50

Ti e

Units Cmax FlI A

identical - c.v. = 1.0 - nt10-round-ba
5000
4000
3000
2000

1000

- : Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=30 n=30 n=30 n=30 n=30 n=30 Nn=30 n=30 n=30 n=30 n=30 n=30 n=30 n=30 n=30

99



RBSR

Ti e
Units
25000

RBSR

I
=
o

- nmt 10

identical - c.v.

20000 r

15000 -

10000 |

5000 |

1 2 3 4 5 6 7 8 9 10 11 12 13 l; 15 16 tog N
Nn=12n=12n=12n=12n=12n=12n=12n=12n=12n=12n=12n=12n=12n=27 n=26 n=15
BLF?S identical - c.v.RESTiO - swl3
30000 f
25000
20000
15000
10000
5000
Log N
1 2 3 4 5 6 7 8 9 10 11 12
n=50 n=60 n=60 n=40 n=40 n=20 n=10 n=10 n=10 n=10 n=10 n=10
Onfts i dentical - c.v. =1.0 - nt10-round-bal
50000
40000
30000
20000
10000
Log N

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=30 Nn=30 n=30 n=30 n=30 n=30 Nn=30 Nn=30 Nn=30 n=30 Nn=30 n=30 n=30 n=30 n=30

100



A.1.4 Weibull 1/2
Cmax FIA

Cmax FI A
identical - weibull 1 2 - nt10

14000

12000

10000

8000

6000

4000

2000

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13
n=30 n=30 n=30 n=30 n=30 n=30 n=30 n=30 n=30 n=30 n=30 n=20 n=20

RBSR

RBSR:
identical - weibull 1 2 - ntl0

20000

15000

10000

5000

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14
n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 nN=100 n=50 n=30 n=50 n=70 n=20

101



A.1.5 Pareto 3

Cmax FIA

Ti ne
Units

8000

6000

4000

2000

Cmax Fl A
identical - pareto 3 - ntl0

RBSR

15000
12500
10000
7500
5000

2500

1 2 3 4 5 6 7 8 9 10 11
n=150 n=150 n=150 n=150 n=186 n=200 n=150 n=150 n=150 n=150 n=100

RBSR
identical - pareto 3 - nt10

1 2 3 4 5 6 7 8 9 10 11
n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=30 n=30 n=30

102

Log N



A.1.6 Pareto 2

Cmax FIA
Ti ne
. Cmax Fl A:
Units identical - pareto 2 - nt10

8000

6000

4000

2000

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
N=74nN=74n=74n=74n=74Nn=69 n=69 N=69 N=69 N=69 N=69 N=69 N=69 Nn=64 n=29 n=14
6}1[‘}35 ) ) cmax Fl A
identical - pareto 2 - abz9
4000
3000
2000
1000
; R N,
Log N

1 2 3 4 5 6 7 8 9 10 11 12 13 14
n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15

103



Ti me
Units

Cmax FlI A
identical - pareto 2 - swi13

40000 |

30000

20000

10000

8 H : B Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14
n=43 n=81 n=81 n=81 n=81 n=51 n=51 n=51 n=51 n=51 n=51 n=51 n=43 n=57

Ti me

Units Cmax Fl A:

identical - pareto 2 - nt10-bal

175000
150000
125000
100000
75000
50000

25000

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14
n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50

Ti ne

Units Cmax FlI A

identical - pareto 2 - nt10-round-ba

10000
8000
6000
4000

2000

Log N

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=30 Nn=30 n=30 n=30 n=30 n=30 Nn=30 Nn=30 Nn=30 n=30 Nn=30 n=30 n=30 n=30 n=30

104



RBSR

25000

20000

15000

10000

5000

Ti
Un

300000

250000

200000

150000

100000

50000

Ti ne
Units

35000

30000

25000

20000

15000

10000

5000

me
its

RBSR
identical - pareto 2 - nt10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=30 n=30 Nn=30 n=30 n=30 Nn=30 n=30 n=30 n=35 n=35 n=35 n=35 n=30 n=30 n=30

RBSR
identical - pareto 2 - nt10-bal

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25

RBSR:
identical - pareto 2 - nt10-round-ba

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=30 Nn=30 n=30 n=30 n=30 n=30 Nn=30 Nn=30 Nn=30 n=30 Nn=30 n=30 n=30 n=30 n=30

105

Log N

Log N

Log N



FBFS

Ti me

Units FBFS:

identical - pareto 2 - nt10

2.107

1.5- 107

1-107

5.10% +

- - - - - Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Nn=15n=15n=15n=15n=15n=15n=15n=15n=15n=15n=15n=15n=15n=15n=15n=15

LBFS
e _ _ LBFsS:
identical - pareto 2 - nt10
8- 10°
6-10°%
4.10% -
2.10% |
- - - - - Log N

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Nn=15n=15n=15n=15n=15n=15n=15n=15n=15n=15n=15n=15n=15n=15n=15n=15

106



Ti ne

Units LBFS:

identical - pareto 2 - nt10-bal

- 107 -

- 108 |-

- 10°

- 108 -

- 10° ¢

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15 n=15

107



A.2 The R < J Proportional Case

A21 CV.=0
Cmax FIA

Ti me
Units
800

Cmax FlI A
proportional - c.v. =0 - ntl0

600

400 -

200

Log N
10 11 12 13 14
n=2 n=2 n=2 n=2 n=2

Ti me
Units proportional - c.v. = 0 - abz9

400 -

300

200

100

. . . . Log N
3

n=2 n=2 n=2 n=2 n=2 n=2 n=2 n=2 n=2

108



Ti e

Units Cmax FI A

proportional - c.v. =0 - swl13
1400

1200 |

1000 |

800 -

600

400

200

L L L L L Log N

Ti me
Units proportional - c.v. = 0 - nt10-bal

1200 |

1000 |

800

600

400

200

. . . . . Log N
10 11 12 13 14
n=2 n=2 n=2 n=2 n=2

109



RBSR

Ti ne

Units RBSR:

proportional - c.v. =0 - nt10
175000
150000 ¢+
125000
100000
75000 |
50000 |
25000 |

. . . Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
N=50N=100=150=150=150=150=150=150=150=1501=100n=50 n=50

Ti me
Units proportional - c.v. =0 - swli13

1500 |

1250 |

1000 |

750

500

250

. . . . . Log N
1 2 3 4 5 6 7 8 9 10 11 12 13
n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25

Ti ne
Units
50000 ¢

RBSR
proportional - c.v. = 0 - nt1l0-ba

40000

30000

20000

10000 |

1 2 3 4 5

Log N

6 7 8 9 10 11 1
n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25

2 13 14

110



PRBSR

e PRBSR
proportional - c.v. =0 - nt10

17500 |
15000 |
12500 |
10000 |
7500
5000

2500

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25

Ti me
Units . PRBS'S
proportional - c.v. =0 - abz9

1500 |
1250 |
1000 |
750
500

250

: Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25

111



LBFS

Ti me

Units LBFS:

proportional - c.v. =0 - nt10

250000

200000

150000

100000

50000 ¢

9 10 11 12 13 14
2 n=2 n=2 n=2 n=2 n=

A.2.2 C.V.=0.25
Cmax FIA

Ti e

Units Cmax FI A

proportional - c.v. = 0.25 - nt10

1000 |
800 -
600

400

200

. . . Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14
n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50

112



Ti ne
Units

500 ¢

400 -

300

200

100 |

Cmax FlI A
c.v. = 0.25 -

abz9

proportional -

Ti me

Units

1500 |

1250 |

1000 |

750

500

250

Log N
1 2 3 4 6 7 8 9 10 11 12 13

5
n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50

Cmax FlI A

proportional - c.v. = 0.25 - swi13

Ti me
Units

2000 +

1500 |

1000 |

500

Log N
1 2 3 4 5 7 8 9 10 11 12 13 14
n=100n=100n=100n=100n=100n=100n=100n=100 n=50

Cmax FlI A

proportional - c.v. = 0.25 - nt10-bal

Log N
8 9 10 11 12 13
n=25 n=25 n=25 n=25 n=25 n=25



RBSR

Ti me

Units RBSR

proportional - c.v. = 0.25 - swi13
1500
1250
1000
750 -
500

250

. . . . . S— Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14
n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25

A23 CV.=1.0
Cmax FIA

Ti e

Units Cmax FI A

proportional - c.v. = 1.0 - nt10
5000

4000 -

3000

2000 +

1000 |

s s s - Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14
n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50

114



Ti e
Units

1000

800

600

400

200

Ti e
Units

3000

2500

2000

1500

1000

500

Cmax

proportional - c.v. =

Fl A
1.0 - abz9

1 2 3 4 5 6 7
n=50 n=50 n=50

proportional - c.v. =

8 9 10 11 12 13
n=50 n=50 n=50 n=50 n=50 n=50

Cmax FI A

1.0 - swi13

n=50 n=50

115

8 9 10 11 12 13
n=50 n=50 n=50 n=50 n=50 n=50

Log N

Log N



RBSR

Ti ne
Units

RBSR:
proportional - c.v. = 1.0 - nmt10

50000

40000

30000

20000

10000 |

Log N

1 2 3 4 5 6 7 8 9 10 11 12 13 14
n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50

Ti ne

Units RBSR

proportional - c.v. = 1.0 - abz9

14000 |

12000 |

10000 |

8000

6000

4000 -

2000

1 2 3 4

Log N

5 6 7 8 9 10 11 12 13 14
n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50

Ti me

Units RBSR

proportional - c.v. = 1.0 - sw13

4000 -

3000 +

2000 +

1000 |

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14
n=75 n=75 n=75 n=75 n=75 n=75 n=75 n=75 n=25

116



PRBSR

Ti ne

Units PRBSR

proportional - c.v. =1.0 - nt10

14000 |
12000 |
10000 |
8000
6000
4000 -

2000

. . . . . Log N
1 2 3 4 5 6 7 8 9 10 11 12 13
n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25

FBFS

Ti me

Units FBFS:

proportional - c.v. = 1.0 - nt10

350000 |
300000
250000 |
200000 |
150000
100000

50000 |

. . . . . Log N
1 2 3 4 5 6 7 8 9 10 11 12 13
n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25

117



LBFS

Ti ne
Units

140000
120000 -
100000
80000
60000
40000 -

20000

proporti ona

A.2.4 Weibull 1/2
Cmax FIA

Ti me
Units

15000 |
12500 |
10000 |
7500
5000

2500

n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25

proporti ona

6

LBFS:
c.v. = 1.0 -

nt 10

7 8

Cmax FlI A
wei bull 1 2 -

9

nt 10

10

11

12

13

4 5 6

n=50 n=50 n=50 n=50 n=50

7 8 9

118

10

11

12

13

14

n=50 n=50 n=50 n=50 n=50 n=50

Log N

Log N



Ti e

: Cmax FI A
Units proportional - weibull 1 2 - abz9
4000 +
3000
2000
1000 |
. . . . . Log N
1 2 3 4 5 6 7 8 9 10 11 12 13
n=50 n=50 n=50 n=50 n=50 n=50 n=30 n=10 n=50
e Crax FI A
proportional - weibull 1 2 - swi13
12000
10000
8000
6000
4000
2000
. . . . . Log N

1 2 3 4 5 6 7 8 9 10 11 12 13
n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50

119



A.2.5 Pareto 3
Cmnax FIA

Ti me
Units

Cmax FI A
proportional - pareto 3 - nt10

10000 |

8000

6000

4000 +

2000

s s s - : Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14
n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50

Ti e

Units Cmax FlI A

proportional - pareto 3 - abz9

3000

2500 +

2000 +

1500 |

1000 |

500

: : : : : - - Log N
1 2 3 4 5 6 7 8 9 10 11 12 13
n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50

120



Ti me

Units Cmax FI A

proportional - pareto 3 - sw13

12000 |

10000 |

8000

6000

4000 +

2000

- - Log N
1 2 3 4 5 6 7 8 9 10 11 12 13
n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50

A.2.6 Pareto 2
Cnax FIA

Ti ne
Units

Cmax FlI A
proportional - pareto 2 - mt10

12000 |

10000 |

8000

6000

4000 -

2000

. . . . . Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14
n=50 n=20 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=20

121



e Cmax FI A
proportional - pareto 2 - abz9

3000 F

2500 +

2000 +

1500 |

1000

500

Log N
5 6 7 8 9 10 11 12 13
n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50

e Cmax FI A
proportional - pareto 2 - sw13

10000

8000 -

6000

4000 +

2000

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13
n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50

e Cmax FI A
proportional - pareto 2 - nt10-ba

30000

25000

20000

15000 |

10000 |

5000 -

. . . . . . . Log N
1 2 3 4 5 6 7 8 9 10 11 12 13
n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25

122



RBSR

e RBSR
proportional - pareto 2 - mt10
60000
50000
40000
30000
20000
10000
. . . H Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14
n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50
e RBSR
proportional - pareto 2 - abz9
20000
15000
10000
5000
. . . . Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14
n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50
e RBSR:
proportional - pareto 2 - sw13
8000
6000
4000
2000
. . . . . Log N
1 2 3 4 5 8 9 10 11 12 13

6 7
n=50 n=50 n=50 n=50 n=50 n=50 n=50 n=50

123



Ti me
Units

RBSR
proportional - pareto 2 - mnt10- bal

50000

40000

30000

20000

10000

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13
n=2 n=2 n=2 n=2 n=2 n=27 n=25 n=25 n=25 n=25 n=25 n=25 n=25

PRBSR

Ti ne

Units PRBSR

proportional - pareto 2 - nt10

35000
30000
25000
20000
15000 |
10000 |

5000

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25

124



FBFS

Ti me

Units FBFS:

proportional - pareto 2 - nt10

350000 |
300000
250000 |
200000 |
150000
100000

50000

. . . . . Log N
1 2 3 4 5 6 7 8 9 10 11 12 13
n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25

LBFS

Ti me

Units LBFS:

proportional - pareto 2 - nt10

140000
120000
100000
80000
60000
40000 -

20000 |

Log N
1 2 3 4 5 6 7 8 9 10 11 12 13
n=25 n=25 n=25 n=25 n=25 n=25 n=25 n=25

125



A.3 The R~ J Case with RJSR

Unre RBSR:
c.v. = 0.25 - LargeH10, OL

700
600
500
400 +
300
200

100

Ti ne
Units
1400

RBSR
c.v. = 1.0 - LargeH10, OL

1200

1000

800

600

400

200

Log N
1 2 3 4 5 6 7 8 9 10 11 12
n=30 n=30 n=30 n=30 n=30 n=30 n=30 n=30 n=30

Ti ne
Units RBSR:
pareto 2 - LargeH10, OL

2500

2000

1500

1000

500

Log N
1 2 3 4 5 6 7 8 9 10 11 12
n=30 n=30 n=30 n=30 n=30 n=30 n=30 n=30 n=30

126



Appendix B

Simulation Details

This appendix lists the technical details regarding the simulation experiments. Appendix
Section B.1 details the way in which the R.V.'s were generated. Appendix Section
B.2 lists the proportions that were used for the R < J proportional problem instances.

Appendix Section B.3 explains how random R = J topologies were created.

B.1 Generation of Random Variables

There are two ways in which a random p may be generated: (1) Generate all of the ran-
dom processing times before the beginning of the simulation. (2) Generate the random
processing times during the course of the simulation. We used the latter method. At
each time that the simulation kernel was interested in the processing time of a job on
a machine, a random variable was generated. The generation routines were simple to
implement, they are based on the random number generator supplied in the JAVA envi-
ronment’s java.util package: class Random. class Random uses a 48-bit seed which
is modified using a linear congruential formula', for more information see the JAVA API.
A good overview of R.V. generation and transformation may be found in [8].

Since a meaned topology specifies the mean processing time, generation of the ran-
dom variables requires that the R.V.’s come from the desired distribution around the
specified mean. We now briefly describe how we generated the C.V.= 0.25, C.V.= 1.0,
Weibull 1/2, Pareto 3 and Pareto 2 R.V’s. For each R.V. we describe how it is generated
given a mean p (u > 0).

We generated the C.V.= 0.25 R.V’s by transforming that value that is returned by
java.util.Random’s nextGaussian() method. This is a N(0,1) random value (it is
generated using the so-called polar method). Since we are interested in an R.V. having a

standard deviance of 0.25u and a mean of p, we multiply the nextGaussian() value by

! This is the implementation as of JAVA v1.3.



0.254 and add p to it. Note that there is a ®(—4) ~ 10~ probability (® is the cumulative
distribution function of the standard normal R.V.) that this R.V. is negative. When this
un-probable event occurs we re-sample another N(0,1) R.V.

We used the exponential distribution to generate C.V.= 1.0 R.V’s. This is achieved
by applying the inverse probability transform on a uniform R.V. If U is the uniform R.V.
generated by the nextDouble () method, then —plogU is distributed exponentially with
mean /.

For the generation of the Weibull 1/2 R.V, we first generated an exponential random
variable with mean \/m It turns out that the square of this exponential R.V. is a
Weibull R.V. with mean p and a hazard rate proportional to e /2.

The Pareto 3 and Pareto 2 R.V’s were generated from a Pareto distribution having

a cumulative distribution function of the form:

A
Atz

1—( )<

This is a function of x (for all z > 0); « and A are parameters. When o = k (integer),
only the first k moments exists. Thus we used a = 3 and a = 2 for the two types of
Pareto R.V’s. Given a and u, we computed A accordingly. The inverse of the cumulative

distribution function is easily calculated and is applied on a uniform random variable.

B.2 Selection of the Number of Jobs on
Each Route in the R < J Proportional Case

We tested the R < J proportional case with the MT10, ABZ9, SWV13 and MT10-bal
meaned topologies. These meaned topologies contain 10, 20 and 50 routes respectively.
We arbitrarily chose a certain asymmetric distribution of job on routes for each of the
problem types. For the MT10 and MT10-bal problems we used this distribution:

0.04 0.04 0.04 0.04 0.04 0.10 0.10 0.1 0.25 0.25

As can be seen, 50% of the jobs are on 2 of the routes and the other 50% are on the

remaining 8 routes.

128



For the ABZ9 problems we used this distribution:

0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.04 0.04 0.04 0.04 0.06 0.06 0.08

For the SWV13 problems we used this distribution:

0.01
0.01
0.01
0.01
0.02

0.01
0.01
0.01
0.01
0.03

0.01
0.01
0.01
0.02
0.03

0.01
0.01
0.01
0.02
0.03

0.01
0.01
0.01
0.02
0.04

0.01
0.01
0.01
0.02
0.04

0.01
0.01
0.01
0.02
0.05

0.02
0.10

0.01
0.01
0.01
0.02
0.05

0.02
0.12

0.01
0.01
0.01
0.02
0.08

0.04
0.20

0.01
0.01
0.01
0.02
0.15

B.3 Creation of R ~ J Job Shop Problems

We generated R =~ J problem instances by using the RLikeNShopData class. This class
generates a problem instance based on the machines means and the parameters I and a (as
specified in Section 4.2.2). The generation of a problem instance is simple: First draw the
number of machines on each route by using a discrete uniform [I — a, I + a] distribution,
then randomly draw a machine for each of the operations (using a uniform distribution).
The processing times are all set to the processing means. As the simulation runs, the

random number generator of the simulation is used to generate random processing times

for each of the operations, based on the machine’s mean?.

2Tn all of the R = J tests performed in this study, all of the machine means were equal

129



Appendix C

User Instructions
for the Job Shop Simulator

Below are the instructions for using the JSS. These instructions are taken from the
on-line help that is available with the software. In Appendix Section C.1 we present
general instructions for using the JSS. In Appendix Section C.2 we present instructions

for creating . jbs files.

C.1 Using the Job Shop Simulator

The JSS is an interactive simulation program designed to simulate job shop problems in
which the number of routes is fixed and the number of jobs on each route is large.

The JSS’s workspace is divided into the following areas:

The Algorithm Area

The Gantt Chart Area

The Shop State Area

The Shop Data Area

The Animation Area

Note that you may use the sliders that separate these areas to resize, hide or re-show
these areas.

To run a simulation, you must first open a . jbs file. Use the File Menu to open a file
(you may look at the help for . jbs files to see the specification of the . jbs file). After
selecting a . jbs file, the JSS loads the file and attempts to understand the information

written in it. If the information is ill formed, you will be notified. If the . jbs does not



contain graphic information you will also be notified and the animation will be suppressed
during the course of the simulation. If the information is kosher, the job shop is loaded
and summarized in the shop data area (bottom left)

After successfully opening a file, you should select an algorithm from the Algorithm
Menu.

After selecting an algorithm you may set several options from the Simulation Menu.
These are the R.V. to be used to generate processing times (around the means specified
in the . jbs file), the number of jobs in each route and the simulation speed. Note when
setting the number of jobs on each route you may actually edit the text fields so that
there is an uneven number of jobs on the routes (make sure to press enter after editing
a text field). Note also that you do not have to set the simulation speed before starting
the simulation, this may be done while the simulation is running.

When you are ready, select Start Simulation from the Sitmulation Menu. This will
generate the gantt and animation of the job shop (only if graphics information is available
in the loaded . jbs file). If you selected the User Controlled Algorithm you may now start
to schedule the shop by yourself. If you selected any other algorithm, click the Go Button
to start and use the Step and Pause buttons at your will.

At any moment, during or after the simulation, you may select View Kernel Log to
view messages that are displayed by the simulation kernel and the algorithm. Note that
when the simulation is complete, the statistics collector dumps the collected statistics to
the kernel log.

Note that machines and routes are labeled using the numbers 1,2,3,.... Jobs are not
labeled because the simulation engine treats all jobs on the same route as having the
same processing time distribution. Operations are labeled (r,0), where r is the route
number and o is the operation number. In the shop state area you may see the current
number of jobs in each buffer (each operation), the numbers displayed, take into account
any jobs that are currently being processed. In the animation, jobs are the little purple
dots, buffers (operations) are the yellow trapezoids, working machines are red circles and
idle machines are blue circles. The big triangles are route starts and the big boxes are

route ends.

C.2 Creating Your Own .jbs Files

A . jbs (Job Shop) file is a file that describes the meaned topology of a high volume job
shop problem instance. This file is read by the JSS and used to perform the simulations.

The file is to be created by any text editor, it may then be opened by the JSS when

131



run as an application or put on a web server when the JSS is run as an applet. Several
example files are available with the installation.

The file format uses the following guidelines:

1. The file is divided into three logical parts: The shop dimension part specifies how
many machines and how many routes are in the shop, the routes part specifies
the steps and mean durations of each route and the graphics part specifies the
information that tells the shop animation how to display the shop (this part is

optional).
2. Comments may appear in the file in lines that follow the # character.
3. All numbers may be of a floating point form: 3.14 or an integer form: 354
4. All directives may be either lowercase, uppercase or a mix.
5. All information should be separated by white space (space,tab or enter).

The Shop Dimension Part

In the shop dimension part (the start of the file) you should specify two integer numbers,

the first is the number of machines and the second is the number of routes.

The Routes Part

In the routes part you should enter a number of route entries that is the same as the
number of routes specified in the shop dimension part. Each route entry should look like
this:

Route 14
35938
Means
3.43525.0

The first line of numbers are the machine indexes for route 14, the second line is the
processing means for each of the steps. Thus the route entry means that route 14 is

composed of 5 steps with the given machines and processing times.

132



The Graphics Part

This part is optional (it may be omitted). Note that for shops with more than 10 routes
or more than 25 machines you may not specify graphics information. There is also a
limit of up to 12 buffers (operations) per machine.

The graphics part starts with the word Graphics. When the JSS reads the . jbs file,
it uses the ’Graphics’ word to understand that you have put graphic information. After
the word ’Graphics’, you should put two parts, the machines part and the routes part.
The machines part consist of entries that tell the JSS, where and how to display each
machine. The routes part tells the JSS where and how to display the route ends and
starts (squares and triangles respectively). Also, the machines part consists of machine
entries, one for each machine and the routes parts consists of route entries, one for each
route. You must make sure that the number of entries matches the number of machines

and number of routes. Here is an example of a machine entry:

Machine 5
32

14 30

2 5 60

4 8 120
7 3 240

This is the entry for machine 5. The first two numbers specify the location of the
machine on the graphics grid (a 5 by 5 grid). This should be a coordinate of the type (i,j)
i=1,...,5j=1,...,5. It is your responsibility to make sure that there is no other machine
with the same graphics coordinate. (You now see why there is a limit of 25 machines (for
graphics info). The next four lines in the machine entry are directives for displaying the
buffers in the machine. Each machine may have up to 12 buffers (a buffer is synonymous
with an operation). The machine in the example above has the buffers (1,4), (2,5), (4,8)
and (7,3). On the screen, the buffers are displayed as yellow trapezoids placed on the
circumference of the machines. For each buffer, we specify an angle at which it is to be
displayed (the angles are multiples of 30 degrees). Since a circle has 360 degrees, there
is a limit of up to 12 buffers per machine ( a graphics limit, not a simulation limit). An
angle of 30 degrees, means that the buffer is placed at 1 o’clock. An angle of 270 degrees,
means that the buffer is placed at 9 o’clock etc ...It is your responsibility to make sure
that the shop data, really matches the buffers that you specified (the JSS will not catch
this, it will stall if there is a mismatch). Thus in the above example, buffers (1,4), (2,5),

133



(4,8) and (7,3) should be the buffers that are specified in the routes (1, 2, 4 and 7) to
be on machine 5.

After specifying machine entries for each of the machines, you should specify route
entries. Each route is characterized by an start (triangle) and end (square). The route
tips (start and ends) are to be placed on the perimeter of the 5 by 5 grid that is allocated
for the machines. Excluding the corners this leaves room for 20 route ends (a total of 10

routes). Let’s look at an example route entry:

Route 8
NORTH 3
SOUTH 5

This entry is for route 8. It says that the start should be on the north side at location
3 (index of 1 to 5, west to east and north to south). The end in the example above is
place on the south side on location 5. You may have put EAST or WEST instead of NORTH
and SOUTH, or any combination. Just make sure that two route tips are not assigned to

the same spot.

134



Appendix D

Source Code Listing

The next pages include a partial source code listing for the Job Shop Simulation Project

(version 1.2). The full source code is available at this Internet site:
http://rstat.haifa.ac.il/~yonin/thesis/jobshopsim/shopsim.html

Note that JAVA offers the Javadoc utility. This utility allows generation of easy to
read documentation for the code. Javadoc generated documentation for the code may
be down-loaded from the Internet site.

The source code spans around 100 files (only a small sample is presented below). In
the listing below, each file starts on a new page. The page numbering restarts with each
file. Note that the column of numbers to the left of the code are not part of the JAVA

language.



